CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	v
LIST OF TABLES	viii
LIST OF FIGURES	X
CHAPTER I INTRODUCTION	1
1.1 Background	1
1.2 Objectives	2
1.3 Scopes of Studies	3
1.4 Concept Framework	4
1.5 Expected Result	4
1.6 Definitions	5
CHAPTER II LITERLATURE REVIEW	6
2.1 Hydrogen production process	6
2.2 Hydrogen production	9
2.3 Factors effect biohydrogen production by fermentation	18
2.4 Starch processing wastewater	23
2.5 Immobilization of microorganisms	23
2.6 Supporting materials for immobilization	28
2.7 Fluorescence in situ hybridization	33
2.8 Related researches	36
CHAPTER III MATERIALS AND METHODS	39
3.1 Equipment and chemicals	39
3.2 Experimental procedures	41
3.3 Monitoring and analysis	47
3.4 Data analysis	50

CONTENTS (cont.)

	Page
CHAPTER IV RESULTS AND DISCUSSIONS	52
4.1 Characteristics of starch processing wastewater and seed sludge	52
4.2 Optimal environment for biohydrogen fermentation	52
4.3 Biomaterials (BM) characterization and selection	63
4.4 Optimal concentration of BM for biohydrogen production	67
4.5 Comparison BM from plants and animals	71
4.6 Morphology and population of microorganisms on BM	73
CHAPTER V CONCLUSION AND RECOMMENDATIONS	
5.1 Conclusion	79
5.2 Recommendations	80
REFERENCES	81
APPENDICES	99
Appendix A	100
Appendix B	110
Appendix C	115
BIOGRAPHY	118

LIST OF TABLES

Table	s P	age
2.1	Properties of hydrogen	8
2.2	Main hydrogen production processes and substrate resources	9
2.3	Example of hydrogen-producing microorganisms	19
4.1	Characteristics of seed sludge and starch processing wastewater	52
4.2	Produced gas composition percentages at various temperature and initial pH	I 54
4.3	Hydrogen yield, hydrogen production, lag phase and final pH at various	55
	iron concentrations	
4.4	VFA and COD removal percentage at various temperature and initial pH	57
4.5	Optimal initial pH and temperature in other studies	59
4.6	Produced gas composition percentage at various initial iron concentrations	60
4.7	Hydrogen yield and production rate, lag phase and final pH at various iron	61
	concentrations	
4.8	VFA and COD removal percentage at various initial iron concentrations	62
4.9	Optimal initial iron concentration from various publications	63
4.10	Physical characterization, cell immobilization ability, and hydrogen	66
	production efficiency of BM	
4.11	Hydrogen yield, hydrogen production, lag phase and final pH at various	68
	loofa sponge concentrations	
4.12	Hydrogen yield, hydrogen production, lag phase and final pH at various	69
	cocoon concentrations	
4.13	VFA and COD removal percentage at various loofa sponge concentrations	70
4.14	VFA and COD removal percentage at various cocoon concentrations	70
4.15	Amount and type of supporting materials and hydrogen production from	71
	various publications	
4.16	VFA and COD removal percentage of loofa and cocoon at its optimal	72
	concentration	

LIST OF TABLES (cont.)

Tables		Page
B1	Average peak area of hydrogen (60%) and nitrogen (10%) standard gas	110
B2	Average peak area of carbon dioxide (30%) standard gas	111
B3	Average peak area of methane (70%) standard gas	112
B4	Gas chromatography value of VFA at various concentrations	113
C1	Raw data of gas content in experimental batch reactor under mesophilic	114
	condition at various pH	
C2	Raw data of gas content in experimental batch reactor at various iron	115
	concentrations	
C3	Raw data of hydrogen content in experimental batch reactor at various	115
	type of biomaterials (BM)	
C4	Raw data of gas content in experimental batch reactor at various LS	116
	concentrations	
C5	Raw data of gas content in experimental batch reactor at various SC	116
	concentrations	
C6	Raw data of gas content in experimental batch reactor comparing plants	116
	(LS) and animals (SC) based BM	

LIST OF FIGURES

Figur	'e	Page
1.1	Concept framework	4
2.1	molecular spin of Hydrogen	7
2.2	Photo-electrochemical hydrogen production	12
2.3	Direct biophotolysis process	13
2.4	Indirect biophotolysis process	14
2.5	Photo-fermentation process	15
2.6	(a) Acetate and (b) butyrate pathway for hydrogen production via	18
	dark fermentation	
2.7	Method of cell immobilization	25
2.8	Biofilm formation	27
2.9	Mushroom-shaped microcolonies of dental plaque biofilm	28
2.10	Cellulose polymer chain	29
2.11	Schematic image of plant cell wall structure	30
2.12	SEM image of luffa sponge	30
2.13	Surface of right value of Nemocardium peramibilis	31
2.14	Chitin chain polymer	32
2.15	Schematic picture of the exoskeleton structure of crab shell	32
2.16	Image of the morphology of a <i>Bombyx mori</i> cocoon	33
2.17	Ribosonal RNA (rRNA) structure	34
2.18	General procedure for FISH technique	35
3.1	Experimental diagram	45
4.1	Example of Gompertz sigmoidal curve plotted between cumulative	53
	hydrogen production versus time	
4.2	Cumulative hydrogen production plotted versus time at various initial pH	56
	under mesophilic temperature	

LIST OF FIGURES (cont.)

Figure	e P	age
4.3	Cumulative hydrogen production plotted versus time at various initial pH	56
	under thermophilic temperature	
4.4	Cumulative hydrogen production plotted versus time at various initial	61
	iron concentrations	
4.5	BM before and after suspended in acetic acid pH 4.0 for 7 days	65
4.6	Cumulative hydrogen production plotted versus time with addition of	66
	various BM	
4.7	Cumulative hydrogen production plotted versus time at various BM	68
	(loofa sponge) concentration	
4.8	Cumulative hydrogen production plotted versus time at various BM	69
	(cocoon) concentration	
4.9	Cumulative hydrogen production plotted versus time of loofa and cocoon at	73
	its optimal concentration	
4.10	SEM image of loofa sponge before (top left) and after the fermentation	74
4.11	SEM image of cocoon before (top left) and after the fermentation	75
4.12	Fluorescence images of (a) pure Bacillus (positive control) and (b)-(c)	76
	microorganisms from the surface of various BM	
4.13	OTU rank curve	77
4.14	The taxonomic composition distribution in samples	78