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Abstract

This paper proposes four types of copulas on the Exponentially Weighted Moving Average (EWMA) control chart
when observations are from an exponential distribution using a Monte Carlo simulation approach. The performance of the
control chart is based on the Average Run Length (ARL) which is compared for each copula. Copula functions for specifying
dependence between random variables are used and measured by Kendall’s tau. The results show that the Normal copula
can be used for almost all shifts.
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1. Introduction

Control charts are statistical and visual tools that are
used in the monitoring of the quality of production from
industry manufacturing processes. They are designed and
evaluated  under  the  assumption  of  observations  by  the
process. Multivariate Statistical Process Control (MSPC) is
a valuable method when several process variables are being
monitored (Prabhu and Runger, 1997). The MSPC are used as
the relationships between random variables that are sensitive
to assignable causes and they are poorly detected by uni-
variate control charts on individual variables. Multivariate
control charts are generalizations of their univariate counter-
parts (Mahmoud and Maravelakis, 2013), e.g. the Hotelling T 2
control chart first introduced by Hotelling (1947); the Multi-
variate Exponentially Weighted Moving Average (MEWMA)
control chart proposed by Lowry et al. (1992) and the Multi-

variate Cumulative Sum (MCUSUM) control chart suggested
by  Crosier  (1988).  The  MEWMA  and  MCUSUM  control
charts are commonly used to detect small or moderate shifts
in the mean vectors (see Midi and Shabbak, 2011; Runger et
al., 1999). Most multivariate detection procedures are based
on a multi-normality assumption and independence but many
processes are often non-normal and correlated. Many multi-
variate control charts have a lack of related joint distribution
but copulas can specify this property.

The copula approach is a method for modeling non-
linearity, asymmetricality and tail dependence in several fields;
it  can  be  used  in  the study  of  dependence  or  association
between random variables. The copula approach is based on
a representation from Sklar’s theorem (Sklar, 1973) and copula
theory is the formalization of the separated correlation of  a
multivariate distribution from the marginal distributions that
make up the multivariate distribution. If two or more variables
are correlated, a joint distribution can be constructed from
the  marginal  distributions  of  variables.  A  bivariate  copulas
approach is the simplest case for the description of depen-
dent  random  variables  and  it  can  apply  to  control  charts
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(Kuvattana et al., 2015). Recent papers have used copulas
on control charts including: copula based bivariate ZIP
control chart (Fatahi et al., 2011; Fatahi et al., 2012); copula
Markov CUSUM chart (Dokouhaki and Noorossana, 2013);
Shewhart control charts for autocorrelated and normal data
(Hryniewicz, 2012), and copulas of non-normal multivariate
cases for the Hotelling 2T  control chart (Verdier, 2013).

According to above papers, differences in distribution
can be found in control charts. In the manufacturing process,
the  time  is  used  to  represent  some  attributes  or  variable
measures  which  are  observed  as  consecutive  events  of
concern. When the probability of the event in the next small
time interval does not vary through time, the distribution of
the time for an event is known as an exponential distribution.
It  is  a  continuous  distribution  and  widely  known  in  the
monitoring  of  time  for  successive  occurrences  of  events.
This paper therefore presents work on the Multivariate Expo-
nentially  Weighted  Moving  Average  control  chart  when
observation are generated by an exponential distribution and
uses bivariate copulas for specifying dependence between
random variables.

2. The Multivariate Exponentially Weighted Moving Average
Control Chart

The Multivariate Exponentially Weighted Moving
Average  (MEWMA)  chart  is  a  standard  tool  in  statistical
quality control introduced by Lowry et al. (1992). Given
observations 1 2,  ,  ...W W   from a d-variate Gaussian distri-
bution  N ( , )μ Σ , define recursively, for 1, 2,...i  ,

1(1 )i i i    Z W Z  (1)
where 0Z  is the vector of variable values from the historical
data, and   is a diagonal matrix with entries 1,..., .d   The
quantity to be plotted is
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when 1 ... (0,1),d      as assumed in the present
paper. The control chart signals a shift in the mean vector
when  2 ,iT h  where h  is the control limit chosen to achieve
a desired in-control

The performance of the MEWMA in detecting changes
in the mean is generally measured by the Average Run Length
(ARL) as a function of the difference  0μ μ  between the
target mean 0μ  and its real value . The ARL further depends
on  the  degree  of  dependence  between  the  variables,
measured by the covariance matrix ,Σ  and the scalar chart-
ing weight   associated to the past observations.

Note that

1. if 1   in (1), the MEWMA control chart statistic
reduces to 

12 / ,
i

i i iT 
 Z Z  the statistic used in the Hotel-

ling T 2 control chart (Runger et al., 1999; Montgomery,
c2009).

2. This paper considers the bivariate Exponentially
Weighted Moving Average control chart and will extend to
the multivariate case for future work.

3. Copula Function

Considering a bivariate case, If ( , )H x y  is the joint
distribution of the random vector ( , ),X Y  with continuous
marginal distributions ( ) ( , ),  (y) ( , y)F x H x G H     of
X, Y, respectively,  then there exists a unique copula ( , )C u v
such  that   ( , ) ( ), ( );H x y C F x G y    where  (.,  .)C   is
determined by

1 1( , ) ( ( ), ( ))C u v H F u G v 

where 1 1(.),  (.)F G   are quantiles functions of (.),  (.),F G
respectively, which are defined as

 1 : 0,1F   

 1( ) inf  :  ( )F u x F x u   
For the purposes of the statistical method, it is desir-

able to parameterize the copula function. Let  denote the
association parameter of the bivariate distribution, and there
exists a copula C (Trivedi and Zimmer, 2007). This paper
focuses on the Normal copula and three types of Archime-
dean  copulas,  namely  the  Clayton,  Frank  and  Gumbel
copulas, respectively because these copulas are well-known.
(Genest and MacKay, 1986).

3.1 Normal copula

The Normal copula is an elliptical copula. From the
bivariate Normal distribution with zero means, unit variances
and 22 correlation matrix ,Σ  the Normal copula determined
by:

   1 1( , ;  ) = ( ( ), ( );  );  1 1,C u v u v       Σ Σ (4)

where (.,  ) Σ  is the bivariate normal cumulative distribu-
tion function,   is the univariate normal cumulative distribu-
tion function, 1  is the univariate normal inverse cumula-
tive distribution function or quantiles function ( , ,X Y  

, , )X Y    and  (Joe, 2015).

3.2 Archimedean copulas

Consider a class   of functions    : 0,1 0,  
with  a  continuous,  strict  decrease,  such  that  (1) 0, 

( ) 0t     and  ( ) 0t     for  all  0 1t    (Genest  and
MacKay, 1986; Genest and Rivest, 1993; Nelsen, 2006). There
are three types of Archimedean copulas and these types are
generated as follows:
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3.2.1  Clayton copula
1/

( , ) = ( 1,  0) ,C u v max u v
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3.2.2  Frank copula
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3.2.3  Gumbel copula
1/( , ) exp( [(  u) (  v) ] ),C u v ln ln      

( ) [ ( )] ; [1, ).t ln t      (7)

4. Dependence Measures for Data

Theoretically,  a  parametric  measure  of  the  linear
dependence  between  random  variables  is  measured  by  a
correlation coefficient whereas nonparametric measures of
dependence are measured by Spearman’s rho and Kendall’s
tau. According to the earlier literature, the copulas can be
used  in  the  study  of  dependence  or  association  between
random variables and the values of Kendall’s tau are easy to
calculate so this measure is used for observation dependen-
cies.

Let X and Y be continuous random variables whose
copula  is  C  then  Kendall’s  tau  for  X  and  Y  is  given  by

4 ( , ) ( , ) - 1 c C u v dC u v   2I
 where c  is Kendall’s tau

of copula C and the unit square 2Ι  is the product Ι × Ι where
 0,1Ι  and the expected value of the function ( , )C u v  of

uniform (0,1) random variables U and V whose joint distribu-
tion function is C  i.e., 4 [ ( , )] 1c E C U V    (Nelsen, 2006).

Archimedean  copula  C  is  generated  by  ,   then
1

0
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t



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
   where Arch  is Kendall’s tau of

Archimedean copula C (Genest and MacKay, 1986).

From all above literature about dependence measures
for data, we can apply the copula function as shown in Table
1.

5. Average Run Length and Monte Carlo Simulation

The performance of a control chart is measured by the
Average Run Length (ARL). ARL is the average number of
points that must be plotted before a point indicates an out-of-
control condition. ARL is classified into ARL0 and ARL1, where
ARL0 is the Average Run Length when the process is in-con-
trol and ARL1 is the Average Run Length when the process is
out-of-control (Busaba et al.,  2012).

In  this  paper  we  used  a  Monte  Carlo  simulation
by using R statistical software (see Yan, 2007; Hofert and

, 2011;  and Zurich, 2011; Hofert et al.,
2012) with 50,000 simulations and a sample size of 1,000.
Observations were from an exponential distribution with
parameter  = 1.  A  shift  size  is  reported  in  terms  of  the
quantity  0      and  large  values  of    correspond  to
bigger shifts in the mean. The value  = 0 and the process
mean  = 1 are in-control. The process means are defined
as 1.5, 2, 2.5, 3, 4 and 5 for out-of-control processes. The
simulation experiments were carried out to assess the perfor-
mance of the MEWMA control chart with  = 0.05 and 0.1.
Copula estimations are restricted to the cases of dependence
(positive and negative dependence). For all copula models,
the setting  corresponds with Kendall’s tau. The level of
dependence is measured by Kendall’s tau values ( 1 1),  
which are defined to 0.5 and -0.5 for moderate dependence.

6. Research Results

The simulation results are presented in Tables 2 to 5
and the results are only empirical. The different values of
exponential parameters denote 1 for the variables X and 2
for the variables Y. For in-control process, the MEWMA
control chart was chosen by setting the desired 0 370ARL 
for each copula. Tables 2 and 3 show moderate positive
dependence ( 0.5),   and Tables 4 and 5 show moderate
negative dependence ( 0.5).    Tables 2 to 5 show that the

1ARL  values of 0.05   give less than 0.1   for all cases.
The result in Table 2 shows the mean shifts of 0.5   when

Table 1. Kendall’s tau of copula function.

Copula Kendall’s tau Parameter space of 

Normal ( ) / ( / 2)arcsin   [ 1,1]
Clayton / ( 2)   [ 1, ) \{0} 

Frank
t
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1 is fixed at 1, the  values of the Normal copula are less than
the other copulas for small shifts 1 2( 1,  1.5 2)     and
the  1ARL  values of the Gumbel copula are less than the other
copulas for moderate and large shifts 1 2( 1,  2.5 5).   
When 2  is fixed at 1, the 1ARL  values of the Normal copula
are less than the other copulas for small shifts 1( 1.5, 

2 1)   and the 1ARL  values of the Gumbel copula are less
than  the  other  copulas  for  moderate  and  large  shifts

1 2(2 5, 1).     In Table 3, in the case of the same shifts
in both exponential parameters of 0.5,   the  1ARL  values
of the Normal copula are less than the other copulas for all
shifts. Table 4 shows that for the mean shifts of 0.5,    the

1ARL  values of the Normal copula are less than the other
copulas for all shifts.  In Table 5, in the case of the same shifts
in both exponential parameters of 0.5,    the 1ARL  values
of  the  Normal  copula  are  less  than  the  other  copulas  for

small and moderate shifts 1 2(1.5 3,  1.5 3)      and
the 1ARL  values of the Frank copula are less than the other
copulas for large shifts 1 2(4 5,  4 5).    

7. Conclusions

Dependence measures of two or more variables can be
investigated in terms of various copulas. We consider 4 types
of copulas because these copulas are well-known for opera-
tors and compare with Elliptical and Archimedean copulas.
No research can be found regarding the use of the copula
function in the literature addressing MEWMA control charts.
This  paper  shows  multivariate  exponentially  weighted
moving average (MEWMA) control charts for four types of
copulas and the level of dependence is measured by Kendall’s
tau values. The results revealed that it is necessary to detect

Table 2. ARL of the MEWMA control chart with Kendall’s tau value equal to 0.5 in the case of
one exponential parameter.

 Parameters     ARL0  and  ARL1 (= 0.5)

= 0.05 = 0.1
1 2 Normal Clayton Frank Gumbel Normal Clayton Frank Gumbel

1 1 370.156 370.060 369.857 370.002 370.087 370.172 369.823 369.830
1 1.5 94.668 100.708 98.999 96.584 110.275 109.723 111.496 114.150
1 2 29.412 32.832 31.764 29.536 37.065 40.099 39.587 36.810
1 2.5 12.261 14.116 13.544 12.166 15.919 17.862 17.414 15.617
1 3 6.218 7.264 6.921 6.016 8.353 9.437 9.218 8.134
1 4 2.135 2.556 2.381 2.091 3.055 3.653 3.494 2.935
1 5 1.114 1.282 1.232 1.100 1.544 1.769 1.727 1.505
1 1 370.156 370.060 369.857 370.002 370.087 370.172 369.823 369.830

1.5 1 96.096 101.038 99.059 97.368 110.439 109.459 110.930 114.103
2 1 29.537 32.924 31.386 29.447 37.049 40.526 39.643 37.190

2.5 1 12.305 14.202 13.428 12.114 15.894 17.958 17.352 15.761
3 1 6.216 7.399 6.936 6.039 8.353 9.626 9.209 8.196
4 1 2.159 2.558 2.376 2.122 3.079 3.688 3.451 2.957
5 1 1.123 1.298 1.209 1.097 1.559 1.779 1.719 1.501

Table 3.  ARL of  the MEWMA control chart with Kendall’s tau value equal to 0.5 in the case of
two exponential parameters

 Parameters     ARL0  and  ARL1 (= 0.5)

= 0.05 = 0.1
1 2 Normal Clayton Frank Gumbel Normal Clayton Frank Gumbel

1 1 370.156 370.060 369.857 370.002 370.087 370.172 369.823 369.830
1.5 1.5 51.746 51.781 52.322 55.436 64.579 59.223 61.268 71.133
2 2 13.908 14.588 14.535 14.792 18.728 18.668 18.977 20.224

2.5 2.5 5.336 5.923 5.752 5.669 7.753 8.049 8.110 8.156
3 3 2.479 2.912 2.808 2.581 3.895 4.211 4.224 4.064
4 4 0.765 0.973 0.889 0.804 1.268 1.503 1.467 1.276
5 5 0.355 0.449 0.428 0.380 0.564 0.689 0.662 0.578
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Table 4.  ARL of the MEWMA control chart with Kendall’s tau value equal to
-0.5 in the case of one exponential parameter

 Parameters             ARL0  and  ARL1 (= -0.5)

= 0.05 = 0.1
1 2 Normal Clayton Frank Normal Clayton Frank

1 1 370.101 370.085 370.066 369.997 370.097 370.006
1 1.5 95.500 102.359 97.488 108.255 117.774 110.485
1 2 30.538 33.325 31.208 37.381 42.635 38.630
1 2.5 13.028 14.552 13.336 16.431 18.485 17.070
1 3 6.665 7.433 6.858 8.744 9.749 9.046
1 4 2.331 2.537 2.414 3.318 3.772 3.447
1 5 1.215 1.303 1.233 1.677 1.784 1.704
1 1 370.101 370.085 370.066 369.997 370.097 370.006

1.5 1 95.569 102.952 97.330 108.393 117.551 112.144
2 1 30.527 33.831 31.126 37.554 42.599 39.181

2.5 1 12.993 14.670 13.479 16.397 18.726 17.214
3 1 6.668 7.486 6.839 8.720 9.901 9.132
4 1 2.355 2.553 2.395 3.246 3.805 3.438
5 1 1.219 1.300 1.243 1.619 1.779 1.686

Table 5. ARL of the MEWMA control chart with Kendall’s tau value equal to
-0.5 in the case of two exponential parameters

 Parameters             ARL0  and  ARL1 (= -0.5)

= 0.05 = 0.1
1 2 Normal Clayton Frank Normal Clayton Frank

1 1 370.101 370.085 370.066 369.997 370.097 370.006
1.5 1.5 48.372 52.222 49.772 58.604 65.926 60.917
2 2 12.751 13.804 13.113 16.948 19.121 17.754

2.5 2.5 4.785 5.180 4.890 6.896 7.644 7.199
3 3 2.230 2.380 2.279 3.385 3.747 3.521
4 4 0.679 0.523 0.678 1.121 1.110 1.147
5 5 0.304 0.209 0.299 0.475 0.355 0.481

the dependence of the observation to indicate the copula
which fits the observation. For moderate dependence, the
Normal copula can be used for almost all shifts.
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