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Abstract

For the multivariate normally distributed data with the dimension larger than or equal to the number of observations,
or the sample size, called high-dimensional normal data, we proposed a test for testing the null hypothesis that the covariance
matrix of a normal population is proportional to a given matrix on some conditions when the dimension goes to infinity.
We showed that this test statistic is consistent. The asymptotic null and non-null distribution of the test statistic is also
given. The performance of the proposed test is evaluated via simulation study and its application.
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1. Introduction

Let 1, ..., NX X  be a set of independent observations
from a multivariate normal distribution ( , )pN    where both
the mean vector and covariance matrix ,  is a positive
definite matrix, are unknown. In this paper, we are interested
in the problem of testing the hypothesis that the covariance
matrix of a normal population is proportional to a given
matrix, that is, 0 0:H t    against 1 0:H t    where
both 00 ,t     are known. The likelihood ratio test
(LRT),which is based on the sample covariance matrix, is the
traditional technique to handle this hypothesis and requires
n p . But many applications in modern science and eco-
nomics, e.g. the analysis of DNA microarrays, the dimension
is usually in thousands of gene expressions whereas the
sample size is small, which makes n p , called high-dimen-
sional data. For such data, the LRT is not applicable because
the sample covariance matrix, S, is singular when n p  (see,
for examples, Muirhead, 1982, Sections 8.3 and 8.4; Anderson,
1984, Sections 10.7 and 10.8).

Recently, several authors have proposed methods for
testing the related problems. Some of them are: John (1971);
Nagao (1973); Ledoit and Wolf (2002); and Srivastava (2005),
and Fisher et al. (2010). Those are given as follows.

John (1971) proposed a test statistic for testing that
the covariance matrix of a normal population is proportional
to an identity matrix, that is, 0 :H tI   , 0 t    a known
value which is the locally most powerful invariant test as

21
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p p tr S
 

  
  
   

and Nagao (1973) proposed a test statistic for testing 0 :H 
I   as

 21
V tr S I

p
   

Both U and V test statistics are consistent and have been
studied  under  assuming  that  n  goes  to  infinity  while  p
remains fixed. So, Ledoit and Wolf (2002) demonstrated that
the test statistic for testing 0H   based on U statistic is still
consistent if n goes to infinity with p that is as ( , )n p 
and / ,p n c (0, )c  . The null hypothesis 0H   is rejected
if
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2j
npU

U  (1.1)

exceeds the appropriate quantile from the 2   distribution
with ( 1) / 2 1p p    degree of freedom. For testing 

0
:H 

I   if  goes to infinity with p as n < p, Ledoit and Wolf
(2002) showed that the statistic V is not consistent against
every alternative and its nlimiting distribution differs from
its ( , )n p  limiting distribution under the null hypothesis.
Then they modified the statistic V as

 
21 12 .

p p
W tr S I trS

p n p n
   

       
They have shown that the statistic W is consistent as
( , )n p  , including the case n < p. The test statistic based
on W rejects the null hypothesis 

0
H   if / 2npW  exceeds the

appropriate  quantile  from  the 
2  distribution  with

( 1) / 2p p   degrees of freedom. Srivastava (2005) proposed
a test statistic when ( , )n p  , ( )n O p 0 1,   to
reject the null hypothesis 2

0 :H I  , 2 0   unknown,
with a test statistic which did not relate with unknown 2 0  .
Then we applied his test statistic for testing 

0
H   and reject

0
H   if

1
2
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ˆ ˆ( / 1)

2S
n

T h h  (1.2)

exceeds the appropriate quantile of the standard normal dis-

tribution, where 1̂ (1 / ) ( )h p tr S  and  
2
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 . The statistics 1ĥ  and 2ĥ  are ( , )n p 

consistent estimators of (1 / )p tr and 2(1 / )p tr  respec-
tively.  Also he proposed a test to reject the null hypothesis

0H   if

2 1 2
ˆ ˆ( 2 1)

2S
n

T h h   (1.3)

exceeds the appropriate quantile of the standard normal distri-
bution.  Motivated by the result in Srivastava (2005), which
requires,  /p n c ,  (0, )c    Fisher  et  al.  (2010)
proposed the test for testing 0H   based on unbiased and
consistent estimators of the second and fourth arithmetic
means of the sample eigenvalues. With the constants:
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they proposed the test statistic to reject the null hypothesis

0
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exceeds the appropriate quantile of the standard normal distri-
bution, where
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p
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is ( , )n p  consistent estimator of 4(1 / )p tr .
The remainder of this paper is organized as follows.

Section 2 provides the proposed test statistic and its asymp-
totic distribution under both the null and alternative hypo-
theses as (n, p) go to infinity even if n < p. Section 3 shows
the  performance  of  the  proposed  test  statistic  through
simulation  technique.  Section  4  applies  the  test  statistic  to
real data. Section 5 contains the conclusions. The theoretical
derivations are given in the Appendix.

2. Description of the Proposed Test

Suppose   1 1
, ..., ~ ,

n p
X X N 


   and  we  are

interested in testing that the covariance matrix of a normal
population is proportional to a given matrix, that is, 0 :H

0t    against 1 0:H t    where 0 t    is known
value and 0  is a given known positive definite matrix. Wee
proposed  the  test  statistic  by  considering  a  measure  of  a
distance between the two matrices

1 1 2 1 2
0 0 0

21 1 2
( ( ) ( ) ( )

t
tr tI tr tr t

p p p
             

(2.1)
where tr denotes the trace of matrix and  if and 0   only if
the null hypothesis holds. Thus, we may consider testing

0
: 0H    against 

1
: 0H   .

We shall make the following assumptions:

(A) 0 0lim , (0, ), 1,...,8
i i i

p
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 
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(B)
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p n c c
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where 1
0

1

(1 / ) ( ) (1 / ) ( / )
pi i

i j j
j

a p tr p d



     . The

j
 ’s are the eigenvalues of the covariance matrix  and dj’ss
are the eigenvalues of a known positive definite matrix 0.
We need estimators of a1 and a2 to be consistent estimators
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for  large  p  and  n  even  if  n < p.  The  following  theorem
provides these consistent estimators.

Theorem 2.1 The unbiased and consistent estimators of a1 =
1

1 0
(1 / ) ( )a p tr     and 1 2

2 0
(1 / ) ( )a p tr     are respectively

given by

1
1 0

ˆ (1 / ) ( )a p tr S  (2.2)

and
2

1 2 1 2
2 0 0

1 1ˆ ( ) ( ( ))
( 1)( 2)

n
a tr S tr S

n n p n
    

 
 
  

(2.3)

Thus we use estimators in Theorem 2.1 to define the unbiased
and consistent estimator of   in (2.1)  as

2
2 1

ˆ ˆ ˆ2a ta t    (2.4)

The following theorem gives the asymptotic distribution of
the estimators 

1
â  and 

2
â  in (2.4).

Theorem 2.2  Under  the  assumption  (A),  and  (B),  as
( , )n p  

2
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where 
Dx y  denotes x converges in distribution to y.

The  following  theorem  and  corollary  provide  the
asymptotic distribution of ̂  under the alternative and null
hypothesis  by  applying  the  delta  method  of  a  function  of
two random variables.

Theorem 2.3  Under  the  assumption  (A),  and  (B),  as
( , )n p  

 2ˆ 0,D N    (2.5)

with 2 2
2 3 4 2

4
(2 4 2 )ta ta a ca

np
     .

Corollary 2.1 Under the null hypothesis 
0 0

:H t    then
0   and under the assumption (A), and (B), as ( , )n p 

24

ˆ ˆ
(0,1)

22

np n DT N
tct

 
   (2.6)

Remark  If  t = 1 and 0 I   where I  is identity matrix, then
the proposed statistic T is the test statistic 

2S
T  in (1.3) given

by Srivastava (2005).

3. Simulation Study

For studying the performance of the proposed test
statistic T, we compute the attained significance level (ASL)
of the proposed test by simulation technique. Based on 10,000
replications of the data set simulated under the null hypo-
thesis 0 0:H t   , test statistic T is computed and then we
obtain the attained significance level (ASL) of the test by
recording  the  proportion  rejection  of  test  statistic  for  the
null hypothesis with the nominal significance level at 0.05.
We simulate the ASL for different four null hypotheses as

1) 1
0 0 01:H t C    where 

01 ,
( )

i j p p
C c


 

( )
i j p p
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0 1
1,  c c


 

1
0.5c    and the rest elements are equal to zero
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p
I  denotes the p p  identity matrix, and 1

p
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For each null hypothesis, we simulate the empirical
power of the proposed test T under the alternative hypothesis
for each of four null hypotheses as

1) 1
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3.1 Simulation results

The ASL is provided in Table 1 corresponding to the
null hypotheses. As expected, the ASL of the test statistic T
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is reasonably close to the nominal significant level 0.05 and
gets better when p and n get large. We found that four sets
of the ASL are almost the same that means the consistency
of our test statistic is not affected by varying the null co-
variance matrices.

The empirical powers are shown in Table 2. It shows
that four sets of the empirical power of test statistic T rapidly
converge to one and stay high as n and p get large for n < p.

We also compute the ASL in a special case of the null
covariance matrix with setting t = 2 and 0 I  , that is, the
test with the null hypothesis as 0 : 2H I    (spherecity).
We compare the performance of the proposed test statistic
T   with the test statistics defined in Ledoit and Wolf (2002),
denoted Uj  in (1.1) and Srivastava (2005), denoted TS1 in
(1.2).  We  compare  them  under  the  alternative  hypothesis

1 : 2H D    where 1( ,..., ); (0,1),p iD diag d d d Unif 
1, 2,...,i p . The ASL and the empirical powers are provided

in Table 3. Table 3 reports that the ASL of the proposed test
statistic T is similar to those provided in Table 1 and closed
to those from the test statistic TS1 and Uj.  But the test statistic
T gives the best performance for all of the setting (n,p) and
has substantially higher powers than those of Uj and TS1 for
almost every n and p considered. These results suggest that
the proposed test may more appropriate to use than Uj test
and TS1 test, especially when  is small.

4. A Real Example

In this section, the microarray dataset is collected from
Notterman  et  al.  (2001)  is  available  at  http://genomics-
pubs.princeton.edu/oncology/Data/CarcinomaNormal

datasetCancerResearch.xls (last accessed: 9 October 2011).
There are 18 colon adenocarcinomas and their paired normal
colon  tissues  and  they  are  obtained  on  oligonucleotide
arrays.  The  expression  levels  of  6500  human  genes  are
measured on each. For simplicity, we will restrict attention to
18 colon adenocarcinomas with only first 256 measurements
each.  We  examine  whether  the  covariance  matrix  is  the
sphericity. The data gives the observed test statistic values
as  T  = 8 .500, 284.567

j
U   and 

1
270.582

S
T   with p-

value 0p value   each, thus the hypothesis of being sphericity is
rejected at any reasonable significance level.

5. Conclusions

For testing the covariance matrix in high-dimensional
data, our test statistic  is proposed under normality assump-
tion. The test statistic is approximated by normal distribution.
Numerical simulations indicate that our test statistic T in
(2.6) constructed from the consistent estimators with accu-
rately control size of test and their powers get better when
(n,p) get large for n < p. Moreover, the test statistic gives
higher  power  than,  for  testing  being  sphericity  of  the  co-
variance matrix, those of the tests in Ledoit and Wolf (2002)
and Srivastava (2005).
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Table 1. The ASL of test statistic T under four null hypotheses at Nominal Significance
Level 0.05  .

          The ASL of T
p 1n N  1 :0 01H C  2 :0 02H C  3 :0 03H C  4 :0 04H C 

10 9 0.059 0.058 0.059 0.059
40 9 0.055 0.055 0.055 0.055

39 0.056 0.056 0.056 0.057
80 9 0.057 0.056 0.057 0.057

39 0.052 0.052 0.052 0.052
79 0.053 0.052 0.052 0.052

160 9 0.053 0.053 0.054 0.054
39 0.056 0.055 0.055 0.056
79 0.056 0.056 0.056 0.055
159 0.053 0.053 0.053 0.053

320 9 0.052 0.052 0.052 0.052
39 0.052 0.051 0.052 0.052
79 0.051 0.051 0.050 0.050
159 0.051 0.050 0.051 0.051
319 0.053 0.051 0.053 0.053

as
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Table 2. The empirical power of T under four alternative hypotheses.

            The empirical power of T
p 1n N  1

1 1H C   2 :1 2H C  3 :1 3H C  4 :1 4H C 

10 9 0.480 0.560 0.174 0.159
40 9 0.996 0.617 0.265 0.286

39 1.000 1.000 0.772 0.877
80 9 1.000 0.624 0.300 0.330

39 1.000 1.000 0.837 0.939
79 1.000 1.000 0.998 1.000

160 9 1.000 0.625 0.319 0.346
39 1.000 1.000 0.866 0.966
79 1.000 1.000 0.999 1.000
159 1.000 1.000 1.000 1.000

320 9 1.000 0.629 0.342 0.361
39 1.000 1.000 0.891 0.977
79 1.000 1.000 1.000 1.000
159 1.000 1.000 1.000 1.000
319 1.000 1.000 1.000 1.000

Table 3. The ASL (under : 20H I   ) and the empirical power (under : 21H D   )
of ,T U j  and 1TS  at Nominal Significance Level 0.05  .

ASL Empirical Power
p 1n N 

T U j 1TS T U j 1TS

10 9 0.059 0.049 0.048 1.000 0.412 0.405
40 9 0.055 0.054 0.051 1.000 0.368 0.360

39 0.056 0.056 0.053 1.000 0.999 0.999
80 9 0.057 0.057 0.053 1.000 0.356 0.348

39 0.052 0.052 0.050 1.000 0.999 0.999
79 0.052 0.051 0.050 1.000 1.000 1.000

160 9 0.053 0.056 0.054 1.000 0.354 0.346
39 0.055 0.056 0.055 1.000 0.999 0.999
79 0.055 0.057 0.055 1.000 1.000 1.000
159 0.053 0.052 0.052 1.000 1.000 1.000

320 9 0.052 0.055 0.052 1.000 0.352 0.343
39 0.052 0.054 0.052 1.000 0.999 0.999
79 0.050 0.050 0.050 1.000 1.000 1.000
159 0.051 0.050 0.050 1.000 1.000 1.000
319 0.053 0.053 0.053 1.000 1.000 1.000
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Appendix

Before proving Theorem 2.1, we need the following information and lemma:
For positive symmetric definite matrix  and by spectral decomposition, we have     where 1 2

( , ..., )
p

diag    
with 

i
  being the ith eigenvalue of  and  is an orthogonal matrix with each column as normalized corresponding

eigenvectors 1 2
, , ...,

p
γ γ γ . Similarly, we also can write 0  as 0 RDR   where 

1 2
( , ..., )

p
D diag d d d  with di being the

ith eigenvalue of 0  and R is an orthogonal matrix with each column as normalized corresponding eigenvectors 1 2, , ..., pr r r
(Rencher, 2003).

Let ~ ( , )pnS YY W n   where 1 2( , ,... )nY y y y  and each ~ ( , )
j p

y N 0  and independent (Anderson (1984),

Section 3.3; Srivastava (2005); Fisher et al. (2010)). Let 1 2( , ,... )nU u u u  where j
u  is independently and identically

distributed (iid.) ( , )
p

N I0  and we can write 
1
2Y U   where 

1 1
2 2    . Define 

1 2
( , , ..., )

p
W U w w w      and each wi

are iid. ( , ).
n

N I0  Thus, define v w wii i i  are iid chi-squared random variables with n degree of freedom.

Lemma A.1. For 
ii i i

v w w  and ij i j
v w w  for any i j

.( ) ( 2)...( 2 2), 1, 2,..r
ii

E v n n n r r     ( ) 2 ,
ii

Var v n

2( ) 8 ( 2)( 3),
ii

Var v n n n   3( ) 8 ,
ii

E v n n 

4( ) 12 ( 4),
ii

E v n n n   2 4 4 3( ( 2)) 3 ( 2)[272 ( )],
ii

E v n n n n n O n    

2( ) ,
ij

E v n 4( ) 3 ( 2),
ij

E v n n 

2( ) ( 2),
ii ij

E v v n n  2 2( ) ( 2)( 4),
ii ij

E v v n n n  

2 2( ) ( 2) .
ij ii jj

E v v v n n 

Proof.  The first 6 results can be found in Srivastava (2005) and the last 5 results can be found in Fisher et al. (2010).

As in similar proofs of Srivastava (2005), we can write 1
0(1 / ) ( )p tr S  and 1 2

0
(1 / ) ( )p tr S  in terms of chi-squared

random variables.

.
1 1

1 0
1

1 1 1 1ˆ ( ) ( )
p

i
ii

i i

a tr S tr RDR YY v
p p n np d

 



      
 
  (A.1)

Similarly, we also have
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2
1 2 2 2

0 2 2 2
1

1 1 2
( ) ,

p p i ji
ii ij

i i j i ji

tr S v v
p d dn p d n p

 

 

    (A.2)

where .
ij i j

v w w   We let

2

2
1 2 1 2

0 0
1 1ˆ ( ) ( ( )) .

( 1)( 2)
n

a tr S tr S
n n p n

    
 

 
  

(A.3)

Thus

[

222
2 2

2 2 2 21 1

22
2 2

3 2 21

2

1 2

1 1 2 1ˆ
( 1)( 2)

1 2 1
( )

( 1)( 2)

],
( 1)( 2)

p p pi ji i
ii ij ii

i i j ii j ii

p p i ji
ii ij ii jj

i i j i ji

n
a v v v

n n p d d np dn p d n p

n n
v v v v

n n d d nn p d n p

n
b b

n n

  

 

  

 

  

 

  
 


  

 

 
 

  
  
   

 
 
  

(A.4)

where
2

2 2
1 23 2 2

1

1 2 1
, ( ).

p p i ji
ii ij ii jj

i i j i ji

n
b v b v v v

d d nn p d n p

 

 


   

Proof of Theorem 2.1.
Since

1
1 0

1 1 1

1
0 1

1

1 1 1 1ˆ( ) ( ) ( )

1 1
( ) .

p p pi i i
ii ii

i i ii i i

p i

i i

E a E tr S E v E v n
p np d np d np d

tr a
p d p

  





  





  



    

    

  
     

And from Lemma A.1, we easily find that 2 1
( ) 0

ij ii jj
E v v v

n
   then 2

( ) 0E b  . Thus

2 22 2
2 2

2 3 2 3 21 1

2 22
1 2

0 23 2 21 1

1 1ˆ( ) ( )
( 1)( 2) ( 1)( 2)

1 1 1
( 2) ( )

( 1)( 2)

p pi i
ii ii

i ii i

p pi i

i ii i

n n n n
E a E v E v

n n n nn p d n p d

n n
n n tr a

n n p pn p d d

 

 

 



 

 

 

 
 

   


      

 

   
      
   

This is shown that both 1â  and 2â  are unbiased estimators of 1a  and 2a  respectively. To show that 1â  and 2â  are consistent
estimators considered by

2 2

22 2 2
1 1

1
1

1 1 2 1 2ˆ( ) ( ) .
2

p p
i i

i ii i

p
i

ii ii
ii

Var a Var v Var v a
np d np p npn p d d

  

 
     

  
        

(A.5)
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And since 
2

2 1 2
ˆ

( 1)( 2)
n

a b b
n n

 
 

    thus

 
2

2

2 1 2 1 2
ˆ( ) ( ) ( ) 2 ( , .

( 1)( 2)
n

Var a Var b Var b COV b b
n n

  
 

 
 
 
 

2 42 2
2 2

1 6 2 2 6 2 41 1

2

45

( 1) ( 1)
( ) ( )

8( 1) ( 2)( 3)
.

p pi i
ii ii

i ii i

n n
Var b Var v Var v

n p d n p d

n n n
a

n p

 
 
 

 
 

  


 
  
 

(A.6)

2
2 4 2

222 2
2 2

4 2 2 2

2
2 44

4 1
( )

4 1 1

4( 1)( 2) 1
.

p i j
ij ii jj

i j i j

p i i
ij ii jj ij ii jj

i j i i

Var b Var v v v
d d nn p

E v v v E v v v
n nn p d d

n n
a a

pn

 

 









 

   

 
 

  
     

                
 
 
 

(A.7)

And since 2
( ) 0E b   then

1 2 1 2

2
2 2

5 21

2 2
2 2 2 21 2
11 222 2

1 2

5

( , ) ( )

2( 1) 1

1 1

2( 1)

..

p p j ki
ii jk jj kk

i i j i ji

p pj k j k
jk jj kk jk jj kk

i j i ji j i j

COV b b E b b

n
E v v v v

d d nn p d

E v v v v E v v v v
d d n d d nd dn

n p

 

    

 

 

 

 




 

  






  
  

   
      
      

         
2

2 2
2

1
.

0

pp j k
pp jk jj kk

i j i jp

E v v v v
d d nd

  


 



 
 
 
 

          

(A.8)

because
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2 2

2 2 2

2 2 3

1

1 1
( 2)( ) ( 2)( )( ) 0, ,

1
( 2)(

p j k
ii jk jj kk

i j i j

p pj k j k
ii jk ii jj kk

i j i ji j i j

p j k j k
ii ik ii kk

i j i j i j

E v v v v
d d n

E v v v v v n n n n n n n for i j k
d d n d d n

E v v v v n n n
d d n d d

 

   

   



 





 





        

    

  
  

   

   
   
   

 
 
 

2 2 3

1
4) ( 2)( 4)( ) 0, ,

1 1
( 2)( 4) ( 2)( 4)( ) 0, .

p

i j

p pj k j k
ii ij ii jj

i j i ji j i j

n n n n for i j k
n

E v v v v n n n n n n n for i j k
d d n d d n

   



 



 

     

          

 
 
 

   
   
   

(A.9)

By (A.6) – (A.8), then we have

 
4

2 1 2 1 22 2

4 2
2

4 2 42 2 5 4

2
2

4 2

ˆ( ) ( ) ( ) 2 ( , )
( 1) ( 2)

8( 1) ( 2)( 3) 4( 1)( 2) 1

( 1) ( 2)

4(2 3 6) 4
.

( 1)( 2) ( 1)( 2)

n
Var a Var b Var b COV b b

n n

n n n n n n
a a a

pn n n p n

n n
a a

n n n p n n

  
 

    
  

 

 
 

   

 
 
 
     
    

     
(A.10)

Since 1â  and 2â  are unbiased estimators of 1a  and 2a , respectively and from (A.5), (A.9), and by applying the Chebyshev’ss

inequality, for any 0   as ( , )n p  ,

2
1 1 12 2

21 1ˆ ˆ( ) 0
a

P a a Var a
np


 

          and

2
2 2

2 2 2 4 2 4 22 2 2

1 1 4(2 3 6) 4 8 4ˆ ˆ( ) 0.
( 1)( 2) ( 1)( 2)

n n
P a a Var a a a a a

n n n p n n np n


 

 
       

   

          
   

Hence 1â  and 2â  are unbiased and consistent estimators of 1a  and 2a , respectively. The proof is completed.

Proof of Theorem 2.2.
From Theorem 2.1, we have

1 1 2 2
ˆ ˆ( ) , ( )E a a E a a  (A.11)

By Lemma A.1., with simple calculations and in similar proofs of Srivastava (2005) under assumption (A), and (B), and as
( , )n p  , we obtain

1 2
ˆ( ) 2 / ,Var a a np (A.12)

2

1 4 45

8( 1) ( 2)( 3)
( ) 8 / ,

n n n
Var b a a np

n p

  
  (A.13)

2 2
2 2 4 2 44

4( 1)( 2) 1
( ) 4 ( / ) / ,

n n
Var b a a c a a p np

pn

 
   

 
 
 

(A.14)
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(A.16)

From the fact that 
2

( ) 0E b   and similar to the proof for 
1 2

( )E b b

2 12ˆ ˆ( , ) ( ) 0.1 2 1 2 3 2 1

p p i jiCOV a b E a b E v v v vii ij ii jjd d d nn p i i ji i j

 
    

 
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(A.17)

Note that
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By similar proof to 1 2
( )E b b  we have 
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 then  the expectation of the second

term in (A.18) equals to zero. Thus, we obtain that
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 

(A.19)

By (A.11) and (A.19) as ( , )n p  , we obtain

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ) 4 /1 2 1 2 1 2 3COV a a E a a E a E a a np   (A.20)

To find the distribution of 1â  and 2â , we used Multivariate central limit theorem (Rao,1973,p.147) and Lindebergg
Central Limit Theorem (Billingsley, 1995, p.359)

Since 
2

ˆ [ ]2 1 2( 1)( 2)
n

a b b
n n

 
 

, so we need to find the distribution of 1 1ˆ ,a b  and 2
b  which will distribute as

Normal distribution, respectively. First, we find the distribution of 1 1ˆ ,a b  because both are functions of ii
v  and the second

is of 
2

b  because it is a function of ,ijv i j . Finally, the distribution of 2â  which is a distribution of a linear function of two

normal random variables is obtained.

First, in order to find the distribution of 1̂
a  and 

1
b . Under i  and 

i
d  as before, we let
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( )
1

v ni iiu i d ni

 
  and  

2 2( ( 2))
2 2 ( 2)( 3)

v n ni iiu i
d n n ni

  


 

where

2 2 4 4 3 3( ) 0, ( ) 0, ( ) 2 / , ( ) 8 / , ( , ) 4 /1 2 1 2 1 2E u E u Var u d Var u d COV u u e di i i i i i i i i i i n i        and

2 / 3 1e n nn      as n   Since ii
v  s are independent, thus ( , )1 2u ui i i u  are independently distributed

random vectors, 1, ...,i p  with ( )E i u 0  and covariance matrices in  given by

2 2 3 32 / 4 /
, 1, ...,

3 3 4 44 / 8 /

d e di i i n i i pin
e d di n i i i

 

 
  

 
 
 
 

.

For any n as p  

( ... ) /1

2 342
2 3 2 41 1 2 3 0
3 4 4 84 3 48
3 41 1

pn n pn

p pei n i
p pd d a e ai ii i n

ne a ap pe nn i i
p Pd di ii i

 

 

    

 
 

    

 
 

 
 
           
 
 

0

where  

0 0
2 30

0 0
3 4

2 4
.

4 8

n
n

n

a e a

e a a
 

 
 
 
 

If i
F  is the distribution function of 

i
u  then

(
2 2 2 2 4 4

1 2 1 22 2 2 2 21 1 1 1

1 1 1 1 2) ( ) ( ),
i i

p p p p
i i i i i i i i i i

i i i ip
dF dF E u u E u u

p p p p p   
 

    
        u u u u

u u

from r
C   inequality in Rao (1973, p.149).  Since as p    and from Lemma A.1.,

4 4
2 2 24 4( ) ( ) 12 ( 4) 012 2 2 2 4 2 2 2 4 21 1 1

p p pi iE u E v n n ni ii
p p d n p d ni i ii i

 

  
      

  

and by an analogous derivation as p  ,

Hence 
2 4 4( ) 01 22 2 1

p
E u ui i

p i
 


 as p  . By applying the multivariate central limit theorem, as p   for any n
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( )1

11 0( ... ) ( , )2 21 2 2( ( 2))1
2 ( 2)( 3)1

p v ni ii
dnp i i D

Np np v n np i ii
np d n ni i









    
 


 

 
 
 

 
 
  
 

u u u 0

Note that as ,n , 

0 02 42 30 01, ,
0 04 83 4

a e anen n
e a an

    
 
 
 
 

  where 
0 02 42 30 .
0 04 83 4

a a

a a
 

 
 
 
 

 Thus, it follows that as

( , )n p  ,

( )1

1
0( , ).2 2 2( ( 2))1

2 ( 2)( 3)1

p v ni ii
dnp i i D

N
p v n ni ii

np d n ni i










 


 

 
 
 

 
 
  
 

0

And under assumption (A) which leads to assuming that 0 , where 
2 42 3
4 83 4

a a

a a
 

 
 
  

 then we have that

( )1

1
( , ).2 2 2( ( 2))1

2 ( 2)( 3)1

p v ni ii
dnp i i D

N
p v n ni ii

np d n ni i










 


 

 
 
 

 
 
  
 

0

For the first element in the previous random vector, since

1 1 1 1 2
1 1 1

( )1 1 1 ˆ ˆ( ) ( ) (0, 2 ),
p p p Di ii i ii i

i i ii i i

v n v n
npa npa np a a N a

d d dnp np np
  

  
  


     

 
 

 
then

ˆ ( , 2 / ).1 1 2
D

a N a a np (A.21)

For the second element, we have that

2 2 2 2 2

2 2 21 1 1

3
1 2

4

( ( 2)) ( 2)1 1

( 2)( 3) ( 2)( 3) ( 2)( 3)

( 2)1
(0,8 ).

( 1) ( 2)( 3) ( 2)( 3)

p p pi ii i ii i

i i ii i i

D

v n n v n n

np npd n n d n n d n n

n pb n n pa
N a

np n n n n n

  

  
  

  
 

     


 

    

 
 
 

 
 

 

Since as n ,
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3 ( 2)1 11 2 ( ) ( )1 2 1 2( 1) ( 2)( 3) ( 2)( 3)

n pb n n pa
npb npa np b a

np n n n n n np


    

    

 
 
 
 

then  ( ) (0,8 )1 2 4
D

np b a N a   also, and with a linear transformation we have the result that

( ,8 / ).1 2 4
D

b N a a np (A.22)

The next is to find the distribution of 
2

b . Srivastava (2005) gave the important results, which are used for the next

proof, that / ~ (0,1)v n Nij  as n    and 2 2/ ~ 1v nij   which are asymptotically independently distributed for all distinct
i and j.

Note that 
2

b  defined in (A.4), now we let 2
2

2 1
( )i j

ij ij ii ij
i j

v v v
nn pd d

 
   . From Lemma A.1., we have ( ) 0E ij   and

let

 

2 2 1
2

2 1
4 2

2

2 24 4
2 24 2

2
( ) ( )

4
( )

( )

4( 1)( 2) 4

p p i j
p ij ij ii jjni j i j i j

p i j
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   

as ( , )n p  .

Let 2
22
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p ij ij ii ij
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 


 
     .  If 

ij
P  is the distribution function of ij

 . Since, for 0 
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as .p   Then, it follows from the Lindeberg Central Limit Theorem in Lemma A.3.,

2 (0,1).
22 ( / )2 4

M npb Dp N
S p c a a p







Then we have 
4 20, ( / ) .2 2 4

cDb N a a p
np


   
 

(A.23)

By (A.8), then 
1

b  and 
2

b  are asymptotically independent. Note that 
2

â  is a linear function of two random variables 
1

b

and 
2

b  that is, 
2

ˆ [ ]2 1 2( 1)( 2)

n
a b b

n n
  

  1 2b b    as .n     By (A.5), (A.15.), (A.22.), and (A.23.), then we have

 2ˆ , 4(2 ) / .2 2 4 2
D

a N a a ca np (A.24)

From (A.20), ˆ ˆ( , ) 4 /1 2 3COV a a a np , (A.21), and (A.24), we have

2 / 4 /ˆ 2 31 1 , .2 2ˆ 4 / 4(2 ) /2 2 3 4 2

a np a npa aD
N

a a a np a ca np

     
                

The proof is completed. �

Proof of Theorem 2.3.  Note that our test statistic is 2ˆ ˆ ˆ22 1a ta t      and we have

ˆ
2

ˆ1
t

a


 


 and  

ˆ
1

ˆ2a





.

By applying the delta method (Lehmann and Romano, 2005, p.436), thus, 2ˆ (0, )
D

N     where

  2
2 / 4 /2 3 2 42 22 1 (2 4 2 )2 3 4 22 14 / 4(2 ) /3 4 2

a np a np t
t t a ta a ca

npa np a ca np



     



       
The proof is completed.   �

Proof of Corollary 2.1. Under 2 3, ,0 2 3H a t a t   and 4
4a t   Thus, 2 44 / .ct np   It follows from Theorem 2.3. that

the null asymptotic distribution of T is (0,1)N . The proof is completed.   �


