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Abstract

For the multivariate normally distributed data with the dimension larger than or equal to the number of observations,
or the sample size, called high-dimensional normal data, we proposed a test for testing the null hypothesis that the covariance
matrix of a normal population is proportional to a given matrix on some conditions when the dimension goes to infinity.
We showed that this test statistic is consistent. The asymptotic null and non-null distribution of the test statistic is also
given. The performance of the proposed test is evaluated via simulation study and its application.
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1. Introduction

Let X,,...,X, be a set of independent observations
from a multivariate normal distribution N, (4, £) where both
the mean vector ¢ and covariance matrix X, ¥ is a positive
definite matrix, are unknown. In this paper, we are interested
in the problem of testing the hypothesis that the covariance
matrix of a normal population is proportional to a given
matrix, that is, H,:X =X, against H, :X # (X, where
both 0 <t<o, X, are known. The likelihood ratio test
(LRT),which is based on the sample covariance matrix, is the
traditional technique to handle this hypothesis and requires
n =z p . But many applications in modern science and eco-
nomics, ¢.g. the analysis of DNA microarrays, the dimension
is usually in thousands of gene expressions whereas the
sample size is small, which makes n < p, called high-dimen-
sional data. For such data, the LRT is not applicable because
the sample covariance matrix, S, is singular when n < p (see,
for examples, Muirhead, 1982, Sections 8.3 and 8.4; Anderson,
1984, Sections 10.7 and 10.8).
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Recently, several authors have proposed methods for
testing the related problems. Some of them are: John (1971);
Nagao (1973); Ledoit and Wolf (2002); and Srivastava (2005),
and Fisher et al. (2010). Those are given as follows.

John (1971) proposed a test statistic for testing that
the covariance matrix of a normal population is proportional
to an identity matrix, that is, H (') :2X=tl, 0<t<ooaknown
value which is the locally most powerful invariant test as

)
=—tr|| ———~1
P 1/ p)r(S)

and Nagao (1973) proposed a test statistic for testing H(')' :
X=1 as

1 2
V=;tr[(S—I) ]

Both U and V test statistics are consistent and have been
studied under assuming that n goes to infinity while p
remains fixed. So, Ledoit and Wolf (2002) demonstrated that
the test statistic for testing H (') based on U statistic is still
consistent if n goes to infinity with p that is as (n, p) —> o
and p/n —> c,c € (0,»). The null hypothesis H ) isrejected
if
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exceeds the appropriate quantile from the )(2 — distribution
with p(p+1)/2—1 degree of freedom. For testing H"
X =1 if goes to infinity with p as n < p, Ledoit and W(())lf
(2002) showed that the statistic V' is not consistent against
every alternative and its n—limiting distribution differs from
its (n, p)— limiting distribution under the null hypothesis.
Then they modified the statistic V" as

1 pl1 2
=—tr[(S—I)2}——(—trSj +£.
p n\p n

They have shown that the statistic W is consistent as
(n, p) = o, including the case n < - The test statistic based
on Wrejects the null hypothesis H . 1f npW / 2 exceeds the
appropriate quantile from the )( —distribution with
p(p+1)/2 degrees of freedom. Srivastava g 005) proposed
a test statistic when (n, p) >0, n = O(p ) 0<6<1,to
reject the null hypothesis H, : X = o I 62 >0 unknown
with a test statistic which did not relate w1th unknown ¢ > 0.

Then we applied his test statistic for testing H and reject
H if

—(h /h -1 (12)

exceeds the appropriate quantile of the standard normal dis-

Sl

2
n

tribution, where &, = (1/ p)tr(S) and h, = ———
= phr(S) and =

1 1 N N

—[trS2 ——(trS)z} . The statistics hl and %, are (n, p)—
D n

consistent estimators of (1/ p)trE and (1/ p)trE? respec-
tively. Also he proposed a test to reject the null hypothesis
H' if

0

(h 2h +1) (1.3)
exceeds the approprlate quantile of the standard normal distri-
bution. Motivated by the result in Srivastava (2005), which
requires, p/n—>c, ce€(0,+) Fisher et al. (2010)
proposed the test for testing H 0' based on unbiased and
consistent estimators of the second and fourth arithmetic
means of the sample eigenvalues. With the constants:

S2

212 +3n-6 2(51+6)
b:——’c = — , = 5

n n(n2+n+2) n(n2+n+2)

5n+6

nz(n2 +n+2)
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n’ (n2 +n+2)
(n +D)(n+2)(n+4)(n+6)(n-1(n-2)(n- 3)

they proposed the test statistic to reject the null hypothesis
H'if
0

and T

~ r2
_nlhy /by 1)

T
Foo 2
8(8+12¢c+c”)

exceeds the appropriate quantile of the standard normal distri-
bution, where

l;4 = L[WS4 +btrS* S + ¢ (trS2 )2 +dirS? (trS)2 + e(trS)4 }
p
is (n, p) — consistent estimator of (1/ p)tr24.

The remainder of this paper is organized as follows.
Section 2 provides the proposed test statistic and its asymp-
totic distribution under both the null and alternative hypo-
theses as (n, p) go to infinity even if n < p. Section 3 shows
the performance of the proposed test statistic through
simulation technique. Section 4 applies the test statistic to
real data. Section 5 contains the conclusions. The theoretical
derivations are given in the Appendix.

2. Description of the Proposed Test

Suppose X ,. ’Xn+1 ~N (/J,Z) and we are
interested in testing that the covarlance matrix of a normal
population is proportional to a given matrix, that is, H :
X =1%, against H,:X # X, where 0 <t <oo is known
value and X is a given known positive definite matrix. We
proposed the test statistic by considering a measure of a
distance between the two matrices
tr(z;‘Z) +1°

1 1 2t

v =—(tr(E'T—t)? =—r(E7'5)? -2
0 0

p p p

(VA
where # denotes the trace of matrix and ifand w = 0 onlyif
the null hypothesis holds. Thus, we may consider testing
HO :w =0 against H :y > 0.

We shall make the following assumptions:

(A) lim a_=a9,
1 1
p—>®

a;) €(0,00), i=1,..,8

B lim p/n=c,ce(0,0)

(n, p) > ®

where a = (l/p)tr(Zng)l =(1/p) Zp‘, (ﬂ,j /dj)l. The
j=1

lj s are the eigenvalues of the covariance matrix £ and d ]

are the eigenvalues of a known positive definite matrix 2

We need estimators of ¢, and a, to be consistent estlmators
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for large p and n even if n<p. The following theorem
provides these consistent estimators.

Theorem 2.1 The unbiased and consistent estimators of a, =
(1/ p)tr(Z(;]Z) and a, = a/ p)z‘r(Z;lZ)2 are respectively
given by

a, =1/ pyr(Z;'S) 2.2)

and

. n2 1
qQ =——————
2 (n-D(n+2)p

Thus we use estimators in Theorem 2.1 to define the unbiased

[tr(ZalS)z —l(tr(Z;]S))z} 23)
n

and consistent estimator of ¥/ in (2.1) as

yo=a, -2t +1° 2.4)

The following theorem gives the asymptotic distribution of
the estimators &1 and &2 in (2.4).

Theorem 2.2 Under the assumption (A), and (B), as
(n, p) — o

& D a
622 a2

D T
where x —> » denotes x converges in distribution to y.

2a2/np 4a3 / np

2
4ar3 / np 4(2a4 +ca2)/np

The following theorem and corollary provide the
asymptotic distribution of 7 under the alternative and null
hypothesis by applying the delta method of a function of
two random variables.

Theorem 2.3 Under the assumption (A), and (B), as
(n,p) >

U}—U/L)N(O,é‘z) 25)

4
with 62 =— (2ta, —4ta, +2a, +ca’).
np 2 3 4 2

Corollary 2.1 Under the null hypothesis H_:X = tZO then
y = 0 and under the assumption (A), and (B), as (n, p) — o©
_Nmpy  nmy D
2
et 2

Remark If 1=1and X, = [ where/ isidentity matrix, then

the proposed statistic 7'is the test statistic 7 in (1.3) given
. S2

by Srivastava (2005).

T

> N(0,1) 2.6)
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3. Simulation Study

For studying the performance of the proposed test
statistic 7, we compute the attained significance level (ASL)
of the proposed test by simulation technique. Based on 10,000
replications of the data set simulated under the null hypo-
thesis H, : X = (X, test statistic T'is computed and then we
obtain the attained significance level (ASL) of the test by
recording the proportion rejection of test statistic for the
null hypothesis with the nominal significance level at 0.05.
We simulate the ASL for different four null hypotheses as

L.y _ _ — —
) Hy:Z=tX,=C, where C01 = (cl,’j)pxp =
c . . o _ _
( i ) » x p 1s aToeplitz matrix with elements <, 1 ¢,
¢ = —0.5 and the rest elements are equal to zero

) Hy:E=15=Cp, =051 +051 1 where
1 p denotes the px p identity matrix, and 1p denotes the
p x1 vector having each element equal to 1

3) Hg =15 =Cyy where C =(c, ) =
(¢, )., with cl_’jz(—l)”-’(i/2j) Vi<j=1,..,p
and ¢ =1.0Vi=1,.,p

51

) —

4 _
4 Hy:X=i2 =C,, where Coy =(¢, ), =

i, ]

(c. )

L N VA
jidpp with e, =09 v o
For each null hypothesis, we simulate the empirical
power of the proposed test 7 under the alternative hypothesis
for each of four null hypotheses as

) H(l) :ZzC01 against Hll :Z=C1 where C] =

c —(c . . o
( L )p ‘< p ( oy )p . p isaToeplitz matrix with elements
¢, = Lc =6 = —0.49 and the rest elements are equal to
zero

2) Hg X = Coz against le Y= C2 = 0,9Ip +
(O.l)lpl'p

3) Hg X = C03 against H13 X = C3 Where C3 =
(€ D=0 ), , with ¢ =(-1)'"/(i/4)) Vi
<j=L.,pand c =10Vi=1..,p

4) Hg :Zz’CO4 against H14 :Z=C4 where C4 =

2/5
c =(c . i+j |i—j|
l.’j)pxp =( j,l-)pxp with ci,j =(-1) 0.9

Vi,j=1..,p
3.1 Simulation results

The ASL is provided in Table 1 corresponding to the
null hypotheses. As expected, the ASL of the test statistic 7
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Table 1. The ASL of test statistic 7 under four null hypotheses at Nominal Significance
Level o =0.05.
The ASLof T
P n=N-l | 2 3 4
Hy:2=Cy Hy:2=Cy Hy:Z=Co3 Hy:Z=Cyy

10 9 0.059 0.058 0.059 0.059
40 9 0.055 0.055 0.055 0.055
39 0.056 0.056 0.056 0.057

80 9 0.057 0.056 0.057 0.057
39 0.052 0.052 0.052 0.052

79 0.053 0.052 0.052 0.052

160 9 0.053 0.053 0.054 0.054
39 0.056 0.055 0.055 0.056

79 0.056 0.056 0.056 0.055

159 0.053 0.053 0.053 0.053

320 9 0.052 0.052 0.052 0.052
39 0.052 0.051 0.052 0.052

79 0.051 0.051 0.050 0.050

159 0.051 0.050 0.051 0.051

319 0.053 0.051 0.053 0.053

is reasonably close to the nominal significant level 0.05 and
gets better when p and n get large. We found that four sets
of the ASL are almost the same that means the consistency
of our test statistic is not affected by varying the null co-
variance matrices.

The empirical powers are shown in Table 2. It shows
that four sets of the empirical power of test statistic 7 rapidly
converge to one and stay high as » and p get large for n < p.

We also compute the ASL in a special case of the null
covariance matrix with setting =2 and X, = I, that is, the
test with the null hypothesis as H(; :Z =21 (spherecity).
We compare the performance of the proposed test statistic
T with the test statistics defined in Ledoit and Wolf (2002),
denoted U, in (1.1) and Srivastava (2005), denoted T, in
(1. 2) We compare them under the alternative hypothes1s
H{:X=2D where D= diag(d,,....d ,); d; ~ Unif (0,1),
i=1,2,..., p. The ASL and the empirical powers are provided
in Table 3. Table 3 reports that the ASL of the proposed test
statistic 7 is similar to those provided in Table 1 and closed
to those from the test statistic 7, and U. But the test statistic
T gives the best performance for all of the setting (n,p) and
has substantially higher powers than those of U, and T for
almost every n and p considered. These results suggest that
the proposed test may more appropriate to use than U, test
and T, test, especially when is small.

4.AReal Example
In this section, the microarray dataset is collected from

Notterman et al. (2001) is available at http://genomics-
pubs.princeton.edu/oncology/Data/CarcinomaNormal

datasetCancerResearch.xls (last accessed: 9 October 2011).
There are 18 colon adenocarcinomas and their paired normal
colon tissues and they are obtained on oligonucleotide
arrays. The expression levels of 6500 human genes are
measured on each. For simplicity, we will restrict attention to
18 colon adenocarcinomas with only first 256 measurements
each. We examine whether the covariance matrix is the
sphericity The data gives the observed test statistic values
as T =8 .500, U =284.567 and T =270.582 with p-
value =~ 0 each, thus the hypothesis of being sphericity is

rejected at any reasonable significance level.
5. Conclusions

For testing the covariance matrix in high-dimensional
data, our test statistic is proposed under normality assump-
tion. The test statistic is approximated by normal distribution.
Numerical simulations indicate that our test statistic 7 in
(2.6) constructed from the consistent estimators with accu-
rately control size of test and their powers get better when
(n,p) get large for n < p. Moreover, the test statistic gives
higher power than, for testing being sphericity of the co-
variance matrix, those of the tests in Ledoit and Wolf (2002)
and Srivastava (2005).

Acknowledgements
The authors would like to express their gratitude to

the Commission on Higher Education (CHE) of Thailand for
their financial support.



S. Chaipitak & S. Chongcharoen / Songklanakarin J. Sci. Technol. 38 (5), 521-535, 2016 525

Table2. The empirical power of 7 under four alternative hypotheses.

The empirical power of T
p n=N-1 1 b} 3

a
HI:Z:C1 HI:E:C2 HI:Z:C3 HI:Z:C4

10 9 0480 0.560 0.174 0.159
9 0.996 0.617 0.265 0.286

39 1.000 1.000 0.772 0.877

9 1.000 0.624 0.300 0.330

39 1.000 1.000 0.837 0.939

79 1.000 1.000 0.998 1.000

160 9 1.000 0.625 0.319 0.346
39 1.000 1.000 0.866 0.966

79 1.000 1.000 0.999 1.000

159 1.000 1.000 1.000 1.000

320 9 1.000 0.629 0.342 0.361
39 1.000 1.000 0.891 0977

79 1.000 1.000 1.000 1.000

159 1.000 1.000 1.000 1.000

319 1.000 1.000 1.000 1.000

Table 3. The ASL (under H (') : 2 = 27 ) and the empirical power (under Hl' :2=2D)
of T ’Uj and T, 51 at Nominal Significance Level o = 0.05.

ASL Empirical Power
p n=N-1
T U j T, 51 T U j T, 51
10 9 0.059 0.049 0.048 1.000 0412 0405
9 0.055 0.054 0.051 1.000 0.368 0.360
39 0.056 0.056 0.053 1.000 0.999 0.999
80 9 0.057 0.057 0.053 1.000 0.356 0.348
39 0.052 0.052 0.050 1.000 0.999 0.999
79 0.052 0.051 0.050 1.000 1.000 1.000
160 9 0.053 0.056 0.054 1.000 0354 0.346
39 0.055 0.056 0.055 1.000 0.999 0.999
79 0.055 0.057 0.055 1.000 1.000 1.000
159 0.053 0.052 0.052 1.000 1.000 1.000
320 9 0.052 0.055 0.052 1.000 0352 0.343
39 0.052 0.054 0.052 1.000 0.999 0.999
79 0.050 0.050 0.050 1.000 1.000 1.000
159 0.051 0.050 0.050 1.000 1.000 1.000
319 0.053 0.053 0.053 1.000 1.000 1.000
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Appendix

Before proving Theorem 2.1, we need the following information and lemma:

For positive symmetric definite matrix T and by spectral decomposition, we have ¥ = TAT" where A = ah'ag(ll , }“2 ey lp)
with A being the i eigenvalue of ¥ and I' is an orthogonal matrix with each column as normalized corresponding
eigenvelctors Vs Ypos¥ Similarly, we also can write £, as £, = RDR' where D = diag(d,.d,,..., dp) with d, being the

i" eigenvalue of = and R is an orthogonal matrix with each column as normalized corresponding eigenvectors 7,7, ..., 7

P
(Rencher, 2003).
Let nS=YY' ~ W,(Z,n) where Y =(yy,,,...y,) and each Y~ Np (0,%) and independent (Anderson (1984),

Section 3.3; Srivastava (2005); Fisher ez al. (2010)). Let U = (uy,u,,...u,) where uj is independently and identically
1

- 1 1
distributed (iid.) Np (0,7) and we can write Y = 22U where X232 =¥ . Define W' =UT' = (W, W, sy Wp) and each w,

areiid. N ., (0,7). Thus, define v = Wl'.wl. are iid chi-squared random variables with n degree of freedom.

LemmaA.l.For v. =ww and v, = ww _ for any j # j
ii i i Y rJ

EW)=n(n+2)..(n+2r-2), r=12,. Var(v.) = 2n,

Var(vé) =8n(n+2)(n+3), E(Vii - n)3 =8n,

E@_—n)* =12n(n+4), E( =n(n+2))" =3n(n+2)[272n" + O(n)],
E(v;) =n, E(v;) =3n(n+2),

E(v i) =n(n+2), E(vyv)=n(n+2)(n+4),

2 _ 2
E(v@_jvl_l_vjj) =n(n+2)".

Proof. The first 6 results can be found in Srivastava (2005) and the last 5 results can be found in Fisher et al. (2010).

As in similar proofs of Srivastava (2005), we can write (1/ p)tr(Zal S) and (1/ p)tr(Z(;]S )2 in terms of chi-squared
random variables.
R D il 124
a =—wE S)=—tr| (RDR") =YY" |=— > —Fv_.
1 0 (A1)
p p n

Similarly, we also have
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2 2 2 l-/l-

1 T n2 1 2 2y 2
p nzpi=1a’l_2 npi <,'dl-d_,- 1 A-2)
where v, = wl,'wl,. We let
n2 1 1
a,=————|tr(Z, ) ——(t (Zy'S)) } A3
> (n=)(n+2) p [ 0 (a3)
Thus
) 2
. n 1 1 » ﬂ, 5 2 p ﬂ«ﬂ«; 5 1 2 A4
a, = vt v | — 5 Ty,
(n-D(n+2) p n’ pi=ld; n pz<j didj np i=1d,;
2
n n-1p ﬂ, 2 p AA; 1
= - 121 -5 X . (vizj —=ViVj) (A4)
(n—l)(n+2) n pi= ld n°pi<j didj ’
2
=——— b + b, ],
(n-D(n+2) = °
n-1 2 )‘2 2 2 P )’ll/ 2
where bl = P b2 =— > — (v —— )
3 2 2 T dd v i jj
npz=1dl_ npi<;%%;
Proof of Theorem 2.1.
Since
n 1 _1 p A p A P A
E(a)=E|—tr(Z;S)|= —Z—v =—Z —LEW ”)——Z—n
p np i=1d; np i=1 d; np i=1d,

1 p A
L R e I
pi=td; p

1
And from Lemma A. 1, we easily find that £ (v; -— vl,l,vjj) =0 then £ (bz) =0.Thus

n
2 2 2
~1p A “1p A
E(ay)=—— gl 2§02 o S ARG
(n-D(n+2) \ n’pi=td} (n=D(n+2)\ n’p =1 d}
2 2 2
~1p A lpaA 1 __
! R LR B R R o
(l’l 1)(l’l+2)npl ld plldl. P

This is shown that both g, and a, are unbiased estimators of @, and a, respectively. To show that g, and a, are consistent

estimators considered by

R A 1 p A p
Var(a) Var| — Y —’v.. =— Z —Var(v J=—|—X ——|=—a,. (A5)
np._, n 2

&
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2
n
And si a.=———|b +b_| th
nd since b (n—l)(n+2)[] 2] us

2
2

Var(a,) = P {Var(bl)+Var(b2)+2COV(b1,b2}.

6 2 ; 2 il 6 2
np i=1d, n p- i=ld;

_8(n —1)?(n+2)(n+3) .
l’lsp

4 A 1
Var(b,) =—— {5 - Var(v; _;viivj/)]

n p-\i<ja;a;

= — V. —— V..V .. — V.. —— V..V ..
n4p2 i< dl_z dl_z g, i g, i (A7)

_4n-D(n+2) (ag —la4].
p

~1)° 22 12 p At
Var(bl)z(n )Var(§4v2]=(n ) §—Z4Var(vl.2i)

(A.6)

4+

4
n

And since E (bz) =0 then

COV (by,by) = E(bby)

2(n-1 22 LA 1
oo g k(vik‘—vﬂv""j
nsp i=1 di i<j didj n

12 2 P lﬂ'k 2 1 222 4 /1/1]( 2 1
E| 2Ly 5 - Vv, ——V.v +E| vy L Vo, ——Vv.V
l: d12 11i<j d, dj g Ik 2 22l.<j dd. \ ko, Tk (A.8)

5 2

np Ay s P A, 1
f.+E| Ly ¥ VvV, ——V.y
{d; ppi<j did. Jk i Vkk

J

because
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2 2 }“'}“k 1
El:v Ej 0 (v]k V]]ka)}
1

J
A lk p Ay 1
= E v”v]k Vi ]]ka =2 n(n+2)(n) ——n(n +2)(n)(n) |=0, for i+ j+#k,
l<j i<j d. d]
p A lk p Ay
= v”vlk v”vkk =X n(n+2)(n+4) ——n(n +2)(n+4)(n) |=0, for i=j#k, (A9)
l<j i<j i
l.l 1 A2y
= f LAy R S A 5 n(n+2)(n+4)——n(n+2)(n+4)(n) =0, for i#j=k
iiVij i’ jj
i<j dld] n i<j 4

By (A.6) — (A.8), then we have

4
Var(a,) = (ﬁ]{m(bg +Var(b,) +2COV (b, b,)}
(n-1)*(n+2)
_ at 8(n—1)>(n+2)(n+3) 0 4(n-1)(n+2) (ag —la4] A10)
(n—1)%(n+2)* np n* p
42n* +3n-6) 4 5
= a, +

4 a
nn-D(n+2)p (n—D)(n+2)

Since a; and a, are unbiased estimators of @, and a,, respectively and from (A.5), (A.9), and by applying the Chebyshev’s

inequality, for any & > 0 as (n, p) — o,

PHa1 —a‘>8]<LVar(a )—in—)O and
£

g "p
1 1 | 42n* +3n-6 4 8 4
PH&z—az‘>g]S—Var(&2)=— (2n” +3n )a4+ ai z[—a4+—a22]—>0.
&2 g2 | n(n=D(n+2)p (n—-1)(n+2) np 2

Hence @, and a, are unbiased and consistent estimators of a; and a,, respectively. The proof is completed.

Proof of Theorem 2.2.
From Theorem 2.1, we have
E(a)=a, E(,)=a, (A11)

By Lemma A. 1., with simple calculations and in similar proofs of Srivastava (2005) under assumption (A), and (B), and as

(n, p) — o0, we obtain

Var(&l) = 2012 / np, (A.12)

8(n—1)*(n+2)(n+3)
Var(b,) = ; a, ~8a,/np, (A.13)
n'p

_ 4(1’1 - 1)(1’1 + 2) 2 1 - 2
Var(b,) == | 4% —;a4 ~4c(ay —a,/l p)/np, (A.14)

n
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4(2n2+3n—6)a N 4
nn-Dn+2)p * (m-1)(n+2) 2

Var(a,) = ~4(2a, +ca )/np, (A.15)

COV (4 .b)=E(ab)-E@a)E®)

) N i i
np |i=1d i:tjdl_dj np i=1%i

lld i#]

n-1| p i’ 0 MA;
== Z—n(n+2)(n+4)+2 SN (n+2)
p d

J

n’p* i=1d> l#,dd

1

_(n+1)(n+2){§;ﬁ3 g A, }

_(n- 1)(n)(n + 2)(n +4) 4 i (- Dn® (n+2) 2 Wif (A.16)
n p i= la’3 n4p2 i#j d,-d_,2~
(n-D(n+2) p &> (n-D(n+2) p LA
- 2 2 L= 2 2 2
n°p i=l1 di np i#] dld]

_(n=1)(n+2)(n+4) §l_l-3_(n—l)(n+2) )4 1_13
- 3.2 =3 2 2 =3
n°p i=ld; np =l d;
_An-D(n+2)a, B day
n3p2 np ’

From the fact that £ (bz) = 0 and similar to the proof for £ (b] bz)

i . 2 pAo e A »
COV(ay,by) = E(ayby) = 3 2E .Z d_vii ~Z-dd Vi —;v”v]] =0. (A17)
np i=1 i

Note that
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2 2 A
1 P4 -1 P2 A 2 P 1
E(ayay)=E|— X - Vii - n3 2 L2 21 S x - (vé__viivjj]
”pz—ld (n-D(n+2)| , pizldl. n“pi<;j -d.d n
2
1 p A p A 2 p A p A
ZE'___S_EEZJWiZ'%”£+ 2 L~ Z 2__Wlﬂ
(n+2n“p~i=19 "i=1d; (n—1)(n+2)mp2i=19; " dd n

(A.18)

LA Ao
By similar proof to E(b]bz) wehave E<X Y —v.. ¥ —X|vy

1
;i ——V..v ] =0 then the expectation of the second
i=1 di ; -d.dj

gy o, i jj

term in (A.18) equals to zero. Thus, we obtain that

1 2 M
E(a,a,) =——E § —’3vl3l + § 'lzv”vf/
(n+2)n"p i=1d dd
1 o A 0 A
= >—Ln (n+2)(n+4)+2 n (n+2)
(n+2)n"p~ | i=ld; i#] _,
3 WA
_xd e 412 A (A.19)
np2 i=1 a’l-3 p2 i# ] dl-djz-
(n+4)pﬂ,l-3 1 pﬂ,lzpﬂ,l pﬂf
= R Bt 2y
np~ =l di p | = di i=1d; =l di
_4511.3_'_1511.2511
np2 i=1 d3 p2 i=1 di2 i=1 d;
=4ay/np +aya,.
By (A.11)and (A.19) as (n, p) —> o , we obtain
COV(&I,&z) = E(&ldz) —E(&I)E(&2) = 4a3 / np (A.20)

To find the distribution of 4, and @, , we used Multivariate central limit theorem (Rao,1973,p.147) and Lindeberg
Central Limit Theorem (Billingsley, 1995, p.359)

2
n

Since 512 =—————[b; +b,], so we need to find the distribution of a,,b, and b which will distribute as
(n=1)(n+2) " 2

Normal distribution, respectively. First, we find the distribution of fll ’bl because both are functions of v, and the second

is of b because it is a function of v;;,i # j. Finally, the distribution of &2 which is a distribution of a linear function of two

normal random variables is obtained.

First, in order to find the distribution of 511 and b1 . Under ;Li and dl_ as before, we let
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2w =) 2202 —n(n+2)
uy; = i i

—_— and Un. =
2
A b2 a2+ 3)

where
E(u,.) =0, E(un,) =0, Var(u;.) = 222 1d2, Var(u,.) =823 1d*, COV (uy,,uy )= 423e_1d>  and
1i ’ 2i ’ 1i i i’ 2i i i’ 1i°72i i n i
e, = Nn+2/n+3 =1 as n — oo Since V., s are independent, thus W; = (1411-31421-)' are independently distributed

random vectors, i =1,..., p with E (ul.) =0 and covariance matrices Qin given by

2/11.2 / dl.z 4ll.3en / dl.3
Qin = s i=1L.,p
43¢ 1a> 82ty at '
I n l l l

Foranynas p — o

Q, =@, +..+Q )/ p

2P /1.2 4e p 1.3
-3 . _n Y _r
Pi=td} P i=1d 2a, e a .
= = —>Qn¢0
4en p 113 4 11.4 4ena3 8a4
R =y
Pi=1d; Pizldl.
0
2a de a
where ng 3
0 0
4ena3 8a4

If F; is the distribution function of ul_ then

1p 12 1 1 » 2 P
=¥ ] wwdF <— 3 ——up) dF; =—— ¥ E(uj; +u3;)’ < —— ¥ E(uy; +u3,),
pi=l /u;-ul->g /p pi=leg”p g pTi=l g pTi=l

from Cr — inequality in Rao (1973, p.149). Sinceas p — % and from LemmaA.1.,

4 4
2 P 4 2 P A 4 2 2 A
—— Y Eu)=—— Y E(v..—n) =——o 12n(n+4) >0
2 2. li 2 2. 4 2 il 2 2.
e pTi=1 E°p z=1dl.n Ep l=1dl.l’l

and by an analogous derivation as p —> o,

Hence

p
> E (ufl. + ugi) — 0 as p = © , By applying the multivariate central limit theorem, as p — ®© foranyn
e pTi=1



S. Chaipitak & S. Chongcharoen / Songklanakarin J. Sci. Technol. 38 (5), 521-535, 2016 533

1 § ll.(vl.l. —n)
1 VP =1 di D 0
—(u1+u2+...+u )= —>N2(0’Qn)
Jr e 2272 = n(n+2)
NP _1d1 (@ +2)(n+3)
0 2ag 4ena§) 0 0 2ag 4a§)
Note thatas n >0, e =1, Q = —>Q7, where Q" = . Thus, it follows that as
" " 4e aO 8a0 4 0 Q 0
n3 4 43 oy
(n, p) > o,
1 § ll.(vl.l. —n)
NI d.
np l —1 i D 0
—> N, (0,Q7).
p ll (v —n(n+2))
N —1d12\/(n+2)(n+3
0 2a2 4a
And under assumption (A) which leads to assuming that Q — O~ , where Q = A ) then we have that
a a
3 4

L A4 =)
VP =1 di

p ll (v —n(n+2))

\/Ez —1d12\/(n+2)(n+3

For the first element in the previous random vector, since

D
—— N, (0,0).

1 p AW, —n 1 P AV, P ni 1 R R
§A0u—n) § A5 20 = (npa, —npay) = [np (&, — a,) —>—>N(0,2a,),
np =t d; Jnp L=l dp =l d; \np
then
D
q —>N(a1, Zaz / np). (A21)
For the second element, we have that
Lo A Ki-n(n+2) 1 2 v 2 Aln(n+2)
np it d?J(n+2)(n +3) \/_ Ad s Dn+3) A d 2 +3)
3
2
_ n ph MR |2 N0, 8a,).
ol -DJn 2 +3) Jnt2)nt3)

Since as n — x,
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1 113pb1 n(n+ 2)pa2
Jw | =D+ +3)  Jmr2m+3)

1
~ \/7 (npb1 —npaz) = «/np(b1 —az)
np

then \/mp (b —a,) L) N(0,8a,) also, and with a linear transformation we have the result that

D
b1 — N(a2,8a4 / np). (A.22)

The next is to find the distribution of b Srivastava (2005) gave the important results, which are used for the next

proof, that v / \/— ~ N(0,1)as n > o and v /n~ ;(1 which are asymptotically independently distributed for all distinct
iand;.

244, 1
Note that b2 defined in (A.4), now we let Ny = Z—J(vi vuvl]) From Lemma A.1., we have £ (Tl )=0 and
n”pdd; n

let

2/1i/1j 2
S = Z Var(ny) = Z Var 2—(\/” v”vjj)
i<j i<j n pdidj

4 p ﬂ’lﬂ‘j 2 1
== > Var{( j__V,,ij)}
np i<j dldj

=Var(b,)

4(n—1)(n+2)( 5 a4j 40( 5 a4j
= a, —— |[r—|a, ——
4 2

n V4 n p

as (n,p) > .

2 1-3«
Let M = Z n,=——2x o v..)=b,. If P_ isthe distribution function of 77... Since, for & > 0
i = Vii l] 2 ij y

i<j nopi<j dl-d.

r 1
>— | dP<Z In
i<1'S2‘ ‘>S Y i<j gS ¥
T Oy e
-3 E(n;,)
i<j & Slzg v

4 il 1 ’
= Z E v i ViV
l<ll’l p g S dd n

p 8(n—-D(n+2)A’A;
i<j n*p’e’Sidld;

p 82,-2,-
= 2—2—>0
i<jn"p°e S d dj
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as p — . Then, it follows from the Lindeberg Central Limit Theorem in Lemma A.3.,

v,

D
= > N(0,1).
S 2
p 2\/c(a2—a4/p)

D 4c
Then we have b2 —)N(O,—(a% —ay /p)]. (A.23)
np

By (A.8), then b1 and b2 are asymptotically independent. Note that &2 is a linear function of two random variables b1

2
and b_ thatis, a, = n—[b +b,]~ b, +b, as n—> o By(A.5),(A.15.),(A.22.),and (A.23.), then we have
2 2 _ 172 1 72
(n=1)(n+2)
n D 2
a, —>N a, 4(2a4 +cay )/ np|. (A.24)

From (A.20), COV (4, a,) = 4ay / np (A.21),and (A.24), we have

&1 D a 2a2 / np 4a3 / np

R ? N2 > )

) ) 4a3 / np 4(2a4 + ca2)/np
The proof'is completed. [

—2ta, + t2 and we have

Proof of Theorem 2.3. Note that our test statistic is v = dz 1

A

oy d
—AW=—2I and L —1.
da, oa

2

D
By applying the delta method (Lehmann and Romano, 2005, p.436), thus, v —y —> N (0,5 2) where

4
=—(2t2a —4ta, +2a +ca2

52 (2 1) Zaz/np 4a3/np iy )
= (-2t
np 2 3 4 2

2 1
4a3 / np 4(2a4 +ca2)/np
The proof'is completed. [

4= t4 Thus, 52 = 4ct4 / np. It follows from Theorem 2.3. that
the null asymptotic distribution of T'is N(0,1) . The proofis completed. [

Proof of Corollary 2.1. Under HO’ ay = t2, ay = t3 and a



