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Abstract

The  present  investigation  deals  with  performance  analysis  of  single  server  preemptive  priority  retrial  queue  with
immediate Bernoulli feedback. There are two types of customers are considered, which are priority customers and ordinary
customers. The priority customers do not form any queue and have an exclusive preemptive priority to receive their services
over ordinary customers. After completion of regular service for ordinary customer, the customer is allowed to make an
immediate feedback with probability r. When the orbit becomes empty at service completion instant for a priority customer
or  ordinary  customer;  the  server  goes  for  multiple  working  vacations.  By  using  the  supplementary  variable  technique,
we obtained the steady state probability generating functions for the system/orbit. Some important system performance
measures, the mean busy period and the mean busy cycle are discussed. Finally, some numerical examples are presented.
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1. Introduction

In queueing theory, retrial queues have been intensive
research  topics  for  quite  some  time;  we  can  find  general
models in retrial queues from Gomez-Corral (2006), Artalejo
and Gomez-Corral (2008) and Artalejo (2010). In retrial queue-
ing system, queues with repeated attempts are characterized
by an arriving customer who finds the server busy, leaves
the  service  area  and  repeats  its  demand  after  some  time.
Between trials, the blocked customer joins a pool of unsatis-
fied  customers  called  orbit.  Such  a  retrial  queues  play  a
special role in telecommunication systems, communication
protocols and retail shopping queues, etc.

In  the  past  years,  retrial  queues  with  two  types  of
customers have been widely studied by many researchers
(Artalejo et al., 2001; Wang, 2008; Dimitriou, 2013; Wu et al.,
2013; Rajadurai et al., 2015d). The high priority customers
are formed in queue or not queue and served according to
discipline of preemptive or non-preemptive. Blocked pool
of  customers,  low  priority  customers  (called  as  ordinary
customers), leave the system and join the retrial group to
retry  its  service  after  some  time  when  the  server  is  free.
Moreover, in some of the systems, an arriving higher priority
customer may push out the lower priority customers whose
service is ongoing to the queue or the orbit. For a compre-
hensive analysis of priority queueing models the reader may
refer Liu et al. (2009), Liu and Gao (2011), Senthilkumar et al.
(2013), Wu and Lian (2013), Gao (2015), and Peng (2015).
Priority retrial queues are used in many applications like real-
time systems, operating systems, manufacturing system, and
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simulations.
One additional feature which has been widely discussed

in retrial queueing systems is feedback of customers. After
completion of service the customers have to join the queue
and  wait  for  their  service  once  again.  In  this  aspect,  the
concept  of  optional  re-service  can  be  considered  as
immediate feedback. The customer completes his service as
first step and if he finds any defect in his service or wants
service one more time he will immediately get his service once
again without joining the queue.

This model have many real life applications in situa-
tions  like  bank  counters,  working  ATM  machines,  super
markets, doctor clinics, etc. Some authors like Baruah et al.
(2012), Kalidass and Kasturi (2014), and Rajadurai et al.
(2014),  have  discussed  the  concept  of  immediate  feedback
(re-service). In the above mentioned papers, customer who
wishes to obtain another round of service has to go to the
server immediately one more time.

In a vacation queueing system, the server completely
stops the service and unavailable for primary customers at
short  period  of  time.  This  period  of  time  is  referred  as  a
vacation. But in working vacation period (WV), the server
gives service to customer at lower service rate. This queueing
system has major applications in providing network service,
web service, file transfer service and mail service, etc.

In 2002, an M/M/1 queueing system with working
vacations  was  first  introduced  by  Servi  and  Finn  (2002).
Later, Wu and Takagi (2006) extended the M/M/1/WV queue
to an M/G/1/WV queue. Very recently, Arivudainambi et al.
(2014) introduced M/G/1 retrial queue with single working
vacation. Furthermore, during the working vacation period,
if there are customers at a lower service completion instant,
the  server  can  stop  the  vacation  and  come  back  to  the
normal busy state. This policy is called vacation interruption.
Recently, authors like, Zhang and Hou (2012), Gao et al.
(2014), Gao and Liu (2013), Rajadurai et al. (2015a,b,c, 2016)
analyzed a single server retrial queue with working vacations
and vacation interruptions.

To the authors best of knowledge, there are many
works available in the concept of retrial queueing system
with working vacation by using the method of matrix geo-
metry analysis, but there is no work published in the queueing
literature with the combination of preemptive priority retrial
queueing  system  with  general  retrial  times,  immediate
Bernoulli feedback, multiple working vacations and vacation
interruption by using the method of supplementary variable
technique.

In  this  paper,  we  consider  a  generalization  of  the
well-known model discussed by Gao (2015) and Gao et al.
(2014) with concepts of a single server preemptive priority
retrial queue with general retrial times in two types customers,
immediate Bernoulli feedback, multiple working vacations
and vacation interruption. The rest of this paper is given as
follows. The detailed mathematical model description and
practical applications of this model are given is section 2.
In section 3, the steady state joint distribution of the server

state and the number of customers in the orbit/system are
obtained. Some system performance measures, the mean busy
period, the mean busy cycle are discussed in section 4. In
section 5, important special cases are derived. In section 6,
the effects of various parameters on the system performance
are analyzed numerically. Conclusion and summary of the
paper are presented in section 7.

2. Description of the Model

In  this  section,  we  consider  a  preemptive  priority
retrial  queue  with  immediate  Bernoulli  feedback  under
working  vacations  and  vacation  interruption.  The  detailed
description of model is given as follows:

The arrival process: There are two types of customers
arrive  into  the  system:  priority  customers  and  ordinary
customers. Priority customers have preemptive priorities over
ordinary customers in service time of busy server. Assume
that both priority customers and ordinary customers arrive
according to two independent Poisson processes with rates
 and , respectively.

The retrial process: An arriving priority (or ordinary)
customer  finds  the  server  is  free,  the  customer  begins  its
service immediately, otherwise the arrival time of a priority
customer, the server gives service for a priority customer or
lower speed serving in working vacation, the newly arriving
priority  customer  will  depart  the  system  directly  without
service. While the regular busy server is working with an
ordinary customer, the arriving priority customer will interrupt
the service of the ordinary customer and the server begins
its service immediately. We assume that when an ordinary
customer is preempted by a priority customer, the ordinary
customer who was just being served before starts the service
of the priority customer and waits in the service area for the
remaining service to complete.

If an arriving ordinary customer finds the server is
being busy or on working vacation, the arrivals join pool of
blocked customers called an orbit in accordance with FCFS
discipline. That is, only one customer at the head of the orbit
queue is allowed access to the server. Then measured from
the  instant  the  server  becomes  free,  an  external  potential
priority customer or ordinary customer and a retrial ordinary
customer compete to entire the server. Inter-retrial times have
an arbitrary distribution R(t) with corresponding Laplace
Stieltijes Transform (LST) ( ).R   The retrial ordinary customer
is required to give up the attempt for service if an external
priority customer or ordinary customer arrives first. In that
case, the retrial ordinary customer goes back to its position
in the retrial queue.

The multiple working vacation process: The server
begins a working vacation each time when the orbit becomes
empty and the vacation time follows an exponential distri-
bution  with  parameter .  During  a  vacation  period  if  any
customer arrives, the server gives service at a lower speed
service rate. If any customers in the orbit at a lower speed
service completion instant in the vacation period, the server
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will stop the vacation and come back to the normal busy
period which means vacation interruption happens. Other-
wise, it continues the vacation. When a vacation ends, if there
are customers in the orbit, the server switches to the normal
working level. Otherwise, the server begins another vacation.
During the working vacation period, the service time follows
a general random variable Sv with distribution function ( )vS t
and LST *( ).vS 

The  regular  service  process:  In  the  normal  busy
period, there is a single server which provides regular service
and there is an option for re-service. That is called immediate
Bernoulli  feedback.  As  soon  as  the  ordinary  customer
completes his service, he may repeat same service (without
joining the orbit) with probability r or may leave the system
with probability (1-r). It is further assumed that the re-service
may  be  repeated  only  once.  The  service  time  of  priority
customers follows a general distribution and denoted by the
random variable Sp with distribution function ( ),pS t  having
LST * ( )pS   and the first and second moments are (1)

p and
(2) .p  The  service  time  of  ordinary  customers  follows  a

general distribution and denoted by the random variable Sb
with distribution function ( ),bS t  having LST *( )bS   and the

first and second moments are (1)
b and (2) .b  Various stochas-

tic  processes  involved  in  the  system  are  assumed  to  be
independent of each other. Throughout the rest of the paper,

we denote by ( ) 1 ( )F x F x   the tail of distribution function

( ).F x  We also denote *

0

( ) ( ),sxF s e dF x


   the LST of

( )F x and 
~

0

( ) ( ) ,sxF s e F x dx


  to be the Laplace transform

of ( )F x and we assume the notation 
*

* 1 ( )( ) .F sF s
s




2.1 Practical application of the proposed model

Our model has a potential practical application in
the  area  of  computer  processing,  telecommunications,
production  and  manufacturing  system,  inventory  control
system, operating systems and simulations. We consider a
telecommunication system for example. In telecommunica-
tions, call centers play an important role in many industries
and  businesses.  The  customers  are  contacting  to  the  call
centers by talking to a customer service representative (CSR)
or an agent over the telephone (the regular server). In addition
to  contacting  over  the  phone  (priority  customer),  the
customers can contact the center over the internet either via
e-mail,  fax,  or  live  chat  sessions  (the  ordinary  customers).
An  arriving  voice  call  or  e-mails  handled  by  the  idle  CSR
directly. Suppose, at the time of voice calling, if the CSR is
not available, i.e. busy with other calls, the arriving voice call
will be lost its service, but the CSR is busy with e-mails  the

voice call has a preemptive priority over an e-mail service
and the preempted service will wait to complete its service.
If an arriving message (the ordinary customers) found the
CSR serving in voice call, the messages are temporarily stored
in a retrial buffer (orbit) finite capacity should there be a
space to be served some time later (retrial time) according to
FCFS. After completion of message processing, the internet
service  may  demand  the  same  service  to  the  CSR  (the
immediate feedback), if any failures in pervious process. When
the CSR finds no voice call or mail services, it will perform
a sequence of maintenance jobs, such as virus scan (multiple
working vacations) in the system. During the maintenance
period, the traditional center has different components such
as  an  automatic  call  distributor  (ACD)  and  an  interactive
voice response (IVR) unit (the working vacation server), these
components can deal with the messages at the slower rate
(working vacation period). This type of priority retrial queue
with multiple working vacations discipline is a good approxi-
mation of such telecommunication processing system.

3. Steady State Analysis of the System

In this section, we develop the steady state difference-
differential  equations  for  the  retrial  queueing  system  by
treating the elapsed retrial times, the elapsed service times
and the elapsed working vacation times as supplementary
variables. Then we derive the probability generating function
(PGF) for the server states, the PGF for number of customers
in the system and orbit.

3.1 The steady state equations

In steady state, we assume that R(0)=0, R()=1, Sp(0) =
0, Sp() = 1, Sb(0) = 0, Sb() = 1, Sv(0) = 0, Sv() = 1 are
continuous at x = 0. So that the function ( ),a x  ( ),p x  ( )b x
and ( )v x  are the conditional completion rates (hazard rate)
for  retrial,  service  of  a  priority  customer  and  ordinary
customer, lower rate service respectively.

( )( ). .,  ( ) ;  ( ) ;  
1 ( ) 1 ( )

p
p

p

dS xdR xi e a x dx x dx
R x S x

 
 

       
( ) ( )( ) ;  ( ) .

1 ( ) 1 ( )
b v

vb
vb

dS x dS xx dx x dx
S x S x

  
 

In addition, let 0 0 0( ),  ( ),  ( ) p bR t S t S t  and 0 ( )vS t  be the elapsed
retrial time, elapsed service time of the priority customer,
elapsed service time of the ordinary customer, elapsed service
time of the ordinary feedback customer and elapsed working
vacation time respectively at time t. Further, we introduce
the random variable,
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Let {tn; n = 1,2,...} be the sequence of epochs of the
regular  service  completion  times  for  priority  customers,
ordinary customers, ordinary feedback customers or working
vacation period completion occurs ends. Then the state of the
queueing system can be described by the bivariate Markov
process  ( ), ( );  0 ,C t N t t   where C(t) denotes the server
state (0,1,2,3,4,5,6) depending on the server is free, busy for
priority customers, ordinary customers, ordinary feedback
customers and working vacation. ( )N t  denotes the number
of ordinary customers in the orbit. If ( ) 1C t   and ( ) 0N t 
then 0( )R t  represent the elapsed retrial time. If ( ) 2C t   and

( ) 0N t   then 0 ( )pS t  corresponding to the elapsed service
time of the priority customer being served in regular busy
period. If ( ) 3C t   and ( ) 0N t   then 0 ( )pS t  corresponding to
the elapsed service time of the interrupted ordinary customer
being served in regular busy period. If ( ) 4C t   and ( ) 0N t 
then 0 ( )pS t  corresponding to the elapsed service time of the
ordinary customer being served in regular busy period. If

( ) 5C t   and ( ) 0N t   then 0 ( )pS t  corresponding to the
elapsed service time of the feedback customer being served
in regular busy period. If ( ) 6C t   and ( ) 0N t   then 0 ( )pS t
corresponding to the elapsed time of the customer being
served in lower rate service period. Then the sequence of
random vectors      ,  n n nZ C t N t    forms a Markov
chain which is embedded in the retrial queueing system.

Theorem 3.1: The embedded Markov chain  ;  nZ n N
is  ergodic  if  and  only  if ( ),R     where  

   (1)* * (1) * (1)( ) ( ) (1 ) 1 ( )p pbR R r R                

Proof: To prove the sufficient condition of ergodicity, it is
very convenient to use Foster’s criterion (Pakes, 1969),
(Choudhury and Ke, 2012), which states that the chain
 ;  nZ n N  is  an irreducible and aperiodic Markov chain
is ergodic if there exists a non-negative function f (j), j N
and 0  , such that mean drift 1( ) ( ) /j n nnE f z f z z j     
is finite for all j N  and j    for all j N , except
perhaps for a finite number j’s. In our case, we consider the
function ( )f j j . Then we have

1,                              if   0,
( ),,               if   1,2...j

j
R j




  


 

 


  

Clearly, the inequality ( ),R     is sufficient condition
for ergodicity. To prove the necessary condition, as noted in

Sennott et al. (1983), if the Markov chain  ;  1nZ n   satisfies
Kaplan’s condition, namely, j    for all 0j   and there
exits 0j N   such that  0j   for 0 .j j  Notice that in our
case Kaplan’s condition is satisfied because there is a k such
that  0ijm   for  ,j i k   and i > 0, where  ( )ijM m  is the
one step transition matrix of  ;  .nZ n N  Then ( ),R   
implies the non-ergodicity of the Markov chain. For the
process, we define the limiting probabilities 0( )Q t 
 ( ) 0,  ( ) 0P C t N t   and the probability densities

 
 
 

0

0
1,

0 0
2,

( , )        ( ) 1, ( ) ,  ( ) ,  for 0,  0 and 1.

( , )     ( ) 2, ( ) ,  ( ) ,  for 0,  0,  0.

( , , ) ( ) 3, ( ) ,  ( ) ,  ( ) ,  

       

n

n p

n p b

P x t dx P C t N t n x R t x dx t x n

x t dx P C t N t n x S t x dx t x n

x y t dx P C t N t n x S t x dx y S t y dy

        

         

         

 
 

0
,

0

,

                    for 0,  0,  0,  0.

( , )     ( ) 4, ( ) ,  ( ) ,  for 0, 0,  0.

( , )       ( ) 5,  ( ) ,  ( ) ,for 0,  0 and 0.

( , )     ( ) 6,

b n b

n b

v n

t x y n

x t dx P C t N t n x S t x dx t x n

x t dx P C t N t n x S t x dx t x n

Q x t dx P C t

   

         

         

  0( ) ,  ( ) ,  for 0,  0 and 0.vN t n x S t x dx t x n      

We assume that the stability condition is fulfilled in
the sequel and so that we can set 0 0lim ( );

t
Q Q t


  and limiting

densities for  0,   0 and 1.t x n  

  1, 1, 2,( ) lim ( , );  ( ) lim ( , );  ( , )n n n n nt t
P x P x t x x t x y

 
    

2, , ,lim ( , , );  ( ) lim ( , ) n b n b nt t
x y t x x t

 
    

   , ,and  ( ) lim ( , ).v n v nt
Q x Q x t




By  using  the  method  of  supplementary  variable
technique, we formulate the system of governing equations
of this model as follows:

  0 0 1,0
0

 ( ) ( )pQ Q x x dx    


    

                ,0
0

(1 ) ( ) ( )b br x x dx


   
                0 ,0

0 0

( ) ( ) ( ) ( )b v vx x dx Q x x dx 
 

   (1)

 ( ) ( ) ( ) 0,  1     n
n

dP x a x P x n
dx

      (2)

 1,0
1,0

( )
( ) ( ) 0,  0,p

d x
x x n

dx
 


     (3)

 1,
1, 1, 1

( )
( ) ( ) ( ),  1n

p n n
d x

x x x n
dx

   


      (4)

 2,0
2,0

( , )
( ) ( , ) 0,  0,p

x y
x x y n

x
 


    


(5)

 2,
2, 2, 1

( , )
( ) ( , ) ( , ),  1,n

p n n
x y

x x y x y n
x

   


     


(6)
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 ,0
,0 2,0

0

( )
( ) ( ) ( , ) ( ) ,b

b b p
d x

x x y x y dy
dx

   

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2,, 1
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0 2,0

0
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   




      
(9)

  1
( ) ( ) ( ) ( )n

b n n
d x x x x

dx
    


      

2,
0

( , ) ( ) ,  1n py x y dy n


  (10)

 ,0
,0

( )
( ) ( ) 0,  0v

v v
dQ x

x Q x n
dx

       (11)

 ,
, , 1

( )
( ) ( ) ( ),  1v n

v v n v n
dQ x

x Q x Q x n
dx

         (12)

To solve Equations 2 to 12, the steady state boundary
conditions at x = 0 and y = 0 are followed,

1, ,
0 0

(0) ( ) ( ) (1 ) ( ) ( )n n p b n bP x x dx r x x dx 
 

     

,
0 0

( ) ( ) ( ) ( ) ,  1n b v n vx x dx Q x x dx n 
 

     (13)

1,
0

(0) ( ) ,  1n nP x dx n


   (14)

 2, ,(0, ) ( ) ( ) ,  0n b n nx x x n     (15)

,0 1 ,0
0 0

(0) ( ) ( ) ( ) ,  0b vP x a x dx Q x dx n
  
    
 
 
  (16)

, 1 ,
0 0 0

(0) ( ) ( ) ( ) ( ) ,  1,b n n n v nP x a x dx P x dx Q x dx n 
  



 
     
 
 
  

(17)

,
0

(0) ( ) ( ) ,  0n b n br x x dx n


    (18)

  0
,

,       0
(0)  

0,                     1v n
Q n

Q
n

    


(19)

The normalizing condition is

0
1 0

( )n
n

Q P x dx




 

1, 2, , ,
0 0 0 0 0 0 0

( ) ( , ) ( ) ( ) ( ) 1n n b n n v n
n

x dx x y dxdy x dx x dx Q x dx
     



 
         
 
 

     
(20)

3.2 The steady state solution

The steady state solution of the retrial queueing model
is obtained by using the PGF function technique. To solve
the above equations, the PGFs are defined for |z| < 1 as
follows:

1 1

( , ) ( ) ;  (0, ) (0) ;n n
n n

n n

P x z P x z P z P z
 

 

  

1 1, 1 1,
0 0

( , ) ( ) ;   (0, ) (0) ;n n
n n

n n

x z x z z z
 

 

      

2 2, 2 2,
0 0

( , , ) ( , ) ;   ( ,0, ) ( ,0) ;  n n
n n

n n

x y z x y z x z x z
 

 

      

, ,
0 0

( , ) ( ) ;   (0, ) (0) ;  n n
b b n b b n

n n

x z x z z z
 

 

      

0 0

( , ) ( ) ;   (0, ) (0)  n n
n n

n n

x z x z z z
 

 

        and

, ,
0 0

( , ) ( ) ;  (0, ) (0) ;  n n
v v n v v n

n n

Q x z Q x z Q z Q z
 

 

  
On  multiplying  the  Equations  2  to  12  by  zn  and

summing over n, (n = 0,1,2...) and solving the partial differen-
tial equations, we get

 ( , ) (0, )[1 ( )] xP x z P z R x e     (21)

( )
1 1( , ) (0, )[1 ( )] ,pA z x

px z z S x e   (22)

( )
2 2( , , ) (0, , )[1 ( )] ,pA z x

px y z y z S x e    (23)

( )( , ) (0, )[1 ( )] ,bA z x
b b bx z z S x e    (24)

( )( , ) (0, )[1 ( )] ,bA z x
bx z z S x e    (25)

( )( , ) (0, )[1 ( )] ,vA z x
v v vQ x z Q z S x e  (26)

where

     *( ) (1 ) ,  ( ) (1 ) 1 ( )p b p pA z z A z z S A z       

and  ( ) (1 )vA z z   
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From Equations 13 to 19 we can obtain

 1 0
0 0 0 0

(0, ) ( , ) ( ) (1 ) ( , ) ( ) ( , ) ( ) ( , ) ( )p b b b v vP z x z x dx r x z x dx x z x dx Q x z x dx Q     
   

             (27)

1
0

(0, ) ( , ) ,z P x z dx


   (28)

 2 (0, , ) ( , ) ( , ) ,bx z x z x z    (29)

0 0 0

1(0, ) ( , ) ( ) ( , ) ( , ) ,b vz P x z a x dx P x z dx Q x z dx
z

 
   

    
 
 
   (30)

0

(0, ) ( , ) ( ) ,b bz r x z x dx


   (31)

  0(0, )  vQ z Q   (32)

Inserting the Equations 21 in 28 we get
*

1(0, ) (0, ) ( )z P z R     (33)

where  
*

* 1 ( )( ) RR   
 

 
  
 

  


Inserting Equation 21, 28, 33 in 30 and make some manipulation we finally get,

 * *
0

(0, )(0, ) ( ) ( ) ( ) ( )b
P zz R zR Q V z

z
             (34)

where   *( ) 1 ( )
(1 ) v vV z S A z

z


 
    

Inserting the Equation 24 in 31 we get

 *(0, ) (0, ) ( )b b bz r z S A z   (35)

Using Equations 24-25 in 29 we get

  ( )
2 (0, , ) (0, ) (0, ) 1 ( ) bA x

b bx z r z z S x e       (36)

Using Equation 22-26 in 27 and make some manipulation we get

         * * * *
1 0(0, )  (0, ) ( ) (1 ) (0, ) ( ) (0, ) ( ) (0, ) ( )p p b b b b b v v vP z z S A z r z S A z z S A z Q z S A z Q         

(37)
Using Equations 32-36 in 37, we get

( )(0, )     
( )

Nr zP z
Dr z

 (38)

         

         

2* * *
0

2* * * * * *

( ) ( ) 1 ( ) (1 ) ( ) ( )

( ) ( ) ( ) (1 ) ( ) ( ) ( ) ( )

v v b b b b

b b b b p p

Nr z z Q S A z V z r S A z r S A z

Dr z z R zR r S A z r S A z z R S A z

 

       

         
  

          
 

Using Equation 38 in 33 we get

         2* * * *
1 0(0, ) ( ) ( ) 1 ( ) (1 ) ( ) ( ) ( )v v b b b bz zQ R S A z V z r S A z r S A z Dr z                

  
(39)
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Using Equation 38 in 34 we get

           * * * * *
0(0, ) ( ) 1 ( ) ( ) ( ) 1 ( ) ( ) ( )b v v p pz Q S A z R zR zV z R S A z Dr z                  

(40)
Using the Equation 40 in 35 we get

              * * * * * *
0(0, ) ( ) ( ) 1 ( ) ( ) ( ) 1 ( ) ( ) ( )b b v v p pz r S A z Q S A z R zR zV z R S A z Dr z                  

(41)
Using the Equation 40-41 in 36 we get

      

         
( )* *

0

2 * * * * *

1 ( ) ( ) 1 ( )
(0, , ) ( )

( ) 1 ( ) ( ) ( ) 1 ( ) ( )

bA x
b b b

v v p p

rS A z zQ R S x e
x z Dr z

S A z R zR zV z R S A z

    

       

    
 

   
        
 

(42)

Using Equation 32 and 38-42 in 21-26, then we get the results for the following PGFs 1 2( , ),  ( , ),  ( , , ),  ( , ),  bP x z x z x y z x z  
( , )x z  and ( , ).vQ x z  Next, we are interested in investigating the marginal orbit size distributions due to system state of

the server.

Corollary 1: The marginal probability distributions of the number of customers in the orbit when server being idle, busy
serving a priority customers without preempting an ordinary customer, busy serving a priority customers with preempting an
ordinary customer, busy serving an ordinary customers, busy serving an ordinary feedback customer and on working vacation
is given by

0

( )( ) ( , )  
( )

Nr zP z P x z dx
Dr z



   (43)

         

         

2* * * *
0

2* * * * * *

( ) ( ) ( ) 1 ( ) (1 ) ( ) ( )

( ) ( ) ( ) (1 ) ( ) ( ) ( ) ( )

v v b b b b

b b b b p p

Nr z z R Q S A z V z r S A z r S A z

Dr z z R zR r S A z r S A z z R S A z

   

       

          
  

          
 

    
       

 
* *

0

1 1 2* * *
0

( ) 1 ( )
( ) ( , ) ( ) ( )

( ) 1 ( ) (1 ) ( ) ( )

p p

p
v v b b b b

zQ R S A z
z x z dx A z Dr z

S A z V z r S A z r S A z

    
   
                

    

 (44)

       

  
   

   
 

* * *
0

* * *
2 2 *

0 * *

1 ( ) 1 ( ) ( )

( ) 1 ( ) ( )( ) ( , ) ( ) ( ) ( )
1 ( )

( ) 1 ( ) ( )

b b p p

v v p b
b b

p p

rS A z S A z zQ R

S A z R zRz x z dx A z A z Dr z
S A z

zV z R S A z

    

    

  



    
 
                
    
   

  (45)

    
   

     
* * *

*
0 * *

0

( ) 1 ( ) ( )
( ) ( , ) 1 ( ) ( ) ( )

( ) 1 ( ) ( )

v v

b b b b b
p p

S A z R zR
z x z dx S A z Q A z Dr z

zV z R S A z

    
 

  

                
    
  

 (46)

      

    
   

 

* *
0

* * *

0 * *

1 ( ) ( )

( ) 1 ( ) ( )( ) ( , ) ( ) ( )
   

( ) 1 ( ) ( )

b b b b

v v b

p p

r S A z S A z Q

S A z R zRz x z dx A z Dr z

zV z R S A z

 

    

  



  
 
             
    

  

 (47)
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 0
0

( ) ( , ) ( ) ( )v vQ z Q x z dx Q V z  


   (48)

Applying the normalizing condition 0 1 2(1) (1) (1) (1) (1) (1) 1b vQ P Q        and using the equations by setting z = 1
in Equation 43-48 we get

  
    

   

0
(1)(1)

*

* * * *

( )

1 1 1 ( )
( ) ( ) 1 ( )

( 1) ( ) ( ) ( ) ( )

p b
v

RQ
r R

R S
R R R R

  

     
      

          







 

             
          

  

(49)

where  
     

     

(1)* * (1) * (1)

*

( ) ( ) (1 ) 1 ( ) ;  ( ) (1 ) ;

( ) (1 ) 1 ( )     and   ( ) (1 ) 

p p pb

b p p v

R R r R A z z

A z z S A z A z z

            

   

         

      

Corollary 2. The probability generating function of number of customers in the system and orbit size distribution at stationary
point of time is

 0 1 2
( )( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

s
s b v

s

Nr zK z Q P z z z z z z Q z
Dr z

          (50)

 
    
       

            

*

2* * *

2* * * * *0

*

1 ( ) ( ) ( ) 1 ( )
1

( ) 1 ( ) (1 ) ( ) ( )

( ) 1 ( ) 1 ( ) ( ) 1 ( ) (1 ) ( ) ( )

( ) 1 (

v v b b b b

s p p v v b b b b

b b

zV z Dr z z R
z

S A z V z r S A z r S A z

Nr z Q z R S A z S A z V z r S A z r S A z

z rS A z

    


  

 

         
          

    
            

  

        
         

*

* * * * *

) 1 ( )

( ) 1 ( ) ( ) ( ) 1 ( ) ( )

b b

v v p p

S A z

S A z R zR zV z R S A z       

 
 
 
 
 
  
 
 
 

 
 
         

         2* * * * * *( ) ( ) ( ) ( ) (1 ) ( ) ( ) ( ) ( )s p b b b b p pDr z A z z R zR r S A z r S A z z R S A z                    
  

0 1 2
( )( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

o
o b v

s

Nr zK z Q P z z z z z Q z
Dr z

        (51)

 
    
       

            
  

*

2* * *

2* * * * *0
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where Q0 is given in Equation 49.
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4. System Performance Measures
In this section, we derive some system probabilities, mean number of customers in the orbit/system, mean busy period

and busy cycle of the model.

4.1 System state probabilities
From Equations 43 to 48, by setting 1z   and applying L-Hospital’s rule whenever necessary, then we get the follow-

ing results,
(i) The probability that the server is idle during the retrial, is given by,

        (1)* (1)

0

1 ( ) (1 ) 1
(1) 1 ( )
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v pbS r
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R

    
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
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          
  

 

(ii) The probability that the server is busy serving a priority customers without preempting an ordinary customer, is
given by,

        (1)(1) * (1)
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(iii) The probability that the server is busy serving a priority customers with preempting an ordinary customer, is given
by,
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(iv) The probability that the server is busy serving an ordinary customers, is given by,
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(v) The probability that the server is busy serving an ordinary feedback customers, is given by,
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(vi) The probability that the server is on working vacation, is given by,

  *
0(1) ( ) 1 ( )v v vQ Q Q S      

4.2 Men system size and orbit size

If the system is in steady state condition,
(i) The excepted number of customers in the orbit (Lq) is obtained by differentiating Equation 51 with respect to z and

evaluating at z = 1

 
0 21

(1) (1) (1) (1)
(1) lim ( )

3 (1)

q q q q
q o oz

q

Nr Dr Dr NrdL K K z Q
dz Dr

           

   
         

* * (1) * *

(1) (1)

(1)  2 ( ) ( ) 2 ( ) ( )

                  ( ) 1 ( ) (1 ) 1 ( ) 1 ( )

q p

v p vb

Nr R R R R

S r S

            

          

         

       



P. Rajadurai et al. / Songklanakarin J. Sci. Technol. 38 (5), 507-520, 2016516

        
       

* * * * (1)

(1) (1)2 * (1) * 2 (2)

*

(1)  3 ( ) ( ) ( ) 1 ( ) 6 ( ) (1) ( ) ( )

             3 ( ) 1 ( ) 1 2 ( )(1 ) 1 ( ) 2

             3 1 (

q v v p

v p pb b

Nr R R S S V R R

S R r R

R

                   

              

 

 



           

               

               

 
 

      

(1) (1)(1) (1) 2 (2)

* * (1)

(1) (1)
(1)* 2 (2)

) (1 ) 1 2 1 (1) 1 1 ( ) 2

(1) 2 ( ) 1 ( ) ( )
              + (1 )( ) 1

( ) 1 ( ) 2 1 1

p p v pb b

v p

pb
v p b

r V S

V S R R
r

R S

          

       
   

         







          
       
     

      

 
       (1) (1)* * * 2 (1) 2 (2)

(1) 2 ( )

(1) 3 ( ) ( ) ( ) 2 1 2

q

q p pb b

Dr R

Dr R R R

   

               

    

         

where     
2

2 *

0

(1) 1 ( ) ( ) ;  (1) 2 1 ( ) ( ) ( ) ;   ( ) ( );x
v v v v v v vV S S V S S S S xe dS x         

 


                        

    22(2) (1) (1)2 (1) 2 (2) (1)(1 ) 1 2 1p p pb b br r               
 

   (1)* * (1) * (1)( ) ( ) (1 ) 1 ( ) ;p pbR R r R                  

(ii) The excepted number of customers in the system (Ls) is obtained by differentiating Equation 50 with respect to z and
evaluating at z = 1
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(iii) The average time a customer spends in the system (Ws) and its orbit (Wq) are found by using the Little’s formula

s
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q

L
W




4.3Mean busy period and busy cycle

Let ( )bE T  and ( )cE T  be the expected length of busy period and busy cycle under the steady state conditions. By applying the
argument of an alternating renewal process which leads to

 
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0
0 0

( ) 1 1; ( ) 1
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E TQ E T
E T E T Q 

 
   

   
 and 
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1( ) ( ) ( )c bE T E T E T
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  


(52)

where 0T  is length of the system in empty state and  0( ) 1 ( ) .E T     Substituting the Equation 49 into Equation 52 and use
the above results, then we can get
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5. Special Cases

In this section, we analyze briefly some special cases of our model, which are consistent with the existing literature.

Case (i): No priority arrival, No feedback, No vacation interruption and Single working vacation
In this case, our model becomes an M/G/1 retrial queue with single working vacation. We assume that (, r, ) 

(0, 0, 0) in the main result is obtained as follows,
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This coincides with the result of Arivudainambi et al. (2014).

Case (ii): No priority arrival and No feedback
In this case, our model becomes a single server retrial queueing system with working vacations. We assume that  = r =

0 in the main result Ks(z) can be yielded as follows,,
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This coincides with the result of Gao et al. (2014).

Case (iii): No feedback, No working vacation and No vacation interruption
In this case, we put r =  = 0, our model can be reduced to a single server retrial queueing system with working vacations

and Ks(z) can be obtained as follows,
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This coincides with the result of Gao (2015).
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6. Numerical Examples

In this section, we present some numerical examples
to study the effect of various parameters. For the purpose
of  a  numerical  illustration,  we  assume  that  all  distribution
function like retrial, regular service for priority and ordinary
customers, working vacation are exponentially, Erlang and
hyper-exponentially distributed. All the parameters values
are selected with the aim of satisfying the steady state condi-
tion ( )R    . MATLAB software has been used to
illustrate the results numerically. Where the exponential distri-
bution is ( ) , 0xf x e x   , Erlang–2 stage distribution is

2( ) , 0xf x xe x    and hyper-exponential distribution is
22( ) (1 ) , 0x xf x c e c e x       . The interpretation of

Table 1.  Effect of immediate feedback probability (r) on Q0, Lq and .

Retrial distribution Exponential Erlang-2 stage Hyper-Exponential

r Q0 Lq  Q0 Lq  Q0 Lq 

Immediate feedback
probability

0.10 0.7341 0.0894 0.0095 0.4735 0.2475 0.0244 0.7058 0.1366 0.0081
0.20 0.7249 0.0933 0.0189 0.4520 0.2745 0.0482 0.6978 0.1401 0.0161
0.30 0.7156 0.0974 0.0284 0.4310 0.3030 0.0715 0.6898 0.1436 0.0241
0.40 0.7064 0.1015 0.0378 0.4104 0.3334 0.0942 0.6818 0.1472 0.0321
0.50 0.6971 0.1057 0.0473 0.3903 0.3658 0.1165 0.6738 0.1508 0.0401

Table 2. Effect of priority arrival rate () on Q0, Lq and 1.

Retrial distribution Exponential Erlang-2 stage Hyper-Exponential

 Q0 Lq 1 Q0 Lq 1 Q0 Lq 1

Priority arrival rate
0.50 0.7752 0.0942 0.0018 0.4935 0.3439 0.0129 0.7567 0.1245 0.0025
1.00 0.6971 0.1057 0.0029 0.3903 0.3658 0.0186 0.6738 0.1508 0.0059
1.50 0.6297 0.1173 0.0036 0.3133 0.3990 0.0210 0.6050 0.1684 0.0099
2.00 0.5713 0.1287 0.0040 0.2549 0.4392 0.0217 0.5471 0.1799 0.0140
2.50 0.5203 0.1399 0.0043 0.2099 0.4844 0.0215 0.4977 0.1871 0.0183

Table 3. Effect of lower speed service rate (v) on Q0, Lq and Qv.

Vacation distribution Exponential Erlang-2 stage Hyper-Exponential

v Q0 Lq Qv Q0 Lq Qv Q0 Lq Qv

Lower speed service
rate
2.00 0.5899 0.1186 0.1770 0.3172 0.3772 0.1332 0.5779 0.1525 0.1942
3.00 0.6332 0.1142 0.1583 0.3422 0.3742 0.1283 0.6154 0.1525 0.1769
4.00 0.6682 0.1098 0.1432 0.3668 0.3702 0.1235 0.6469 0.1517 0.1624
5.00 0.6971 0.1057 0.1307 0.3903 0.3658 0.1189 0.6738 0.1508 0.1500
6.00 0.7214 0.1020 0.1202 0.4125 0.3611 0.1146 0.6970 0.1500 0.1394

the results based on numerical illustration carried out for the
different performance measures is as follows in Table 1 to 3:

Table 1 shows that when immediate feedback prob-
ability (r) increases, the probability that server is idle (Q0)
decreases, then the mean orbit size (Lq) increases and prob-
ability that server is busy with feedback customer () also
increase for the values of  = 0.5;  = 3; µp = 8; µb = 5; a = 3;
 = 1; µv = 3; c = 0.7. Table 2 shows that when priority arrival
rate  ()  increases,  the  probability  that  server  is  idle  (Q0)
decreases, the mean orbit size (Lq) increases and probability
that server is busy with priority customer over non preemp-
tive ordinary customer (1) also increases for the values of
 = 0.5;  = 3; µp = 8; µb = 5; a = 3; r = 0.5; µv = 3; c = 0.7. Table
3 shows that when lower speed service rate (v) increases,
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the  probability  that  server  is  idle  (Q0)  increases,  then  the
mean orbit size (Lq) decreases and probability that server is
on working vacation (Qv) also decrease for the values of  =
0.5;  = 1.5; µp = 8; µb = 5; a = 3; r = 0.5;  = 3; c = 0.7. For the
effect of the parameters , a, r, ,  and v on the system
per¢formance measures, three dimensional graphs are illus-
trated in Figure 1 to 3. In Figure 1, the surface displays an
upward trend as expected for increasing the value of arrival
rate () and priority arrival rate () against the mean orbit
size (Lq). Figure 2 shows that the probability that server is
idle  (Q0)  decreases  for  increasing  the  value  of  feedback
probability (r) and priority arrival rate (). In Figure 3, we
demonstrate the effect of variation of the probability that

server is idle (Q0) increases for increasing the value of lower
speed  service  rate  (v)  and  retrial  rate  (a).  From  the  above
numerical examples, we can find the influence of parameters
on the performance measures in the system and know that
the results are coincident with the practical situations.

7. Conclusions

In  this  paper,  we  studied  performance  analysis  of
M/G/1  preemptive  priority  retrial  queue  with  immediate
Bernoulli feedback under working vacations and vacation
interruption.  By  using  the  probability  generating  function
approach  and  the  method  of  supplementary  variable
technique,  the  probability  generating  functions  for  the
numbers of customers in the system and its orbit when it is
free,  busy,  on  working  vacation,  under  repair  are  derived.
Some varieties of performance measures of the system are
calculated. The explicit expressions for the average queue
length of orbit and system have been obtained. Finally, some
numerical examples are presented to study the impact of the
system parameters. The novelty of this investigation is the
introduction of multiple working vacations and immediate
feedback in presence of priority retrial queues. This proposed
model has potential practical real life application in tele-
communication  system  and  telephone  consultation  of
medical service systems.
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