บทที่ 3 การดำเนินงานวิจัย

3.1 ขั้นตอนการดำเนินงาน

การดำเนินงานวิจัยเพื่อศึกษาผลกระทบของกระบวนการสร้างผิวแข็งสำเร็จต่อการสึกหรอแบบขัดถู ในการใช้งานของใบกวนสำหรับกระบวนการผสม โดยงานวิจัยจะมุ่งเน้นการเปรียบเทียบ ความสามารถในการต้านการสึกหรอกแบบขัดถูด้วยกรรมวิธีในการสร้างผิวแข็งสำเร็จที่ต่างกัน ค่า กวามแข็งที่ผิวหน้าของการสร้างผิวแข็งสำเร็จ และศึกษาโครงสร้างจุลภาคที่ผิวหน้าของการสร้างผิว แข็งสำเร็จที่ส่งผลต่อการต้านทานการสึกหรอในแต่ละกรรมวิธีที่นำมาทำการวิจัย ซึ่งมีขั้นตอนการ ดำเนินงานดังต่อไปนี้

- จัดเตรียมวัสดุ เครื่องมือ และอุปกรณ์สำหรับงานทดลองการเชื่อม
- 2. เพิ่มความต้านทานการสึกหรอด้วยกระบวนการสร้างผิวแข็งสำเร็จ
- ตรวจสอบภายหลังการสร้างผิวแข็งสำเร็จของชิ้นงานทดลอง
- ทดสอบความด้านทานการสึกหรอแบบขัดถู
- วิเคราะห์โครงสร้างทางจุลภาค
- เปรียบเทียบค่าความแข็ง
- 7 เปรียบเทียบความหยาบของพื้นผิวของชิ้นงาน

3.2 วัสดุที่ใช้ในการทดลอง

3.2.1 ชนิดของวัสดุ

ชิ้นงานที่ใช้ในการทดสอบเป็นวัสดุเหล็กกล้าคาร์บอน เกรด A36 แผ่นขนาดกว้าง 25.4 มิลลิเมตร ยาว 152.4 มิลลิเมตร โดยแผ่นเหล็กกล้าคาร์บอนมีความหนา 3 และ 10 มิลลิเมตร จำนวน 1 และ 7 ชุด (ชุด ละ 3 ชิ้น) ตามลำดับ ซึ่งมีส่วนผสมทางเคมีดังแสดงในตารางที่ 3.1 และเตรียมผิวด้านที่จะทำการเชื่อม ให้สะอาดปราศจากคราบสกปรกและปรับผิวหน้าให้เรียบก่อนทำการสร้างผิวแข็งสำเร็จ

ิตารางที่ 3.1 ส่วนผสมทางเคมีของเหล็กกล้าคาร์บอน เกรค A36 [13]

C (max)	P (max)	S (max)	Si	Cu (min)
(%)	(%)	(%)	(%)	(%)
0.25	0.04	0.05	0.40	0.20

3.2.2 ชนิดของถวดเชื่อมและถวดเติม

ชนิดของถวดเชื่อมและถวดเติมที่ใช้ในงานวิจัยนี้ประกอบด้วย ถวดเชื่อม ECoCr-A กับ ERCoCr-A และถวดเติม E309L-16 กับ ER309L ตามมาตรฐานของ ASME ขนาดเส้นผ่านศูนย์กลาง 3.2, 3.2, 3.2 และ 2.4 มิถลิเมตร ตามลำดับ ส่วนผสมทางเคมีของแต่ละถวดเชื่อมดังแสดงในตารางที่ 3.2

	С	Mn	Si	Cr	Ni	Мо	Fe	W	Co	Р	S	Cu
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
ECoCr-A	0.7- 1.4	2	2	25- 32	3	1	5	3-6	Rem	-	-	-
ERCoCr-A	0.9- 1.4	1	2	26- 32	3	1	3	1-6	Rem		-	-
E309L-16	0.4	0.5- 2.5	1	22- 25	12- 14	0.75	-	-	-	0.04	0.03	0.75
ER309L	0.3	1- 2.5	0.3- 0.65	23- 25	12- 14	0.75	-	-	-	0.03	0.03	0.75

ตารางที่ 3.2 ส่วนผสมทางเกมีของลวคเชื่อมและลวคเติมที่ใช้ในการทคลอง [7]

หมายเหตุ Rem = Remainder คือ ค่าที่เหลือและมีเปอร์เซ็นต์มากที่สุด

3.2.3 ชนิดของแผ่น Stellite 6

ชนิดของแผ่นที่นำมาใช้ในการสร้างผิวแข็งสำเร็จในการงานวิจัยนี้เป็นแผ่น Stellite 6 ส่วนผสมทาง เกมีของแผ่น Stellite 6 ดังแสดงในตารางที่ 3.3 แผ่น Stellite 6 เป็นวัสดุในกลุ่มของ Cobalt-Base Alloys ที่ผ่านกระบวนการหล่อ (Casting) แล้วนำมาทำให้เป็นแผ่นบาง ๆ โดยแผ่นที่นำมาใช้ในการ ทดลองมีขนาดกว้าง 25.4 มิลลิเมตร ยาว 152.4 มิลลิเมตร และหนา 2.4 มิลลิเมตร

ตารางที่ 3.3 ส่วนผสมทางเคมีของแผ่น Stellite 6 ที่ใช้ในการทคลอง [6]

Co	Cr	W	Mo(max)	С	Fe(max)	Ni	Si	Mn
(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Balance	30	4	1.5	1	3	2.5	0.7	1.4

3.3 กระบวนการสร้างผิวแข็งสำเร็จสำหรับชิ้นงานทดลอง

รูปที่ 3.1 แผนผังกระบวนการสร้างผิวแข็งสำเร็จสำหรับชิ้นงานทคลอง

การะบวนการสร้างผิวแข็งสำเร็จสำหรับชิ้นงานทดสอบ เพื่อนำมาใช้เปรียบเทียบความสามารถในการ ด้านการสึกหรอกแบบขัดถูด้วยกรรมวิธีในการสร้างผิวแข็งสำเร็จที่ต่างกัน โดยทำการสร้างผิวแข็ง สำเร็จด้วย Stellite 6 บนเหลีกกล้าคาร์บอน เกรด A36 จำนวน 4 กระบวนการ ทั้งหมด 8 เงื่อนไข ประกอบด้วย 1. กระบวนการเชื่อมอาร์กลวดหุ้มฟลักซ์ที่ไม่มีการให้ความร้อนหลังการเชื่อม 2. กระบวนการเชื่อมอาร์กลวดหุ้มฟลักซ์ที่มีการให้ความร้อนหลังการเชื่อมภายหลังการเชื่อมชั้นรองพื้น 3. กระบวนการเชื่อมอาร์กลวดหุ้มฟลักซ์ที่มีการให้ความร้อนหลังการเชื่อมภายหลังการเชื่อมชั้นรองพื้น หลังการเชื่อม 5. กระบวนการเชื่อมอาร์กทั้งสเตนแก๊สคลุมที่มีการให้ความร้อนหลังการเชื่อมภายหลัง การเชื่อมชั้นรองพื้น 6. กระบวนการเชื่อมอาร์กทั้งสเตนแก๊สคลุมที่มีการให้ความร้อนหลังการเชื่อม ภายหลังการเชื่อมชั้นด้านทานการสึกหรอที่ผิวหน้า 7. กระบวนการแล่นประสาน และ 8. การพ่น เคลือบด้วยเปลวเพลิงความเร็วสูง ดังแสดงในรูปที่ 3.1

สำหรับกระบวนการเชื่อมอาร์กลวดหุ้มฟลักซ์และกระบวนการเชื่อมอาร์กทังสเตนแก๊สคลุมที่มีการให้ กวามร้อนหลังการเชื่อม (Post Weld Heat Treatment; PWHT) ภายหลังการเชื่อมชั้นรองพื้นและ ภายหลังการเชื่อมชั้นด้านทานการสึกหรอที่ผิวหน้า ทำเพื่อป้องกันการเกิดการแตกใต้แนวเชื่อม (Underbead Cracking) และการแตกร้าวขณะเย็น (Cold Cracking) ที่อาจจะเกิดขึ้นภายหลังการเชื่อม เนื่องจากภายหลังการเชื่อมชั้นรองพื้นและชั้นพอกผิวแข็ง ความร้อนที่เกิดจากการเชื่อมส่งผลต่อ ลักษณะทางโครงสร้างของโลหะฐานทำให้มีโอกาสการเกิดการแตกร้าวดังกล่าวขึ้น โดยทำการให้ ความร้อนหลังการเชื่อมเพื่อลดโอกาสการเกิดการแตกร้าว ซึ่งลำดับการให้ความร้อนที่แต่ต่างกัน อาจจะส่งผลต่อกุณสมบัติในการด้านทานการสึกหรอของชั้นด้านทานการสึกหรอที่ผิวหน้า จึงนำ ขั้นตอนการให้กวามร้อนหลังการเชื่อมภายหลังการเชื่อมชั้นรองพื้นและภายหลังการเชื่อมชั้น ด้านทานการสึกหรอที่ผิวหน้ามาเป็นเงื่อนใขสำหรับการสร้างผิวแข็งสำเร็จด้วยกระบวนการเชื่อม อาร์กลวดหุ้มฟลักซ์และกระบวนการเชื่อมอาร์กทังสเตนแก๊สกลุมในงานวิจัยนี้

3.3.1 การสร้างผิวแข็งสำเร็จด้วยกระบวนการเชื่อมพอกผิวแข็ง (Hardfacing Process) การสร้างผิวแข็งสำเร็จด้วยกระบวนการเชื่อมพอกผิวแข็ง สำหรับงานวิจัยนี้การเชื่อมพอกผิวแข็งใช้ กระบวนการเชื่อม 2 กระบวนการ คือ 1. กระบวนการเชื่อมอาร์กลวดหุ้มฟลักซ์ (Shielded Metal Arc Welding; SMAW) 2. กระบวนการเชื่อมอาร์กทังสเตนแก๊สคลุม (Gas Tungsten Arc Welding; GTAW) ซึ่งแต่ละกระบวนการเชื่อมมี 3 เงื่อนไข ดังแสดงในตารางที่ 3.4 โดยมีการควบคุมการเชื่อม ให้เป็นไปตามข้อกำหนดตัวแปรในการเชื่อม (Welding Procedure Specification; WPS) ดังแสดงใน ภาคผนวก ก

	Post Weld Heat Treatment (PWHT)				
Processes	No PWHT	After Buttering Layers	After Hardfacing Layers		
SMAW	✓	✓	✓		
GTAW	\checkmark	\checkmark	\checkmark		

ตารางที่ 3.4 เงื่อนไขของกระบวนการเชื่อมพอกผิวแข็ง

้ขั้นตอนการสร้างผิวแข็งสำเร็จด้วยกระบวนการเชื่อมพอกผิวแข็งมีรายละเอียดดังต่อไปนี้

- เตรียมชิ้นงานเป็นเหล็กกล้าคาร์บอนเกรด A36 ขนาดกว้าง 25.4 มิลลิเมตร ยาว 152.4 มิลลิเมตร และหนา 10 มิลลิเมตร
- 2. ทำการเชื่อมชั้นรองพื้น (Buttering Layers) โดยมีตัวแปรกำหนดในการเชื่อมชั้นรองพื้น ของกระบวนการเชื่อมอาร์กลวดหุ้มฟลักซ์และกระบวนการเชื่อมอาร์กทังสเตนแก๊สคลุม ดังแสดงในตารางที่ 3.5 ซึ่งอุณหภูมิในระหว่างการเชื่อมก่อนจะทำการเชื่อมในชั้นถัดไป สูงสุดไม่ควรเกิน 180 องศาเซลเซียส โดยภายหลังจากการเชื่อมชั้นรองพื้นทั้งหมด 2 ชั้น ของกระบวนการเชื่อมอาร์กลวดหุ้มฟลักซ์และกระบวนการเชื่อมอาร์กทังสเตนแก๊สคลุม ความหนาต้องมากกว่า 3.5 และ 2.3 มิลลิเมตร ตามลำดับ สำหรับกระบวนการ GTAW ใช้ แก๊สปกกลุมเป็นแก๊สอาร์กอน 99.99%

ตารางที่ 3.5 ตัวแปรกำหนดในการเชื่อมชั้นรองพื้น

Processes	AWS Classification	Diameter (mm)	Polarity	Current (A)	Voltage (V)	Flow Rate (1/min)	Travel of La (cm/	Speed ayers min)
						(1/11111)	1^{st}	2^{nd}
SMAW	E309L-16	32	DCEP	65-75	22-24	-	15-	18-
511111	25072 10	5.2	DCLI	00 10	22 21		16	19
GTAW	ER309L	2.4	DCEN	100-120	13-14	15	8-9	9-10

3. ทำการเชื่อมชั้นพอกผิวแข็ง (Hardfacing Layers) โดยมีตัวแปรกำหนดในการเชื่อมชั้น พอกผิวแข็งของกระบวนการเชื่อมอาร์กลวดหุ้มฟลักซ์และกระบวนการเชื่อมอาร์ก ทังสเตนแก๊สกลุมดังแสดงในตารางที่ 3.6 ซึ่งอุณหภูมิในระหว่างการเชื่อมก่อนจะทำการ เชื่อมในชั้นถัดไปสูงสุดไม่กวรเกิน 180 องศาเซลเซียส โดยภายหลังจากการเชื่อมชั้นรอง พื้นทั้งหมด 2 ชั้นของกระบวนการเชื่อมอาร์กลวดหุ้มฟลักซ์และกระบวนการเชื่อมอาร์ก ทังสเตนแก๊สกลุม ความหนาต้องมากกว่า 4.4 และ 2.7 มิลลิเมตร ตามลำดับ สำหรับ กระบวนการ GTAW ใช้แก๊สปกกลุมเป็นแก๊สอาร์กอน 99.99%

สำหรับกรณีที่กระบวนการเชื่อมพอกผิวแข็งมีเงื่อนไขที่ต้องให้ความร้อนหลังการเชื่อม (Post Weld Heat Treatment; PWHT) ชิ้นงานจะถูกให้ความร้อนที่อุณหภูมิไม่น้อยกว่า 595 องศาเซลเซียส เป็น เวลา 30 นาที

Processes	AWS Classification	Diameter (mm)	Polarity	Current (A)	Voltage (V)	Flow Rate	Trav (d	el Spee Layers cm/min	d of
						(1/min)	1^{st}	2^{nd}	3 rd
SNA A MY	ECoCr A	2.2	DCED	65 75	22.24		16-	16-	16-
SMAW EC	ECOUT-A	3.2	DCEP	65-75	22-24	-	18	18	18
GTAW	EDC-C-A	3.2	DCEN	110-	13-14	15	9-	9-	9-
	ERCoCr-A			120			10	10	10

ตารางที่ 3.6 ตัวแปรกำหนดในการเชื่อมชั้นพอกผิวแข็ง

หมายเหตุ กระบวนการเชื่อมอาร์กลวดหุ้มฟลักซ์และกระบวนการเชื่อมอาร์กทั้งสเตนแก๊สคลุมที่มีการ ให้ความร้อนหลังการเชื่อมภายหลังการเชื่อมชั้นรองพื้นจะทำการเชื่อมชั้นพอกผิวแขึงทั้งหมด 2 ชั้น

3.3.2 การสร้างผิวแข็งสำเร็จด้วยกระบวนการแล่นประสาน (Brazing Process)

การสร้างผิวแข็งสำเร็จด้วยกระบวนการแล่นประสาน ซึ่งมีรายละเอียดดังต่อไปนี้

- เตรียมชิ้นงานเป็นเหล็กกล้าการ์บอนเกรด A36 ขนาดกว้าง 25.4 มิลลิเมตร ยาว 152.4 มิลลิเมตร และหนา 3 มิลลิเมตร
- นำแผ่นเงินที่ใช้สำหรับกระบวนการแล่นประสานคือ BAg-la (Ag-Cu-Zn) Filler Metal มา วางตามขนาดของ Stellite 6 จนเต็ม เผื่อความยาวออกมาด้านละประมาณ 5 มิลลิเมตร
- ทำการประกอบ โดยนำฟลักซ์เงิน (Silver Brazing Flux) ทาบนแผ่นเหล็กกล้าคาร์บอน บริเวณที่จะทำการแล่นประสาน แล้วทำการทาฟลักซ์เงินที่แผ่นเงิน ให้ทั่วทั้ง 2 ด้าน จากนั้นวางแผ่นเงินบนแผ่นเหล็กกล้าคาร์บอน หลังจากนั้นทำการทาฟลักซ์เงินที่แผ่น Stellite 6 ด้านที่จะวางทับแผ่นเงินให้ทั่วแล้ววางทับแผ่นเงิน โดยให้ชิดที่สุด เพื่อป้องกัน การเกิดข้อบกพร่อง (Defect)
- 4. ใช้ค้อน 0.5 ปอนด์ เคาะที่แผ่น Stellite 6 ให้แนบสนิท พร้อมกับขันยึด Clamp ให้แน่น
- ให้ความร้อนด้านเหล็กกล้าคาร์บอนในตำแหน่งตรงข้ามกับที่วาง Stellite 6 ให้อุ่นจนทั่ว โดยเว้นตำแหน่งวาง Clamp
- ทำการแถ่นประสาน โดยมีการควบคุมการแถ่นประสานให้เป็นไปตามข้อกำหนดตัวแปร ในการแถ่นประสานดังแสดงในตารางที่ 3.7 โดยให้ความร้อนด้านเหล็กกล้าคาร์บอน จนกระทั่งขอบเงินจะเริ่มหลอมละลายและให้ความร้อนไปเรื่อยๆจนทั่วทุกบริเวณ
- ภายหลังการแล่นประสานทิ้งไว้ประมาณ 3 นาที แล้วค่อยทำการคลาย Clamp ใส่ใน กระบะน้ำ

ตารางที่ 3.7 ตัวแปรกำหนดในการแล่นประสาน

ชนิดเปลวไฟ	เปลวคาร์บูไรซึ่ง
ขนาคหัวทิป (เบอร์)	3
อุณหภูมิในการแล่นประสาน (องศาเซลเซียส)	650

3.3.3 การสร้างผิวแข็งสำเร็จด้วยกระบวนการพ่นเคลือบด้วยเปลวเพลิงความเร็วสูง

(High Velocity Oxy Fuel Spraying Process; HVOF)

การสร้างผิวแข็งสำเร็จด้วยกระบวนการพ่นเกลือบด้วยเปลวเพลิงความเร็วสูง ซึ่งมีรายละเอียด ดังต่อไปนี้

- เตรียมชิ้นงานเป็นเหล็กกล้าคาร์บอนเกรด A36 บนาดกว้าง 25.4 มิลลิเมตร ยาว 152.4 มิลลิเมตร และหนา 10 มิลลิเมตร
- 2. ล้างทำความสะอาดแผ่นเหล็กกล้าการ์บอนด้วยทินเนอร์แล้วใช้ผ้าดิบเช็ดให้สะอาด
- 3. ทำการป้องกันตำแหน่งที่ไม่ต้องการพ่นเคลือบด้วยเทปผ้า
- 4. ทำการยิงทราย (Sand Blasting) บริเวณผิวหน้าที่ต้องการทำการพ่นเคลือบ
- ทำการพ่นเคลือบที่บริเวณผิวหน้าชิ้นงาน ซึ่งใช้ Stellite 6 ชนิดผง โดยมีตัวแปรกำหนดดัง แสดงในตารางที่ 3.8

ตารางที่ 3.8 ตัวแปรกำหนดในการพ่นเกลือบด้วยเปลวเพลิงความเร็วสูง

ระยะพ่น (มิถลิเมตร)	350
มุมพ่น (องศา)	90
อัตราการไหลของแก๊สเชื้อเพลิง (gph)	6
อัตราการใหลของออกซิเจน (SCFH)	210
แรงดันของแก๊สพา (SCFH)	25

3.4 การตรวจสอบภายหลังการสร้างผิวแข็งสำเร็จของชิ้นงานทดลอง

ภายหลังชิ้นงานผ่านกระบวนการสร้างผิวแข็งสำเร็จที่บริเวณผิวหน้า ชิ้นงานทคสอบจะถูกทำการ ตรวจสอบเพื่อดูความสมบูรณ์ของการสร้างผิวแข็งสำเร็จ คุณสมบัติทางกล และวิเคราะห์ส่วนผสม ทางเคมีที่บริเวณผิวด้านบนของการสร้างผิวแข็งสำเร็จ โดยแต่ละกระบวนการสร้างผิวแข็งสำเร็จที่ ผิวหน้าจะต้องทำการตรวจสอบภายหลังการสร้างผิวแข็งสำเร็จดังแสดงในตารางที่ 3.9

	Visual	Penetrant	Radiographic	Dorosity	Hordnoog	Chamical
Processes	Testing	Testing	Testing	Testing	Tasting	Analysis
	(VT)	(PT)	(RT)	resting	resting	Anarysis
SMAW	\checkmark	\checkmark			\checkmark	\checkmark
GTAW	\checkmark	\checkmark			\checkmark	\checkmark
Brazing	\checkmark		\checkmark		\checkmark	\checkmark
HVOF	\checkmark			\checkmark	\checkmark	\checkmark

ตารางที่ 3.9 การตรวจสอบภายหลังการสร้างผิวแข็งสำเร็จ

3.4.1 การทดสอบด้วยวิธีสารแทรกซึม (Penetrant Testing; PT)

การทคสอบด้วยวิธีสารแทรกซึมทำเพื่อตรวจสอบผิวหน้าด้านบนของชิ้นงานที่ผ่านกระบวนการสร้าง ผิวแข็งสำเร็จด้วยกระบวนการเชื่อมพอกผิวแข็งมีความสมบูรณ์ดีหรือไม่ โดยทคสอบด้วยวิธีสาร แทรกซึ่งเป็นไปตามใบเทคนิคการทคสอบ (Technique Sheet) ดังแสดงในภาคผนวก v ตัวแปร กำหนดในการทคสอบด้วยวิธีสารแทรกซึมดังแสดงในตารางที่ 3.10 โดยมีขั้นตอนดังต่อไปนี้ [14]

- 1. ทำความสะอาคผิวหน้าด้านบนของชิ้นงาน
- 2. เกลือบสารแทรกซึมที่ผิวหน้าด้านบนของชิ้นงาน
- 3. รอเวลาแทรกซึมของสารแทรกซึม
- 4. เช็คเบื้องต้นด้วยผ้าที่แห้ง
- เช็คด้วยผ้าที่ทำให้เปียกชิ้นด้วยตัวทำละลายพอหมาดๆ
- เช็ดด้วยผ้าแห้งอีกที
- 7. เกลือบด้วยดีเวลอเปอร์ชนิดที่ไม่มีน้ำเป็นส่วนประกอบ
- 8. รอเวลาดีเวลอเปอร์
- 9. หารอยความไม่ต่อเนื่องที่เกิดขึ้นบริเวณผิวหน้าด้านบนชิ้นงานที่ทำการทดสอบ
- 10. ทำความสะอาคหลังการทคสอบ

ตารางที่ 3.10 ตัวแปรกำหนดในการทดสอบด้วยวิธีสารแทรกซึม

ชนิดของสารแทรกซึม	ย้อมสีหรือมองเห็นด้วยตาเปล่า
ชนิดของน้ำยาแทรกซึม	เช็ดออกได้ด้วยตัวทำละลาย
ชนิดของคีเวลอเปอร์	แขวนลอยอยู่ในตัวทำละลายที่ไม่มีน้ำเป็นส่วนประกอบ
เวลาแทรกซึม (นาที)	5
เวลาดีเวลอเปอร์ (นาที)	10

3.4.2 การทดสอบด้วยวิชีการถ่ายภาพด้วยรังสี (Radiographic Testing; RT)

การทดสอบด้วยวิธีการถ่ายภาพด้วยรังสีเพื่อตรวจสอบชิ้นงานที่ได้จากขั้นตอนและการใช้ก่าตัวแปร กำหนดสำหรับกระบวนการสร้างผิวแข็งสำเร็จด้วยกระบวนการแล่นประสานมีความเหมาะสม หรือไม่ โดยชิ้นงานทดสอบทุกชิ้นที่ผ่านกระบวนการสร้างผิวแข็งสำเร็จด้วยกระบวนการแล่น ประสานจะทำการทดสอบด้วยวิธีการถ่ายภาพด้วยรังสีที่เป็นไปตามใบเทกนิกการทดสอบ (Technique Sheet) ดังแสดงในภากผนวก ข ตัวแปรกำหนดในการทดสอบด้วยวิธีการถ่ายภาพด้วยรังสีดังแสดงใน ตารางที่ 3.11

ชนิดของฟิล์ม	Kodak AA400
ความต่างศักดิ์ (กิโลโวลต์)	160
กระแสไฟ (มิลลิแอมแปร์)	2
เวลา (นาที่)	2

ตารางที่ 3.11 ตัวแปรกำหนดในการทดสอบด้วยวิธีการถ่ายภาพด้วยรังสี

ภายหลังการถ่ายภาพด้วยรังสี นำฟิล์มที่ได้ไปทำการหาเปอร์เซ็นต์พื้นที่หลอมของพื้นที่ทำการแล่น ประสานทั้งหมดด้วยโปรแกรมคอมพิวเตอร์ที่มีชื่อว่า "Scentis" โดยทำการวัดปริมาณ Volume Fraction เพื่อหาค่าพื้นที่ของการหลอมละลายอย่างสมบูรณ์ โดยพื้นที่การหลอมละลายอย่างสมบูรณ์ จะต้องมีค่ามากกว่า 75 เปอร์เซ็นต์ของพื้นที่ทำการแล่นประสานทั้งหมด [15] ก่อนทำการเลือกบริเวณ ที่มีการหลอมละลายอย่างสมบูรณ์มากที่สุดไปใช้ในการทดสอบ

3.4.3 การตรวจสอบรูพรุน (Porosity Testing)

การตรวจสอบรูพรุนทำเพื่อตรวจสอบชั้นผิวเคลือบที่ได้จากการใช้ก่าตัวแปรกำหนดในการพ่นเคลือบ ด้วยเปลวเพลิงความเร็วสูงสำหรับชิ้นงานมีความเหมาะสมหรือไม่ ชิ้นงานทดสอบทุกชิ้นที่ผ่าน กระบวนการสร้างผิวแข็งสำเร็จด้วยกระบวนการพ่นเคลือบด้วยเปลวเพลิงความเร็วสูงถูกทำการ ตรวจสอบรูพรุนตามกำแนะนำในมาตรฐาน ASTM E2109-01 [16] โดยการใช้กล้องจุลทรรศน์แบบ แสง (Optical Microscope; OM) ที่กำลังขยาย 100 เท่า โดยทำการสุ่มตรวจบริเวณของชั้นผิวเคลือบ ซึ่งปกติทั่วไปกระบวนการพ่นเคลือบด้วยเปลวเพลิงความเร็วสูงกวรมีรูพรุนที่บริเวณของชั้นผิวเคลือบ น้อยที่สุด สำหรับการเตรียมชิ้นงานตรวจสอบรูพรุนจะกล่าวต่อไปในหัวข้อที่ 3.6 ภายหลังจากการถ่ายภายบริเวณชั้นผิวเคลือบ นำภาพที่ได้ไปทำการหาเปอร์เซ็นต์พื้นที่ของรูพรุนที่ทำ การพ่นเคลือบด้วยเปลวเพลิงความเร็วสูง โดยอาศัยโปรแกรมคอมพิวเตอร์ที่มีชื่อว่า "Scentis" ทำการ วัดปริมาณ Volume Fraction ของพื้นที่รูพรุน

3.5 การทดสอบความต้านทานการสึกหรอแบบขัดถู (Abrasive Wear)

3.5.1 การเตรียมชิ้นงานสำหรับทดสอบความต้านทานการสึกหรอแบบขัดถู

การเตรียมชิ้นงานสำหรับทคสอบความต้านทานการสึกหรอแบบขัคถูทำโคยนำชิ้นงานที่ผ่าน กระบวนการสร้างผิวแข็งสำเร็จมาทำการเจียระ ใน (Grinding) ที่บริเวณผิวหน้า เพื่อให้ผิวหน้ามีความ เรียบสม่ำเสมอไม่มีเกล็ดของรอยเชื่อมเพราะเกร็ดของรอยเชื่อมอาจจะส่งผลทำให้ผลการทคสอบที่ได้ เกิดความคลาดเคลื่อนและทำการปาคผิว (Milling) ที่บริเวณวัสดุพื้น เพื่อให้ชิ้นงานได้ขนาดความหนา อยู่ในช่วงที่ต้องการและให้ชิ้นงานได้ระนาบเท่ากันทั้งชิ้น โดยขนาดของชิ้นงานภายหลังการเตรียม ชิ้นงานก่อนทำการสอบมีขนาดตามมาตรฐาน ASTM G65-04 [8] คือ 25.4 x 76.2 x 3-12.7 มิลลิเมตร แล้วทำความสะอาดผิวหน้าให้สะอาดปราศจากคราบสกปรกดังแสดงในรูปที่ 3.2

รูปที่ 3.2 ลักษณะชิ้นงานก่อนทำการทคสอบความต้านทานการสึกหรอ

3.5.2 การทดสอบเพื่อเลือกขั้นตอนการทดสอบความต้านทานการสึกหรอแบบขัดถู ในงานวิจัยนี้ทำการศึกษาผลกระทบของกระบวนการสร้างผิวแข็งสำเร็จต่อการสึกหรอแบบขัคถูใน การใช้งานสำหรับกระบวนการผสม โดยทำการสร้างเครื่องสำหรับใช้ในการทดสอบการสึกหรอเพื่อ การจำลองกระบวนการผสมที่ส่งผลต่อการเกิดการสึกหรอแบบขัคถูที่บริเวณใบกวนดังแสดงในรูปที่ 3.3 ซึ่งไม่มีมาตรฐานในการทดสอบรองรับจึงมีการหาก่าตัวแปรกำหนดต่าง ๆ เพื่อความสมเหมาะใน การทดสอบและเป็นการยืนยันผลของการทดสอบ โดยเกรื่องทดสอบสามารถทดสอบชิ้นงานได้กรั้ง ละ 2 ชิ้น ขนาดชิ้นงานที่จะสามารถนำมาทคสอบได้คือ 25.4 x 76.2 x 12.7 มิลลิเมตร เครื่องกวนนี้ สามารถปรับมุมหน้าสัมผัสของใบกวนได้ 3 แบบ คือ 45 องศา 90 องศา และ 180 องศา แล้วสามารถ ให้ความร้อนขณะทำการทคสอบได้ แบบของเครื่องทคสอบดังแสดงในภาคผนวก ค สำหรับการ ทคสอบเพื่อเลือกขั้นตอนการทคสอบความต้านทานการสึกหรอแบบขัดถูแบ่งออกเป็น 2 กรณี ได้แก่ กรณีที่ 1 (Case 1) ทำการเปลี่ยนทรายสำหรับการทคสอบทุก ๆ 8 ชั่วโมง และไม่ให้ความร้อนขณะทำ การทคสอบ โดยมีขั้นตอนดังต่อไปนี้

- นำชิ้นงานที่ผ่านการเตรียมชิ้นงานตามหัวข้อที่ 3.5.1 มาทำการติดตั้งเข้ากับชุดจับยึด ชิ้นงาน
- ทำการเททราย 30 กิโลกรัม โดยความสูงของชุดจับยึดชิ้นงานมีความสูงเหนือกันถัง ประมาณ 2 นิ้ว ทรายที่นำมาใช้ในการทดสอบของงานวิจัยเล่มนี้เป็นทรายซิลิกา (Silicon Dioxide; SiO₂) ที่มีขนาดอยู่ในช่วง 212-300 ไมครอน
- ทำการทดสอบการสึกหรอแบบขัดถู โดยมีตัวแปรกำหนดในการทดสอบดังแสดงใน ตารางที่ 3.12
- ถอดชิ้นงานทดสอบออกจากชุดจับยึดชิ้นงาน แล้วทำความสะอาดก่อนนำไปชั่งน้ำหนัก ภายหลังการทดสอบ
- ทำการเก็บทรายแบบสุ่ม เพื่อนำไปวัดหาขนาดของทรายที่เปลี่ยนแปลงไปภายหลังการ ทดสอบ
- 6. ทำการเปลี่ยนทรายสำหรับการทดสอบครั้งต่อไป
- นำชิ้นงานที่ผ่านการทดสอบภายหลังการนำไปชั่งมาทำการทดสอบต่อเป็นครั้งที่ 2 โดย ทำแบบเดิมตั้งแต่ข้อ 1-6
- นำชิ้นงานที่ผ่านการทดสอบภายหลังการนำไปชั่งมาทำการทดสอบต่อเป็นครั้งที่ 3 โดย ทำแบบเดิมตั้งแต่ข้อ 1-6

กรณีที่ 2 (Case 2) ไม่ทำการเปลี่ยนทรายสำหรับการทดสอบทุก ๆ 8 ชั่วโมง และ ไม่ให้ความร้อนขณะ ทำการทดสอบ โดยมีขั้นตอนการทดสอบเพื่อเลือกขั้นตอนการทดสอบความด้านทานการสึกหรอ แบบขัดถูเหมือนกับกรณีที่ 1 ยกเว้น กรณีที่ 2 นี้ไม่มีการเปลี่ยนทรายภายหลังการทดสอบเสร็จแต่ละ ครั้ง ก่อนนำชิ้นงานที่ผ่านการทดสอบภายหลังการนำไปชั่งมาทำการทดสอบต่อ เพื่อเปรียบเทียบ คุณสมบัติการทำให้เกิดการสึกหรอของเม็ดทรายต่อผิวหน้าชิ้นงานที่ผ่านกระบวนการสร้างผิวแข็ง สำเร็จ นอกจากนั้นทั้ง 2 กรณีมีการนำชิ้นงานไปทำการชั่งน้ำหนักภายหลังการทดสอบทุก ๆ 8 ชั่วโมง เนื่องจากเวลาที่ใช้ทดสอบ 8 ชั่วโมง ในงานวิจัยนี้มีระยะทางใกล้เกียงกับมาตรฐาน ASTM G 65–04 [9] ภายหลังการทดสอบจะทำการหาค่าปริมาณการสึกหรอ สำหรับการทดสอบการต้านทานการสึกหรอ แบบขัดถู โดยคำนวณจากปริมาตรที่หายไป (Volume Loss) ของชิ้นงานแต่ละชิ้นงานทดสอบมาทำ การสร้างเป็นกราฟเส้นตรง เพื่อดูแนวโน้นอัตราการสึกหรอของชิ้นงานที่เกิดขึ้นภายหลังการทดสอบ โดยทำการเปรียบเทียบของทั้ง 2 กรณี เพื่อเลือกขั้นตอนการทดสอบความด้านทานการสึกหรอแบบขัด ถูที่ให้อัตราการสึกหรอของชิ้นงานคงที่มากที่สุด เนื่องจากทำให้ผลการทดสอบที่ได้มีความถูกต้อง มากกว่า และสามารถนำค่าอัตราการสึกหรอมาทำการคาดการณ์อายุการใช้งานได้แม่นยำ

ตารางที่ 3.12 ตัวแปรกำหนดในการทดสอบเพื่อเลือกขั้นตอนการทดสอบความต้านทานการสึกหรอ แบบขัดถู

<u> </u>	
จำนวนชิ้นงาน (ชิ้น/เงื่อนไขการสร้างผิวแข็งสำเร็จ)	1
จำนวนครั้งในการทคสอบ (ครั้ง/ชิ้น)	3
มุมใบกวน (องศา)	45
ความเร็วรอบของการกวนชิ้นงาน (รอบ/นาที)	30
เวลาในการทคสอบ (ชั่วโมง/ครั้ง)	8
ระยะทางในการทดสอบ (เมตร)	18,095.57

รูปที่ 3.3 เครื่องทคสอบที่ใช้สำหรับการทคสอบการสึกหรอแบบขัคถู

นอกจากนั้น นำเครื่องมือทางสถิติมาช่วยในการวิเคราะห์เพื่อยืนยันการเลือกขั้นตอนการทดสอบที่มี ความเหมาะสมที่สุด ซึ่งอาศัยการประเมินความสามารถของกระบวนการวัดจากความผันแปรของ ระบบการวัด (Gauge Repeatability and Reproducibility; GR&R) เพื่อทำการเปรียบเทียบทั้ง 2 กรณี โดยใช้โปรแกรมคอมพิวเตอร์ที่มีชื่อว่า JMP

3.5.3 การตรวจสอบลักษณะของเม็ดทราย

สำหรับการตรวจสอบลักษณะของเม็คทรายในงานวิจัยนี้ อาศัยการวัคความกลมมาทำการประยุกต์ใช้ ในตรวจสอบลักษณะของเม็คทราย โคยนำข้อมูลความกลมของเม็คทรายมาทำการวิเคราะห์ เพื่อนำมา สนับสนุนขั้นตอนการทคสอบความต้านทานการสึกหรอแบบขัคถู โคยการเก็บตัวอย่างของทรายค้วย วิธีการสุ่ม ทรายที่เก็บมาทำการวัคความคมประกอบค้วย 1. ทรายก่อนทำการทคลอง 2. ทรายที่ผ่าน การทคสอบ 8 ชั่วโมง 3. ทรายที่ผ่านการทคสอบ 16 ชั่วโมง และ 4. ทรายที่ผ่านการทคสอบ 24 ชั่วโมง ขั้นตอนการวัคความกลมของเม็คทรายมีรายละเอียคคังต่อไปนี้

- 1. ทำการถ่ายภาพเม็คทรายด้วยกล้อง จำนวน 30 เม็ด
- นำภาพที่ได้มาทำการหาผลต่างของรัศมีนอกและรัศมีในของเม็ดทรายแต่ละเม็ดด้วย โปรแกรมคอมพิวเตอร์ที่มีชื่อว่า "Scentis" ดังแสดงในภาคผนวก ง
- 3. นำค่าผลต่างของรัศมีนอกและรัศมีในของเม็คทรายมาทำการเฉลี่ย

โดยค่าผลต่างของรัศมีนอกและรัศมีในของเม็ดทรายแสดงถึงลักษณะความกลมของเม็ดทราย ถ้าค่า ผลต่างของรัศมีนอกและรัศมีในของเม็ดทรายมีค่าน้อย แสดงว่าเม็ดทรายที่ทำการตรวจสอบมีลักษณะ ก่อนข้างกลม ในทางตรงกันข้ามถ้าค่าผลต่างของรัศมีนอกและรัศมีในของเม็ดทรายมีค่ามาก แสดงว่า เม็ดทรายที่ทำการตรวจสอบมีลักษณะ ไม่กลม ซึ่งลักษณะของเม็ดทรายจะส่งผลโดยตรงต่อ ความสามารถในการทำให้เกิดการสึกหรอแบบขัดถูบนผิวหน้าชิ้นงาน

3.5.4 การทดสอบความต้านทานการสึกหรอแบบขัดถู

ในงานวิจัยนี้มุ่งเน้นการเปรียบเทียบความสามารถในการต้านการสึกหรอกแบบขัคถูด้วยกรรมวิธีใน การสร้างผิวแข็งสำเร็จที่ต่างกัน โดยขนาดชิ้นงานที่จะสามารถนำมาทดสอบได้คือ 25.4 x 76.2 x 12.7 มิถลิเมตร และไม่มีการให้ความร้อนขณะทำการทดสอบ

้ขั้นตอนการทคสอบความต้านทานการสึกหรอแบบขัคถูมีรายละเอียคคังต่อไปนี้

 นำชิ้นงานที่ผ่านการเตรียมชิ้นงานตามหัวข้อที่ 3.5.1 มาทำการติดตั้งเข้ากับชุดจับยึด ชิ้นงาน

- ทำการเททราย 30 กิโลกรัม โดยความสูงของชุดจับยึดชิ้นงานมีความสูงเหนือกันถัง ประมาณ 2 นิ้ว โดยทรายที่นำมาใช้ในการทดสอบของงานวิจัยเล่มนี้เป็นทรายซิลิกา (Silicon Dioxide; SiO₂) ที่มีขนาดอยู่ในช่วง 212-300 ไมครอน
- ทำการทดสอบการสึกหรอแบบขัดถู โดยมีตัวแปรกำหนดในการทดสอบดังแสดงใน ตารางที่ 3.13
- ถอดชิ้นงานทดสอบออกจากชุดจับยึดชิ้นงาน แล้วทำความสะอาดก่อนนำไปชั่งน้ำหนัก ภายหลังการทดสอบ
- 5. ทำการเปลี่ยนทรายสำหรับการทคสอบครั้งต่อไป

ภายหลังการทดสอบความสามารถในการด้านการสึกหรอกแบบขัดถูด้วยกรรมวิธีในการสร้างผิวแข็ง สำเร็จที่ต่างกัน นำเครื่องมือทางสถิติมาช่วยในการวิเคราะห์เพื่อยืนยันผลสำหรับการหาเงื่อนไขในการ สร้างผิวแข็งสำเร็จที่ดีที่สุดในงานวิจัยนี้ ซึ่งอาศัยการวิเคราะห์กวามแปรปรวน (Analysis of Variance; ANOVA) และการเปรียบเทียบพหุคูณ (Multiple Comparison Procedures; MCP) โดยใช้โปรแกรม กอมพิวเตอร์ที่มีชื่อว่า Minitab

จำนวนชิ้นงาน (ชิ้น/เงื่อนไขการสร้างผิวแข็งสำเร็จ)	3
จำนวนครั้งในการทคสอบ (ครั้ง/ชิ้น)	1
มุมใบกวน (องศา)	45
ความเร็วรอบของการกวนชิ้นงาน (รอบ/นาที)	30
เวลาในการทคสอบ (ชั่วโมง/ครั้ง)	8
ระยะทางในการทดสอบ (เมตร)	18,095.57

ตารางที่ 3.13 ตัวแปรกำหนดในการทดสอบการสึกหรอแบบขัดถู

3.5.5 การวัดผลชิ้นงานทดสอบความต้านทานการสึกหรอแบบขัดถู

สำหรับการวัดผลการทดสอบความต้านทานการสึกหรอแบบขัดถูในงานวิจัยนี้ ทำโดยการนำชิ้นงาน ก่อนที่จะนำไปทดสอบมาทำการชั่งน้ำหนักด้วยเครื่องชั่งน้ำหนักทศนิยมสี่ตำแหน่งดังแสดงในรูปที่ 3.4 แล้วจึงนำไปทำการทดสอบ ภายหลังจากการทดสอบนำชิ้นงานเดิมมาทำการชั่งน้ำหนัก เพื่อดูการ เปลี่ยนแปลงของน้ำหนัก ซึ่งน้ำหนักที่ลดลงภายหลังจากการทดสอบคือ มวลที่หายไป (Mass Loss) แล้วนำค่ามวลที่หายไปนี้แทนค่าในสมการที่ 2-4 เพื่อหาค่าปริมาณการสึกหรอสำหรับการทดสอบการ ด้านทานการสึกหรอแบบขัดถู โดยคำนวณจากปริมาตรที่หายไปของชิ้นงานแต่ละชิ้นงานทดสอบใน หน่วยลูกบาศก์มิลลิเมตร แล้วนำผลที่ได้มาทำการเปรียบเทียบกัน

ร**ูปที่ 3.4** เครื่องชั่งน้ำหนักทศนิยมสี่ตำแหน่ง ยี่ห้อ Ohaus รุ่น Pioneer (PA214)

3.6 การวิเคราะห์โครงสร้างทางจุลภาค (Metallographic Analysis) 3.6.1 การเตรียมชิ้นงาน

การเตรียมชิ้นงานสำหรับการวิเคราะห์โครงสร้างทางจุลภาค โดยชิ้นงานที่ผ่านกระบวนการสร้างผิว แข็งสำเร็จแต่ละกระบวนการจะถูกนำมาทำการวิเคราะห์โครงสร้างทางจุลภาคบริเวณผิวหน้าด้านบน ที่ผ่านกระบวนการสร้างผิวแข็งสำเร็จ ซึ่งมีขั้นตอนดังต่อไปนี้

- ตัดชิ้นงานโดยให้บริเวณผิวหน้าด้านบนที่ผ่านกระบวนการสร้างผิวแข็งสำเร็จมีขนาด ความกว้าง 10 มิลลิเมตร ยาว 15 มิลลิเมตร หนา 10 มิลลิเมตร
- นำชิ้นงานที่ผ่านการตัดจนได้ขนาดตามข้อ 1 มาทำการหล่อชิ้นงานด้วยแบล็คไลท์ (Blackelite Black) ด้วยเครื่องหล่อชิ้นงาน โดยให้ด้านผิวหน้าที่ผ่านการสร้างผิวแข็งสำเร็จ อยู่ด้านบน
- ทำการขัดหยาบผิวหน้าชิ้นงานด้วยกระดาษทรายตั้งแต่เบอร์ 80 ถึงเบอร์ 1200 โดยขัดไป ทิศทางเดียวกันและกลับด้านในทิศทางตั้งฉากเมื่อเปลี่ยนกระดาษทราย
- ทำการขัดละเอียดด้วยผงเพชรความละเอียด 3 ไมครอน และ 1 ไมครอน ตามลำดับ โดยทำ การขัดบนผ้ากำมะหยี่
- นำชิ้นงานที่ขัดผิวแล้วไปกัดกรด (Etching) โดยกรดที่ใช้มีส่วนผสมของสารเคมีคือ 10 g CrO₃ + 100 mL Water ซึ่งใช้กระแสไฟฟ้าช่วยในการกัดกรดทั้งนี้กรดที่เลือกใช้จะเป็นไป ตามกำแนะนำในมาตรฐาน ASTM E-407 [17]

3.6.2 การตรวจสอบระดับจุลภาค (Microscopic Examination)

รูปที่ 3.5 กล้องจุลทรรศน์แบบแสง (Optical Microscope; OM) ยี่ท้อ Carl Zeiss รุ่น Axiovert 40 MAT

ชิ้นงานภายหลังการกัดกรดจะถูกนำมาทำการวิเคราะห์โครงสร้างจุลภาคได้ในหลายลักษณะ สำหรับ งานวิจัยนี้ทำการวิเคราะห์โครงสร้างจุลภาคด้วยการใช้กล้องจุลทรรศน์แบบแสง (Optical Microscope; OM) และใช้กล้องจุลทรรศน์อิเล็กตรอนแบบกราด (Scanning Electron Microscope; SEM) ดังแสดงในรูปที่ 3.5 และ 3.6 ตามลำดับ เพื่อดูลักษณะของโครงสร้างการ์ไบด์หรือการตกผลึกที่ เกิดขึ้นในเกรนของชิ้นงาน

ร**ูปที่ 3.6** กล้องจุลทรรศน์อิเล็กตรอนแบบกราด (Scanning Electron Microscope; SEM) ยี่ห้อ JEOL รุ่น JSM6380LV

3.6.3 การวิเคราะห์ส่วนผสมทางเคมีระดับจุลภาค (Energy Dispersive X-ray Spectroscopy)

นำชิ้นงานที่ผ่านการวิเคราะห์โครงสร้างทางจุลภาคมาแล้วไปทำการวิเคราะห์ปริมาณของธาตุผสม ด้วยเครื่องกล้องจุลทรรศน์อิเล็กตรอนแบบกราด (Scanning Electron Microscope; SEM) โดยทำการ วิเคราะห์ปริมาณของธาตุผสมของคาร์ไบด์ที่เกิดขึ้นตามขอบเกรนหรือการตกผลึกที่เกิดขึ้นในเกรน ของชิ้นงาน ซึ่งใช้พลังงานของรังสีเอ็กซ์ (Energy Dispersive X-ray Spectroscopy; EDS) โดยใช้ เทกนิคในการวิเคราะห์แบบจุด (Point Scan)

3.6.4 การวิเคราะห์โครงสร้างผลึก (Crystal Structure Analysis)

ภายหลังจากการวิเคราะห์ส่วนผสมทางเคมีระดับจุลภาคของคาร์ไบด์ที่เกิดขึ้นตามขอบเกรนและการ ตกผลึกที่เกิดขึ้นในเกรนของชิ้นงาน แต่ผลที่ได้ยังไม่สามารถบอกถึงโครงสร้างผลึกของคาร์ไบด์ที่พบ ได้ โดยการวิเคราะห์หาโครงสร้างผลึกนั้นสามารถหาได้จากการใช้เครื่อง X-ray Diffractrometer (XRD) ซึ่งเป็นเครื่องมือที่ใช้ในการตรวจพิสูจน์เอกลักษณ์ที่ไม่ทำสารตัวอย่าง โดยใช้หลักการ เลี้ยวเบนของรังสีเอ็กซ์ (X-ray Diffraction) ที่ตกกระทบผิวหน้าผลึกของสารตัวอย่างที่มุมต่างๆกัน สามารถวิเคราะห์โครงสร้างผลึกในสารตัวอย่างเทียบกับฐานข้อมูลมาตรฐาน ซึ่งรูปแบบการเลี้ยวเบน รังสีเอ็กซ์ที่ตกกระทบผลึกจะมีลักษณะแตกต่างกันขึ้นอยู่กับการจัดเรียงตัวของอะตอมภายในผลึก ดังนั้น รูปแบบการเลี้ยวเบนของรังสีเอ็กซ์จึงสามารถใช้เป็นตัวชี้บอกได้ว่าสารตัวอย่างนั้น ประกอบด้วยผลึกชนิดใดบ้าง [18]

3.7 การทดสอบค่าความแข็ง (Hardness Test)

สำหรับการทดสอบก่าความแข็งของชิ้นงานในงานวิจัยนี้จะนำข้อมูลก่าความแข็งที่ได้มาทำการ วิเคราะห์ เพื่อนำมาสนับสนุนผลของการทดสอบความด้านทานการสึกหรอกับโครงสร้างทางจุลภาก สำหรับการทดสอบก่าความแข็งในการทดสอบสำหรับงานวิจัยครั้งนี้ เลือกใช้วิธีการทดสอบก่าความ แข็งแบบวิกเกอร์ (Vickers Hardness Test) และแบบไมโครวิกเกอร์ (Micro Vickers Hardness Test) เครื่องทดสอบก่าความแข็งดังแสดงในรูปที่ 3.7 โดยชิ้นงานแต่ละชิ้นจะดำเนินการทดสอบก่าความ แข็งแบบวิกเกอร์ เพื่อวัดก่าความแข็งโดยรวมของชิ้นงานบริเวณผิวหน้าด้านบนที่ผ่านกระบวนการ สร้างผิวแข็งสำเร็จ ตัวแปรกำหนดในการทดสอบกวามแข็งแบบวิกเกอร์ดังแสดงในตารางที่ 3.14 ใน การวัดก่าความแข็งแบบวิกเกอร์ในงานวิจัยนี้จะทำการวัด 2 แถว ให้แต่ละแถวห่างกัน 300 ไมครอน ดังแสดงในรูปที่ 3.8 สำหรับการทดสอบก่าความแข็งแบบไมโครวิกเกอร์ ทำการวัดก่าความแข็งเฉพาะ บริเวณของโครงสร้างการ์ไบด์และโครงสร้างพื้น เพื่อให้ได้ก่าความแข็งในบริเวณที่สนใจได้แม่นยำ และกลาดเคลื่อนน้อยที่สุด ตัวแปรกำหนดในการทดสอบความแข็งแบบไมโครวิกเกอร์ดังแสดงใน ตารางที่ 3.14 โดยนำข้อมูลค่าความแข็งของแต่ละโครงสร้างมาทำการวิเคราะห์ผลกระทบต่อ ความสามารถในการต้านทานการสึกหรอแบบขัดถู

วิธีการทดสอบค่าความแข็ง	วิกเกอร์	ไมโครวิกเกอร์
น้ำหนักกด (kgf)	1	0.025
เวลาในการกด (วินาที)	10	10
ระยะห่างของแต่ละจุดทคสอบ (ไมครอน)	300	-

ตารางที่ 3 14	ต้าแปรกำหนดในการทดสอบคาามแ	ลึง
1101013.14		U N

รูปที่ 3.7 เครื่องทคสอบความแข็ง ยี่ห้อ Matsuzawa รุ่น MMT-X7

รูปที่ 3.8 ตำแหน่งและระยะการวัดความแข็งแบบวิกเกอร์บนชิ้นงานทดสอบ

3.8 การวัดความหยาบของพื้นผิว (Surface Roughness Mensuration)

ชิ้นงานผ่านการทคสอบความต้านทานการสึกหรอแบบขัดถู จะถูกนำมาทำการวัคความค่าความหยาบ ของพื้นผิว (Roughness Value) เพื่อสนับสนุนผลของการทคสอบความต้านทานการสึกหรอ โดยค่า ความหยาบของผิวหน้าที่ใช้เป็นค่าเฉลี่ยของค่าสัมบูรณ์ของค่าความแตกต่างของความสูงของพื้นผิว จากตำแหน่งความสูงเฉลี่ย เครื่องวัคความหยาบของพื้นผิวคังแสดงในรูปที่ 3.9

ร**ูปที่ 3.9** เครื่องวัดความหยาบของพื้นผิว ยี่ห้อ Mitutoyo รุ่น SV-2100