

งานวิจัยนี้เป็นการศึกษาแนวทางการนำน้ำทึบจากบ่อบัวคบบ่อต่างๆของโรงงานผลิตแป้งมันสำปะหลังกลับมาใช้ใหม่ในโรงงาน เนื่องจากอุตสาหกรรมผลิตแป้งมันสำปะหลังเป็นอุตสาหกรรมที่มีการใช้น้ำในการสกัดแป้งออกจากหัวมันสำปะหลังในปริมาณสูง ส่งผลให้เกิดปริมาณน้ำเสียสูงตามไปด้วยปริมาณ 15-20 ลบ.ม.ต่อตันแป้ง โดยระบบบำบัดน้ำเสียของโรงงานที่ใช้เป็นกรณีศึกษา เป็นระบบปิดแบบตึกรึงฟิล์มจุลินทรีชนิด ไร้อากาศร่วมกับบ่อบัวคบแบบบ่อเปิด จำนวน 9 บ่อ สามารถบำบัดของแข็งทั้งหมด ของแข็งแขวนลอย ของแข็งละลายได้ บีโอดี ซีโอดี ทีโอดีน และฟอสเฟต ได้ร้อยละ 90, 97, 82, 99, 99, 79 และ 46 ตามลำดับ น้ำทึบที่ผ่านการบำบัดจากบ่อบัวคบบ่อสุดท้ายไม่สามารถนำมาใช้ใหม่ในโรงงานได้โดยตรง เนื่องจากมีสมบัติต่างๆไม่ผ่านเกณฑ์มาตรฐานของคุณภาพน้ำในแหล่งน้ำผิวดิน ซึ่งเป็นแหล่งน้ำที่ใช้ในส่วนต่างๆของโรงงาน ระบบบึงประดิษฐ์ซึ่งเป็นอีกแนวทางหนึ่งในการปรับปรุงคุณภาพน้ำทึบให้ได้ตามมาตรฐาน ซึ่งได้นำมาใช้ในการศึกษารั้งนี้

ในการวิจัยได้ศึกษาเพื่อหาลำดับบ่อเปิดบ่อตันฯ ที่สามารถบำบัดน้ำเสียด้วยระบบบึงประดิษฐ์ ให้ได้คุณภาพตามมาตรฐานของคุณภาพน้ำผิวดิน และหาระยะเวลาทักษักเก็บน้ำเสียที่เหมาะสม ระบบบึงประดิษฐ์ระดับห้องปฏิบัติการที่ใช้ในการวิจัยนี้ เป็นระบบแบบน้ำไหลให้ผิวดินในแนวอนุที่มีชั้นตัวกลางดินปนทราย และพืชที่ใช้คือธัญปุ่ย (*Typha Angustifolia*) ในการศึกษาช่วงแรก ประกอบด้วย 4 ชุดการทดลอง โดยชุดการทดลองที่ 1-3 ใช้น้ำในบ่อเปิดลำดับที่ 2-4 เป็นน้ำเข้าระบบ และมี 1 ชุดควบคุมใช้น้ำประปา แต่ละชุดการทดลองมีอัตราการไหลของน้ำทึบเท่าระบบ 2.63 ล./วัน และระยะเวลาทักษักเก็บน้ำ 8 วัน ผลการศึกษาพบว่าระบบบึงประดิษฐ์สามารถบำบัดน้ำทึบจากบ่อเปิดทั้ง 3 บ่อได้ตามมาตรฐานคุณภาพน้ำในแหล่งน้ำผิวดิน เมื่อทดลองเปลี่ยนระยะเวลาทักษักเก็บน้ำเป็น 6 และ 7 วัน ที่อัตราการไหลของน้ำทึบเท่าระบบ 21 และ 18 ล./วัน ตามลำดับ โดยใช้น้ำทึบในบ่อเปิดลำดับที่ 2 เป็นน้ำเข้าระบบ พบว่าที่ระยะเวลาทักษักเก็บน้ำ 7 วัน สามารถลดปริมาณของแข็งแขวนลอย บีโอดี ซีโอดี ทีโอดีน แอนโรมเนีย และฟอสเฟต ได้เท่ากับร้อยละ 90, 98, 96, 88, 99 และ 89 ตามลำดับ และสามารถเพิ่มปริมาณออกซิเจนละลายน้ำ ซึ่งอยู่ในเกณฑ์มาตรฐานของคุณภาพน้ำผิวดินกำหนด นอกจากนี้จากการศึกษายังพบว่าพืชมีประสิทธิภาพในการนำไนโตรเจนและฟอสเฟตจากน้ำทึบมาใช้เพื่อการเจริญเติบโตได้ดี โดยมีในไตรเจนและฟอสฟอรัสสะสมอยู่ในพืชร้อยละ 20 และ 42 ในขณะที่มีไนโตรเจนและฟอสฟอรัสสะสมอยู่ในตัวกลางร้อยละ 0.62 และ 38 ตามลำดับ ผลการศึกษาสรุปได้ว่า โรงงานสามารถนำน้ำทึบในบ่อเปิดบ่อที่ 2 ที่ผ่านการบำบัดโดยระบบบึงประดิษฐ์ที่มีระยะเวลาทักษักเก็บน้ำ 7 วัน กลับไปใช้ใหม่ได้ในโรงงาน ซึ่งจะเป็นการช่วยลดจำนวนบ่อบัวคบลง ทำให้โรงงานมีพื้นที่ใช้สอยเพิ่มขึ้น นอกจากนี้ยังสามารถช่วยแก้ปัญหาในช่วงขาดแคลนน้ำ ลดการใช้น้ำดิบจากธรรมชาติ และช่วยรักษาสิ่งแวดล้อมอีกด้วย

This research is concerned on the secondary treatment of treated wastewater from anaerobic fixed film (AFF) reactor for recycling water within tapioca starch processing. In tapioca starch manufacturers, high volume of water is consumed for extracting starch from tapioca roots which resulted in wastewater generation at 15-20 m³/ton starch. The wastewater treatment systems in this factory are in series of closed type-AFF reactor followed by nine open ponds. Its overall efficiencies to treat the wastewater were removed 90% TS, 97% SS, 82% TDS, 99% BOD, 99% COD, 79% TKN and 46% phosphate. The treated wastewater from the last open pond could not be directly used in the factory; due to the water quality was higher than the standard quality of surface water which used as water supply in the factory. The wetland system is one of the interested technologies used in this study for treating wastewater to standard of surface water quality.

The laboratory scale of horizontal subsurface flow constructed wetland, one of the promising technologies and successful in improving wastewater, with a soil-sand bed and cultivated Cattail plants (*Typha Angustifolia*) were used in this study. This research was carried out to determine the appropriate initially serie of open pond for obtaining qualified effluent from treatment of the constructed wetland and to define hydraulic retention time of system. In the first phase of experiment, four sets of laboratory scale-constructed wetlands with treated wastewater from open ponds in serial number of 2-4 and 1 control experiment (used tap water) were fed into horizontal subsurface flow constructed wetland at flow rate 2.63 liter/day and 8 days of hydraulic retention time. The experiment results showed that the discharge effluent characteristics from three sets of experiments passed the standard quality of surface water. When changing influent flow rate to 21 and 18 liter/day with 6 and 7 days of hydraulic retention time, respectively by using wastewater from 2nd open pond as influent, the characteristic of discharge effluent passed the standard quality of surface water under 7 days of hydraulic retention time. It was noted that this qualified treated water could be recycled for water supply in starch production processes. Therefore, wastewater from 2nd open pond could be improved in constructed wetland system under 7 days of hydraulic retention time with the efficiencies of 90% SS, 98% BOD, 96% COD, 88% TKN, 99% ammonia and 89% phosphate removal as well as increasing DO. Furthermore, high growth rate of cattails were found due to high amount of nitrogen and phosphorus in wastewater were constrained. The assimilation of nitrogen and phosphorus in plant tissue was 20 % and 42 % while nitrogen and phosphorus in soil was 0.62 % and 38 %, respectively. These results concluded that the factory can reduce the number of open ponds for wastewater treatment as well as increased the available area in the factory by applying the wetland system. Furthermore, it would be one solution to solve the problem of water crisis, reduced natural water usage and mitigated water environment.