REFERENCES

- Ahring, B.K. Ibrahim, A.A. and Mladenovvka, Z. (2001). Effect of Temperature Increase From 55 to 65°C on Performance and Microbial Population Dynamics of an Anaerobic Reactor Treating Cattle Manure. **Water Research**, 35(10), 2446-2452.
- Ahn J-H. and Forster C.F. (2002). The effect of temperature variations on the performance of mesophilic and thermophilic anaerobic filters treating a simulated papermill wastewater. **Process Biochemistry**, 37(6), 589–594.
- Al Seadi T. (2001). Good practice in quality management of AD residues from biogas production. In Report made for the International Energy Agency,

 Task 24- Energy from Biological Conversion of Organic Waste.

 Published by IEA Bioenergy and AEA Technology Environment.

 Oxfordshire: United Kingdom.
- Asse International. (2013). **Professional Certification.** Retrieved August 10, 2014, from http://www.asse-plumbing.org
- Burke, D. A. (1997). Anaerobic treatment process for the rapid hydrolysis and conversion of organic materials to soluble and gaseous components.

 USA: Environmental Energy Company.
- Burke, D. A. (1998). Nothing wasted. Civil Engineering June, 68(6), 62-64.
- Burke, D. A. (2000). Anaerobic treatment process with removal of inorganic material. USA: Western Environmental Engineering.
- Burke D.A. (2001). **Dairy waste anaerobic digestion handbook.**WA: Environmental Energy Company.
- Burke, D. A., Butler, R. and Hummel, S. (1997). An assessment of the AGF (Anoxic Gas Flotation) High Rate Anaerobic Digestion Process. In 12th Annual Residuals and Biosolids Management Conference (pp.105-130). Bellevue, WA: Water Environment Federation.
- Chae, K.J., Jang, A., Yim, S.J. and Kim, I.S. (2008). The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. **Bioresour Technol**, 99, 1-6.

- David A. Bainbridge. (2012). **The integral passive solar water heater book**. LA: David A. Bainbridge.
- Dieter Deublein and Angelika Steinhauser. (2010). **Biogas from waste and**Renewable Resources. Germany: Federal Republic.
- Dugba, P., Zhang R. and Dague R.R. (1997). Dairy wastewater treatment with a temperature-phased sequencing batch reactor system. In 52nd Purdue Industrial Waste Conference Proceedings (pp.201-230).

 USA: Ann Arbor Press.
- Duke Engineering and Services, D. (2001). **Biogas feasibility study.**City of Myrtle Point in Coos County: n.p.
- Ecotope. (1979). Report on the design and operation of a full-scale anaerobic dairy manure digester. Seattle, WA: US DOE.
- Ettinger, M. B., Witherow, J.L. and Coulter, J.B. (1957). Chemical and hydraulic characteristics of the anaerobic contact process for sewage treatment.
 M. a. Eckenfelder. In Biological Treatment of Sewage and Industrial Wastes. (pp. 145-153), Cincinnati, Ohio: Reinhold Publishing.
- Forster-Carneiro T., Perez M. and Romero L.I. (2008). Thermophilic anaerobic digestion of source sorted organic fraction of municipal solid waste.

 Bioresource Technology, 99(15), 6763–6770.
- Ghosh, S. (1987). Improved sludge gasification by two-phase anaerobic digestion. **Journal of Environmental Engineering,** 113(6), 1265-1284.
- Raheman H. (2002). A mathematical model for fixed dome type biogas plant. **Energy**, 27, 25–34.
- Jewell, W. J.and Dell-Orto S. (1981). Economics of plug flow methane reactors.

 In **Methane Technology for Agriculture Conference**, (pp. 178-207).

 N.P: n.p.
- Jewell, W. J. and Kabrick R. M. (1981). Earthen-supported plug flow reactor for dairy applications. New York: Northeast Regional Agricultural Engineering Service.
- Kanokwan, Dimitar, Eric and Irini. (2009). Effect of post-digestion temperature on serial CSTR biogas reactor performance. **Water research**, 43(3), 669–676.

- Kaparaju P. and Angelidaki I. (2008). Effect of temperature and active biogas process on passive separation of digested manure. **Bioresource Technology**, 99(5), 1345–1352.
- Loehr, R. C. (1974). Agricultural waste management- problems, processes, and approaches. New York and London: Academic press.
- Pagilla, K.R., Kim, H. and Cheunbarn, T. (2000). Aerobic thermophilic and anaerobic mesophilic treatment of swine waste. **Water Research**, 34(10), 2747-2753.
- Performance Building Consulting, Inc. (2013). **Performance Building Consulting/Byrd Energy.** Retrieved August 10, 2014, from www.wadebyrd.com
- Ratkowsky, D. A. and J. Olley. (1981). Relationship between temperature and growth rate of bacterial cultures. **Journal of Bacterioloy**, 149(1), 1-5.
- Schmit, K.H. and Ellis, T.G. (2001). Comparison of temperature-phased and twophase anaerobic co-digestion of primary sludge and municipal solid waste. **Water Environment Research**, 73(3), 314-321.
- Soteris A. Kalogirou. (2014). Solar energy engineering: Processes and systems. USA: Elsevier.
- Tillamook. (1999). Anaerobic digester a success at dairy farm. BioCycle, 40(3), 18.
- Young-Chae S., Sang-Jo K. and Jung-Hui W. (2004). Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic and thermophilic digestion of sewage sludge. **Water Research**, 38(7), 1653–1662.

BIOGRAPHY

Name – Surname

Chommanard Lebkhurt

Date of Birth

January 30, 1982

Address

193/5 Moo 4 Bankhong Photharam District,

Ratchburi Province Thailand 70120

Education Background

2006

M.S.Tech.Ed. (Technical Education Technology),

King Mongkut's Institute of Technology North

Bangkok, Thailand

2003

B.S. (Environmental Science), Phetchaburi Rajabhat

University, Thailand

Publication

Chommanard Lebkhurt L., Sarayooth Vaivudh, Sukruedee Sukchai and Pisit Maneechot. (2014). Temperature Effect on Biogas Reaction from Food Waste. **Journal of Environmental Science and Engineering**, 3B(3), 1-5.