CONTENTS

		Page
ACKNOWLEI	OGEMENTS	iii
ABSTRACT (I	ENGLISH)	iv
ABSTRACT (7	ΓΗΑΙ)	v
LIST OF TAB	LES	ix
LIST OF FIGU	JRES	xii
LIST OF ABB	REVIATIONS	xiv
CHAPTER I	INTRODUCTION	1
	1.1 Background	1
	1.2 Research objectives	3
	1.3 The scope of the study	3
	1.4 Expected results	3
	1.5 Conceptual framework	4
CHAPTER II	LITERATURE REVIEW	5
	2.1 General reviews of Antioxidant	5
	2.2 Antioxidant Analysis	8
	2.3 General information of Mango	10
	2.4 General description for mango cultivation	10
	2.5 Composition of mango seed	11
	2.6 Applied using mango seed kernel in food products	12
	2.7 The adaption of product which is not food	18
	2.8 Applied using mango seed kernel in cosmetics	19
	2.9 Applied using mango seed kernel in animal foods	20
	2.10 The information of Grape seed	21

CONTENTS (cont.)

		Page
CHAPTER III	METHODOLOGY	23
	3.1 Analytical procedure	23
	3.2 Research facility	23
	3.3 Materials and instruments	23
	3.4 Standards and reagents	24
	3.5 Source of mango seed kernels and grape seeds	24
	3.6 Mango seed kernels and grape seeds preparation	25
	3.7 The extraction methods	28
	3.8 Determination of total phenolic content	30
	3.9 Determination of antioxidant activity by DPPH radical	32
	scavenging assay	
	3.10 Determination of Reducing power: Iron reducing activity	34
	3.11 Statistical Analysis	36
CHAPTER IV	RESULTS	37
	4.1 Total phenolic content (TPC)	37
	4.2 Reducing Power (RP)	43
	4.3 Free radical scavenging activity	49
	4.4 The comparison of antioxidant analysis of mango seed kernel	62
	extracted by 95% ethanol, rice whisky (contained 40% ethanol),
	water and hot water	
	4.5 Quantity and quality of antioxidant compounds from	64
	mango seed kernel and grape seed extract	
CHAPTER V	DISCUSSIONS	66
	5.1 Total phenolic contents (TPC)	66
	5.2 Reducing Power (RP)	68
	5.3 Free radical scavenging activity	69
	5.4 The possibility of applying the extraction methods that	71
	appropriate in the local industry	

CONTENTS (cont.)

		Page
CHAPTER VI	CONCLUSIONS AND RECOMMENDATIONS	72
	6.1 Conclusions	72
	6.2 Recommendations	73
REFERENCES		74
APPENDIX		81
	Antioxidant activity and total phenolic content of mango	82
	seed kernel extract and grape seed extract	
BIOGRAPHY		86

LIST OF TABLES

Table		Page
2.1	Various flavonoids from natural source	7
2.2	Compositions of mango seed kernel flour, wheat flour, mix flour	13
	(mango seed kernel:wheat 50:50) and biscuits made with mix flour	
2.3	The compositions of amino acid of mango seed kernel starch	15
	(mean \pm SD, n=4) compare with standard protein that specified by	
	FAO/WHO (g amino acid/100 g protein)	
2.4	The amount of fatty acid (%) of mango seed kernel oils, cocoa butter	16
	and olive oils	
4.1	Total phenolic content of mango seed kernel	38
4.2	The comparison of total phenolic content values classified by varieties	39
	and extraction solvents	
4.3	The multiple comparisons of average total phenolic content values	39
	from difference mango seed kernel varieties and extraction solvents	
4.4	Total phenolic content of grape seed extracts (Black queen variety)	41
4.5	The comparisons of total phenolic contents values from different	42
	extraction solvents of grape seed extracts	
4.6	The multiple comparisons of average TPC values from extraction solvents	42
4.7	Reducing Power of mango seed kernels extracts	44
4.8	The comparison of Reducing Power values classified by varieties	45
	and extraction solvents	
4.9	The multiple comparisons of average Reducing Power values	45
	from difference mango seed kernel varieties and extraction solvents	
4.10	Reducing Power of grape seed extracts in Black queen variety	47
4.11	The comparisons of reducing power values from different extraction	48
	solvents of grape seed extracts	
4.12	The multiple comparisons of average RP values from extraction solvents	48
4.13	%DPPH scavenging activity of mango seed kernel extracts	50

LIST OF TABLES (cont.)

Table		Page
4.14	The comparison of %DPPH scavenging activity classified by varieties	51
	and extraction solvents	
4.15	The multiple comparisons of average %DPPH scavenging activity	51
	from difference mango seed kernel varieties and extraction solvents	
4.16	%DPPH scavenging activity of Black queen grape seed extracts	53
4.17	The comparisons of % DPPH scavenging activity from different	54
	extraction solvents of grape seed extracts	
4.18	The multiple comparisons of average %DPPH scavenging activity	54
	from extraction solvents	
4.19	DPPH radical scavenging activity, expressed as milligrams of	57
	Ascorbic acid equivalents (AAE)	
4.20	The comparison of DPPH scavenging activity classified by varieties	57
	and extraction solvents	
4.21	The multiple comparisons of average DPPH scavenging activity values	58
	from difference mango seed kernel varieties and extraction solvents	
4.22	DPPH scavenging activity of Black queen grape seed extracts	60
4.23	The comparisons of DPPH scavenging activity from different	61
	extraction solvents of grape seed extracts	
4.24	The multiple comparisons of average DPPH scavenging activity	61
	from extraction solvents	
4.25	The mean values of TPC RP and %DPPH scavenging activity in terms of	63
	rice whisky, 95% ethanol, water and hot water extracts	
4.26	Quantity and quality of antioxidant compounds from mango seed kernel	65
	and grape seed extract (mean values)	
A.1	Antioxidant activity and total phenolic content of mango seed kernel extracts	84
	in Kaew variety	
A.2	Antioxidant activity and total phenolic content of mango seed kernel extracts	85
	in Mahachanok variety	

LIST OF TABLES (cont.)

Table		Page
A.3	Antioxidant activity and total phenolic content of mango seed kernel extracts	86
	in Keaw morakot variety	
A.4	Antioxidant activity and total phenolic content of grape seed extracts	87
	in Black queen variety	

LIST OF FIGURES

Figure	Figure	
1.1	Conceptual framework	4
2.1	The transformation of DPPH when obtained electron	9
2.2	Antioxidant type polyphenol and phenolic compound found in mango seed kernel	1 12
3.1	Mango seed kernels and grape seeds preparation	25
3.2	Mango seed kernel powder sample in Kaew variety	26
3.3	Mango seed kernel powder sample in Keaw morakot variety	26
3.4	Mango seed kernel powder sample in Mahachanok variety	27
3.5	Grape seed powder sample in Black Queen variety	27
3.6	Flow steps of extraction method	29
3.7	Flow steps of determination of total phenolic content	31
3.8	Flow steps of determination of antioxidant activity by DPPH radical	33
	scavenging assay	
3.9	Flow steps of determination of Reducing power	35
4.1	Total phenolic contents of mango seed kernel extracts in difference	40
	extraction solvents	
4.2	The rank of average values of total phenolic contents from various	40
	mango seed kernel extract varieties	
4.3	The rank of average values of total phenolic contents from various	41
	extraction solvents	
4.4	Total phenolic contents of grape seed extracts (Black queen variety)	43
4.5	Reducing power of mango seed kernel extracts in different extraction solvents	46
4.6	The rank of average values of reducing power from various	46
	mango seed kernel varieties extract	
4.7	The rank of average values of reducing power from various extraction solvents	47
4.8	Reducing power of grape seed extracts	49
4.9	% DPPH radical scavenging activity of mango seed kernel extracts	52

LIST OF FIGURES (cont.)

Figure		Page
4.10	The rank of average values of % DPPH scavenging activity from various	52
	mango seed kernel varieties	
4.11	The rank of average values of % DPPH radical scavenging activity	53
	from various extraction solvents	
4.12	% DPPH radical scavenging activity of Black queen grape seed extracts	55
4.13	DPPH radical scavenging activity of mango seed kernel extracts	59
	(mg AAE/g extract)	
4.14	The rank of DPPH scavenging activity values from various	59
	mango seed kernel varieties	
4.15	The rank of DPPH radical scavenging activity values from various	60
	extraction solvents	
4.16	DPPH radical scavenging activity of Black queen grape seed extracts	62
4.17	The mean results of TPC RP and % DPPH scavenging activity of	63
	rice whisky, 95% ethanol, water and hot water extracts	
4.18	Quantity and quality of antioxidant compounds from mango seed kernel	65
	and grape seed extract	

LIST OF ABBREVIATIONS

°C Degree Celsius

AAE Ascorbic Acid Equivalent

DPPH 1-1 diphynyl-2-picrylhydrazyl

2,2-diphenyl-1-picrylhydrazyl

g Gram

GAE Gallic Acid Equivalent

L Liter

mg Milligram

mL Milliliter

ppm Parts per million

RP Reducing Power

SD Standard Deviation

TPC Total Phenolic Content

w Weight

w/w Weight by weight