TABLE OF CONTENTS

ACKNOWLEDGEMENTS		
ABSTRACT (ENGLISH)		
ABSTRACT (THAI)	vii	
LIST OF TABLES	viii	
LIST OF FIGURES	xii	
ABBREVIATIONS AND SYMBOLS	xvii	
CHAPTER 1 INTRODUCTION	1	
Research objectives	7	
CHAPTER 2 LITERATURE REVIEW	8	
2.1 Theoretical issues of the dye sensitized solar cell operation	8	
2.1.1 Dye-sensitized solar cells	9	
2.1.2 Operating principle of the dye-sensitized solar cell	10	
2.1.3 Materials of the dye-sensitized solar cell	14	
2.1.4 Performance of the dye-sensitized solar cells	20	
2.1.5 Development of hole conductors in solid-state DSSCs	23	
2.1.6 Literature review of quasi solid-state DSSCs based on	28	
polymer electrolyte		

2.2 Direct apply electron heating system	33
2.2.1 Electric arc welding	33
2.2.2 Welding power supply	34
2.2.3 Literature review of direct apply electron heating	36
process	
2.3 Copper sulfides	37
2.3.1 Structure and properties	37
2.3.2 Classes of copper sulfides	40
2.3.3 Literature reviews of synthesis of copper sulfide	43
2.4 Aluminium antimonide	48
2.4.1 Structure and properties	48
2.4.2 Literature reviews of synthesis of aluminium	50
antimonide	
2.5 Plasma state	53
2.5.1 Classification of plasmas	53
2.5.2 Low-pressure, non-equilibrium plasmas	54
2.5.3 Microwave plasma system	56
2.5.4 Literature review of synthesis by microwave plasma	59
CHAPTER 3 EXPERIMENTAL PROCEDURE	63
3.1 Chemical reagents, equipments and instruments	63
3.1.1 Chemical reagents	63
3.1.2 Equipments and instruments	64
3.2 Synthesized methods	64
3.2.1 Synthesis of CuS via direct current heating	64

3.2.2 Synthesis of AlSb via direct current heating	66		
3.2.3 Preparation of quasi solid- state DSSCs	68		
3.3 Characterization			
3.3.1 X-ray diffraction (XRD)			
3.3.2 Scanning electron microscope (SEM) and energy	75		
dispersive X-ray Spectroscopy			
3.3.3 Transmission electron microscope (TEM)	76		
3.3.4 Raman spectrometer	77		
3.3.5 Luminescence spectrometer	77		
3.3.6 UV-Vis-NIR Spectrophotometer	78		
CHAPTER 4 RESULTS AND DISCUSSION	79		
4.1 CuS synthesized via direct current heating	79		
4.2 AlSb synthesized via direct current heating	92		
4.3 CuS-PEG composited electrolyte on quasi solid- state	101		
ZnO DSSCs			
CHAPTER 5 CONCLUSIONS	115		
REFERENCES	118		
APPENDICES	132		
APPENDIX A JCPDS used for the present research	133		
APPENDIX B Camera constant used for the indexing of SAED pattern			
APPENDIX C Diagram of solar simulator equipments			
APPENDIX D International Publications	160		
CURRICULUM VITAE			

LIST OF TABLES

Tal	Table		
2.1	Properties of Eosin-Y dye	17	
2.2	Stable and some metastable copper sulfides	39	
2.3	Copper sulfide identification	42	
2.4	Aluminium antimonide identification	49	
4.1	The 2 θ diffraction angles (2 θ) and intensities (I) of JCPDS no.06-0464	80	
	compare with experiments		
4.2	Calculated yields of products before and after synthesis	81	
4.3	Ring diffraction pattern values of CuS produced for 3 s	89	
4.4	Ring diffraction pattern values of CuS produced for 5 s	90	
4.5	Show weight and atomic percent ratio of element by EDX	109	
4.6	$V_{\rm oc}$, $J_{\rm sc}$, FF and η for different wt % CuS-PEG electrolyte	114	
B1	TEM constant (L λ) at 200 kV	158	

LIST OF FIGURES

Figu	Figure I		
1.1	Operating mechanism of a Wet-type DSSC	3	
1.2	Operating mechanism of an electrochemical solid-state DSSC with	4	
	a p-type semiconductor replacing the electrolyte containing the redox		
	couple		
2.1	Energy band diagram of a conventional p-n junction solar cell under	8	
	short circuit conditions		
2.2	Schematic energy diagrams for a ZnO dye-sensitized solar cell	11	
2.3	Model of the electron transport and the recombination process in dye-	12	
	sensitized solar cells		
2.4	Structural formula of Eosin-Y	17	
2.5	The current density-voltage $(J-V)$ characteristic curve	22	
2.6	Structure of solid-state dye-sensitized nanocrystalline TiO ₂ solar cells	24	
2.7	Organic p-type semiconductors utilized in solid-state DSSCs	26	
2.8	Process for fabrication of quasi solid-state DSSCs based on gel electrolyte	28	
2.9	Gas metal arcs welding	33	
2.10	Welding power supply	34	
2.11	Copper sulfide phase diagram	39	
2.12	Crystal structures of CuS	40	
2.13	Crystal structure of Cu ₂ S	41	

2.14	SEM images of the products in different conditions	47
2.15	Crystal structure of AlSb	49
2.16	Aluminium antimonide phase diagram	50
2.17	Design of a microwave plasma system working at reduced pressure	56
2.18	Average numbers of electric charges carried by a single nanoparticle	58
2.19	Schematic illustration of the procedure	59
2.20	Schematic diagram of the reaction system	60
2.21	A schematic diagram of microwave plasma equipment	61
2.22	Schematic diagram of Cober microwave system	62
3.1	Schematic diagram used for preparation of CuS	65
3.2	A schematic diagram of the apparatus	66
3.3	Photo of stainless steel electrodes	67
3.4	Photo of stainless steel electrodes contact with sample	67
3.5	Vacuum and heating system image	68
3.6	Preparation flow chart of electrolyte preparation	69
3.7	Preparation flow chart of ZnO photoelectrode	70
3.8	Preparation flow chart of Pt counterelectrode	71
3.9	Preparation flow chart for fabrication of cell assembly	71
3.10	Pressure gauge of microwave plasma system	72
3.11	Position of quartz tube in the microwave oven	72
3.12	Junction of quartz tube and microwave oven	73
3.13	Microwave plasma as operated heating	73
3.14	X-ray diffractometer	74
3.15	Scanning electron microscope	75

xiii

3.16	Transmission electron microscope	76		
3.17	Raman spectrometer			
3.18	3 Luminescence spectrometer			
3.19	UV-Vis-NIR Spectrophotometer	78		
4.1	XRD spectra of the 1 s, 3 s and 5 s products	80		
4.2	Raman spectra of CuS produced for 3 s and 5 s	82		
4.3	PL spectra of the products produced under different lengths of time	83		
4.4	SEM image (a and b) of CuS produced for 1 s	84		
4.5	SEM image (a and b) of CuS produced for 3 s	85		
4.6	SEM image (a and b) of CuS produced for 5 s	86		
4.7	TEM images for 1 s (a and b), 3 s (c) and ring diffraction patterns of	88		
	CuS produced for 3 s (d)			
4.8	TEM images, and ring diffraction patterns of CuS for 5 s (a and b)	89		
4.9	TEM images, and plane (002) of CuS produced for 5 s (a and b)	90		
4.10	SAED simulation patterns (a and c) and HRTEM images (b and d)	91		
	of CuS produced for 5 s			
4.11	XRD spectra of AlSb produced under different conditions	93		
4.12	Raman spectra of AlSb produced under different conditions	94		
4.13	SEM image of AlSb produced at current 80 A for 10 min	94		
4.14	SEM image of AlSb produced at current 110 A for 3 s	95		
4.15a	Ring diffraction pattern of AlSb produced at current 80A for 10min	96		
4.15t	Ring diffraction pattern of AlSb produced at current 110A for 3s	96		
4.150	e SAED pattern of AlSb produced at current 80A for 10min	97		
4.150	1 The simulated patterns of AlSb produced at current 80A for 10min	97		

4.15e SAED pattern of AlSb produced at current 110A for 3s	98
4.15f The simulated patterns of AlSb produced at current 110A for 3s	98
4.16a TEM images of AlSb produced at current 80A for 10min	99
4.16b TEM images of AlSb produced at current 110A for 3s	99
4.17 The relationship between $(\alpha h v)^{1/2}$ and $h v$ of AlSb nanocrystals	101
produced at current 80A for 10min and current 110A for 3s condition	ions
4.18 XRD patterns (a) deposit Zn film on FTO, (b) calcinations of poror	us 102
Zn film to porous ZnO film,(c) FTO	
4.19 DSSC parts: (a) FTO, (b) porous Zn, (c) porous ZnO, and (d) porous	us 103
ZnO after immerse with Eosin Y dye	
4.20 XRD pattern of the CuS (a) synthesized product produced by using	g 104
a solvothermal method [11], with its patterns obtained from the,	
(b) JCPDS database	
4.21a FE-SEM image of Zn particles (×10,000)	105
4.21b FE-SEM image of Zn particles (×30,000)	105
4.21c FE-SEM image of ZnO particles (×10,000)	106
4.21d FE-SEM image of ZnO particles (×30,000)	106
4.21e FE-SEM cross-section image of ZnO and FTO layers	107
4.21f TEM image of ZnO particles	107
4.22 FE-SEM image of synthesized CuS by solvothermal method	108
4.23a SEM-EDX image of Pt particles as catalytic	108
4.23b SEM-EDX Spectrum of Pt particles	109
4.24 UV – vis absorbance spectrum of CuS	110
4.25 Plot of $(\alpha hv)^2$ versus hv in order to obtain band gap energy of CuS	111

4.26	PL spectrum of solid CuS nanoplates 1			
4.27	J- V characteristic curves of DSSCs in the light for different wt %	113		
	CuS-PEG electrolyte			
4.28	J-V characteristic curves of DSSCs in the dark for different wt $\%$	114		
	CuS-PEG electrolyte			
4.29	A schematic diagram of the DSSC	115		
4.30	Photo of completed DSSC	115		
C1	Diagram of solar simulator equipment calibration	159		
C2	Diagram of solar simulator equipment	159		

ABBREVIATIONS AND SYMBOLS

Physical constants

e_o	=	$1.602 \times 10^{-19} \text{ C} = \text{elementary charge}$
h	=	$6.626 \times 10^{-34} \text{ Js]} = \text{Planck constant}$
k _B	=	$1.381 \times 10^{-23} \text{ J K}^{-1} = \text{ Boltzmann constant}$
N _A	=	$6.022 \times 10^{23} \text{ mol}^{-1} = \text{Avogadro's number}$

Physical variables

°C	=	Degree Celcius
Á	=	Angstrom
f	=	Frequency
Ζ.	=	Collision frequency
λ	=	Wavelength
FF	=	Fill factor
E_g	=	Band gap energy
E_{f}	=	Fermi level
$J_{ m sc}$	=	Short circuit current density
$V_{ m oc}$	=	Open circuit voltage
η	=	Energy conversion efficiency
$P_{\rm in}$	=	Incident light power
$V_{\rm max}$	=	Maximum photovoltage
$P_{\rm max}$	=	Maximum power output

xvii

xviii

$R_{\rm sh}$	=	Shunt resistance
$R_{\rm s}$	=	Series resistance
${J}_{ m lim}$	=	Limited current density
$D_{I_3^-}$	=	Diffusion coefficient of I_3^-
$C_{I_3^-}$	=	Concentration of I_3^-
U	=	Energy transferred to a particle
Q	=	Electric charge
т	=	Mass of the particle
α	=	Total absorption coefficient
b	=	Path length
t	=	Effective thickness
ρ	=	Density of sample
Т	=	Transmittance of photon
l	=	Distance between electrodes

Abbreviations

EDS	=	Energy Dispersive X-ray Spectroscopy
PL	=	Photoluminescence Spectrometry
SEM	=	Scanning Electron Microscopy
TEM	=	Transmission Electron Microscopy
XRD	=	X-Ray Diffraction Spectrometer
JCPDS	=	Joint Committee for Powder Diffraction

Standards

IPCE	=	Incident photon-to-current conversion
		efficiency
НОМО	=	Highest occupied molecular orbital
LUMO	=	Lowest unoccupied molecular orbital
AM	=	Air mass
LHE	=	Light harvesting efficiency
DSSC	=	Dye-sensitized solar cell

xix