Dissertation	Factors affecting properties and antioxidant capacities of roselle
	(Hibiscus sabdariffa L.) extracts and their application in meat products
Student	Mr. Thanawoot Parinyapatthanaboot
Student ID.	49068401
Degree	Doctor of Philosophy (Food Science)
Program	Food Science (International Program)
Year	2011
Thesis Adviser	Assoc. Prof. Dr. Praphan Pinsirodom

ABSTRACT

A growing trend in food industry is the development of functional foods or foods from nature. The roselle calyces have attractive color and contain bioactive compounds associated with a number of health benefits that have been confirmed by scientific evidences. Three experiments were conducted to determine: i) the physicochemical and antioxidant properties of roselle extracts prepared by two extraction methods (OG and NG), ii) the antioxidant capacity of roselle extract in Chinese-style sausage as affected by sweeteners and iii) the ability of roselle extract in reactive nitrogen species (RNS) scavenging *in vitro* and nitrite scavenging in meat products.

The properties OG and NG roselle extracts were evaluated under different pH (3.0 and 4.0) with or without sucrose (20 %) and heat treatment (50 to 70 °C). The Delphinidin 3-sambubioside (Dp 3-sam) and Cyaniding 3-sambubioside (Cy 3-sam) were identified as major and minor anthocyanins found in both OG and NG roselle extracts respectively. Significant loss of pH and temperature-dependent anthocyanin pigments were observed in all roselle extract model samples. In addition, results indicated that the highest pigment extraction efficiency was found in the NG roselle at pH 3.0 than at pH 4.0 and then OG roselle. It can be concluded that nano-grinding may favor the extraction of pigments but lead to their serious degradation during storage. *In vitro* antioxidant activities of the OG and NG roselle extracts were evaluated by ferrous ions chelating activity (FICA), trolox equivalent antioxidant capacity (TEAC) and ferric thiocyanate (FTC). Overall results showed that NG samples tended to exhibit higher antioxidant activities for all assay methods compared to the OG samples.

The effect of different sweeteners including sucrose, lactitol, maltitol and xylitol on the physicochemical property and oxidative stability of Chinese-style sausage (CSS) with addition of

roselle anthocyanin extracts (RAE) were evaluated. Xylitol added CSS showed lower moisture content and water activity compared to other sweetener evaluated. No serious changes of color and texture parameters were observed for all CSS samples during 28 day storage. The RAE treated CSS with sucrose addition showed the greatest TBARS values during storage, while the samples with sugar alcohols had significantly lower values. The xylitol can only promote the antioxidant activity of RAE in prevention of lipid oxidation in CSS. Xylitol addition at 16.6 % in the CSS resulted in the sausage with quality characteristics similar to the control CSS. However, xylitol at higher concentration (21.6 %) could cause the pro-oxidant activity in the RAE treated CSS. The sensory evaluation by Quantitative descriptive analysis (QDA) and 7-point hedonic scale revealed a significant higher panel preference for RAE treated CSS with xylitol addition compared to the sucrose added samples and the control CSS (sucrose without RAE). Results also proved the potential use of 16.6 % xylitol with 0.3 % RAE in CSS that ensured the overall quality of the products. It can be concluded that xylitol is a promising alternative sweetener in CSS especially when RAE is used as natural antioxidant.

The ability of RAE in scavenging of reactive nitrogen species (RNS) compared to anthocyanins from black carrot and grape was investigated. These anthocyanin samples exhibited concentration and pH dependent in nitrite scavenging activity. At pH 3.0, the activity increased from 15 to 80 % when the concentration of the anthocyanins increased from 0.1 to 1.0 mg/ml. The nitrite scavenging activity was dramatically decreased when the pH of the reaction system increased from pH 3.0 to 9.0. In addition, the concentration dependent activity was also observed for the nitric oxide scavenging and inhibition of peroxynitrite induced oxidation of Evan-blues dyes. The potency of RNS scavenging activity for the anthoycyanins tested was in the order: grape > roselle > black carrot.

The RAE was then evaluated for its capacity in nitrite reduction in meat products including Vienna pork sausage and traditional Thai fermented pork (Nham). The residual nitrite in RAE treated (0.3 %) Vienna pork sausage with initial 125 and 250 ppm nitrite reduced to 65 and 168 ppm, respectively after refrigerated storage for 24 days. On the other hand, residual nitrite in all Nham samples rapidly decreased > 90 % of the initial nitrite level after 3 days of fermentation at room temperature. Degradation kinetics of nitrite in Nham was the first-order kinetics. The lactic acid fermentation enhanced the reduction of residual nitrite in Nham.

Overall results revealed that roselle calyces can be a good source of anthocyanins with strong antioxidant activity and can potentially be used as natural antioxidant in meat products.

ACKNOWLEDGEMENTS

Many people and organizations have supported and provided assistance during the course of this dissertation and my entire Ph.D. study at the King Mongkut's Institute of Technology Ladkrabang (KMITL).

First of all, I would like to express my deep gratitude to my advisor, Assoc. Prof. Dr. Praphan Pinsirodom for their academic guidance and support throughout the course of my research. Their understanding and willingness to help was fundamental to the completion of this program. I greatly appreciate their criticism and editing of this thesis.

I am grateful to Prof. Dr. Pi-Jen Tsai for sharing the colorful world of anthocyanins with me (and her Lab's members), and for taking me under her wing and guiding me through this long and amazing journey to Ph.D.

I would like to acknowledge The National Research Council of Thailand (NRCT), for a graduate fellowship (2010).

My great appreciation also goes to my committee members, Assist. Prof. Dr. Yuporn Peuchkamut, Assoc. Prof. Dr. Ratiporn Haruenkit, Assoc. Prof. Dr. Adisorn Sawetiwathana and Assist. Prof. Dr. Porjai Thamakorn, and for their suggestions and comments.

Special appreciation goes to Dr. Suchada Maisont, Dr. Thongchai Putthongsiri, and Worlalak Panyathitipong for their help, friendship and support. My labmates in Dr. Pinsirodom's group, M.Sc. students (Food Science), Scientist and laboratory staffs at Faculty of Agro-Industry, I thank them all for their help and encouragement.

Special thanks to The East Asiatic (Thailand) Public Company Limited, Rama Production Company Limited, Ueno Fine Chemicals Industry (Thailand), Limited, and Siam Sorbitol Company Limited for prepare and support anthocyanins and sugars alcohol of this study.

Finally, special heart-felt thanks to my parents for their financial and emotional support and encouragement throughout my study in KMITL.

> Thanawoot Parinyapatthanaboot May 11, 2011

TABLE OF CONTENTS

PAGE

ABSTRACT	Ι
ACKNOWLEDGEMENTS	III
TABLE OF CONTENTS	IV
LIST OF TABLES	VI
LIST OF FIGURES	VII
LIST OF APPENDIXS	XI
LIST OF ABBREVIATIONS	XIII
CHAPTER 1 INTRODUCTION	1
Objectives	3
CHAPTER 2 LITERATURE REVIEWS	4
2.1 Roselle (Hibiscus sabdariffa Linn)	4
2.1.1 Introduction	4
2.1.2 Phytochemistry of roselle	4
2.2 Anthocyanins	7
2.2.1 Introduction	7
2.2.2 Distribution and content of anthocyanins in fruits and vegetables	8
2.2.3 Extraction and determination of anthocyanins	11
2.2.4 Stability of anthocyanins	12
2.2.5 Bioactivity of anthocyanins	14
2.3 Reactive oxygen and nitrogen species	17
2.3.1 Production of reactive oxygen and nitrogen species	17
2.3.2 Sources and chemistry of reactive oxygen species	18
2.3.3 Sources and chemistry of reactive nitrogen species	19
2.4 Meat Curing	22
2.4.1 The curing reaction	22
2.4.2 Residual nitrite	24
2.4.3 Factors affecting levels of residual nitrite	24

TABLE OF CONTENTS (cont.)

PAGE

2.5 Oxidation and antioxidant strategies	25
2.5.1 Lipid oxidation	25
2.5.2 Protein oxidation	28
2.6 Nanotechnology	30
2.6.1 Introduction	30
2.6.2 Relevant physicochemical properties	31
2.6.3 Main applications and potential benefits	32
CHAPTER 3 MATERIALS AND METHODS	35
3.1 Raw materials	35
3.2 Reagents	35
3.3 Equipments	37
3.4 Methods	38
CHAPTER 4 RESULTS AND DISCUSSION	49
CHAPTER 5 CONCLUSION	103
CHAPTER 6 SUGGESTION	106
REFERENCES	107
APPENDIX	124
A Meat products formula	125
B Buffer solution preparation and analytical methods	131
C Sensory evaluation	143
D HPLC chromatogram trace of roselle anthocyanins	146
E Statistical analysis	152
AUTHOR BIOGRAPHY	168

LIST OF TABLES

TABLE		PAGE
2.1	Physicochemical constituents of the fresh calyces and leaves of roselle	5
2.2	Phytochemicals of roselle	5
2.3	Total anthocyanins content in selected common fruits and vegetables	9
2.4	Content of main anthocyanidins in selected fruits and vegetables	10
4.1	Visual colors of OG and NG roselle extracts in model systems at pH 3.0 and	
	4.0 after heating at different temperatures	53
4.2	Changes of total monomericic and polymeric anthocyanins (%) in OG and	
	NG roselle extract solution at pH 3.0 and 4.0 after heating at 50 to 70 $^\circ \rm C$	56
4.2	Kinetic behavior for the thermal degradation of anthocyanins in OG and NG	
4.5	roselle extract solution	60
4.4	Antioxidant activity of roselle anthocyanin extracts determined by FICA ¹ ,	
	TEAC ² and FTC ³ method	63
4.5	Means for moisture content, water activity and pH of RAE treated Chinese-	
	style sausage with different sweeteners during storage at 30 ± 1 °C	66
4.6	Means for moisture content, water activity and pH of RAE treated Chinese-	
	style sausage with different xylitol concentration during storage at 30±1 $^{\circ}$ C	73
4.7	Means for moisture content, water activity and pH of RAE treated Chinese-	
	style sausage with sucrose or xylitol addition during storage at 31±1 $^\circ C$	80
4.8	Changes of color parameters of RAE treated Chinese-style sausage with	
	sucrose or xylitol addition during storage at 31±1 °C	81
4.9	Means for pH of Vienna pork sausage with two levels of sodium nitrite	
	during refrigerated storage at 4±1 °C	92
4.10	Changes of pH values of Nham samples during fermentation at 30±1 °C for	
4.10	7 days	95
4.11	PH values and kinetic parameters for the sodium nitrite degradation in	
	Nham with different concentration of sodium nitrite during 120 h	101
	fermentation times	

LIST OF FIGURES

FIGURE		PAGE
2.1	Basic structure of anthocyanins (flavylium cation)	8
2.2	Interconversion pathways of various forms of anthocyanins in acidic	
	aqueous medium	13
2.3	The formation of reactive oxygen species and nitric oxide	18
2.4	Peroxynitrite reaction pathways. Numbers I to V indicate possible fates of	
	peroxynitrite	21
2.5	Mechanism of lipid oxidation	26
2.6	Mechanism of protein oxidation (RH: fatty acid; P: Protein)	30
4.1	Transmission electron micrographs (TEM) of roselle extracts with primary	
	particle size (a) and secondary particle size (b) after nano-grinding	50
4.2	The UV-spectrum of roselle extracts in different pH citrate-phosphate buffer	
	solution, $1 = OG$ in buffer pH 4.0, $2 = OG$ in buffer pH 3.0, $3 = NG$ in	
	buffer pH 4.0 and 4 = NG in buffer pH 3.0	51
4.3	HPLC chromatogram of anthocyanins in roselle extracts (a) Delphinidin 3-	
	sambubioside (Dp 3-sam) and (b) Cyaniding 3-sambubioside (Cy 3-sam);	
	(a1) Dp 3-sam of NG roselle, ((b1) Cy 3-sam of NG roselle, (a2) Dp 3-sam	
	of OG roselle and (b2) Cy 3-sam of OG roselle	51
4 4	Degradation indexes of OG and NG roselle extracts in model solution at pH	
4.4	3.0 (a) pH 3.0 with 20 $\%$ sucrose (b) and OG and NG roselle extracts in	
	model system at pH 4.0 (c) pH 4.0 with 20 % sucrose (d) during heating at	
	50, 60 and 70 °C	57
4.5	Thermal degradation of anthocyanins from OG roselle extract in model	
	solution at pH 3.0 (a) pH 4.0 (b) and from NG roselle extract in model	
	solution at pH 3.0 (c) pH 4.0 (d) during heating at 50 to 70 $^{\circ}$ C	59
A. C.	Antioxidant properties determined by the ferric thiocyanate method for OG	
4.0	and NG roselle prepared in model solution at pH 3.0 with sucrose after	
	heating at 60 $^{\circ}$ C, ascorbic acid, BHA and Trolox $^{\mathbb{R}}$ was used as positive	
	references	62

LIST OF FIGURES (cont.)

FIGURE	I	PAGE
4.7	Changes of color parameters of Chinese-style sausage as affected by	
	sweeteners during storage at 30 ± 1 °C, a) figure plotted between lightness vs	
	redness , b) yellowness vs total color difference and c) chroma vs hue, n=6.	
	Average coefficient of variation (CV) = 10.25 %	68
4.8	Changes of browning index of Chinese-style sausage as affected by	
	sweeteners during storage at 30±1 °C. Bars with different letters are significantly	
	different (p <0.05), n=6. Average coefficient of variation (CV) = 10.54 %	69
4.9	Changes of TBARS values of RAE treated Chinese-style sausage with	
	different sweeteners during storage at 30±1 °C. Bars with different letters is	
	significantly different (p< 0.05), n=6	70
4.10	Changes of color parameters of RAE treated Chinese-style sausage as	
	affected by different xylitol concentration during storage at 30±1 °C. Bars	
	with different letters are significantly different ($p < 0.05$), n=6	74
4.11	Effect of different xylitol concentration on a) lipid oxidation by TBARS	
	values and b) protein carbonyl of Chinese-style sausage during 0-28 day	
	storage at 31±1 °C. Storage time (day) with different letters is significantly	
	different (p < 0.05), n =6. Average coefficient of variation (CV) = 2.47 %	
	and 5.12 %,	
	respectively	77
4.12	Change of hardness (N), gumminess (N) and chewiness (N*mm) of roasted	
	RAE treated Chinese-style sausage with sucrose or xylitol addition during	
	storage for a) 0 day, b) 7 days, c) 14 days, d) 21 days and e) 28 days at 31±1	
	°C. Within parameter, bars with different letters are significantly different	
	(p<0.05), $n=12$. Average coefficient of variation (CV) = 10.78 %	82
4.13	Quantitative descriptive analysis of roasted RAE treated Chinese-style	
	sausage with sucrose or xylitol addition during storage at 31 ± 1 °C for a) 0	
	day, b) 7 days, c) 14 days, d) 21 days and e) 28 days	85

LIST OF FIGURES (cont.)

FIGURE	1	PAGE
4.14	Sensory evaluation by 7-point hedonic scale of RAE treated Chinese-style	
	sausage with sucrose or xylitol addition during storage at 31±1 $^\circ C$ for a) 0	
	day, b) 7 days, c) 14 days, d) 21 days and e) 28 days	86
4.15	Nitrite scavenging activity of anthocyanins from black carrot, grape and	
	roselle extracts and the standard BHA and ascorbic acid. The data represent	
	the percentage nitrite scavenging at a) pH 3.0, b) pH 6.0 and c) pH 9.0	90
4.16	Nitric oxide scavenging activity of anthocyanins from black carrot, grape	
	and roselle extracts and the standard BHA and ascorbic acid. Bars with	
	different letters are significantly different ($p < 0.05$), n=6	91
4.17	The peroxynitrite scavenging activity of anthocyanins from black carrot,	
	grape and roselle extracts and the standard gallic acid	91
4.18	TBARS values in Vienna pork sausage during storage at 4±1 °c for 24 days,	
	<i>n=6</i>	94
4.19	Residual nitrite in Vienna pork sausage samples during storage at 4 ± 1 °c for	
	24 days, $n=6$. Average coefficient of variation (CV) = 4.70 %	94
4.20	TBARS values in traditional Thai fermented pork sausage during storage at	
	30±1 °C for 7 days, <i>n</i> =6	97
4.21	Residual nitrite in traditional Thai fermented pork sausage during storage at	
	30 ± 1 °C for 7 days, $n=6$. Average coefficient of variation (CV) = 3.18 %	97
4.22	Change of a) pH values and b) acidity as lactic acid in Nham samples as	
	affected of different concentration of sodium nitrite during 120 h	
	fermentation time, $n=6$. Average coefficient of variation (CV) = 1.08 and	
	1.79 % respectively	99
4.23	Residual nitrite in Nham samples during 120 h fermentation times, $n=6$.	
	Average coefficient of variation (CV) = 1.34 %	100
4.24	Sodium nitrite reductions in Nham samples during 120 h fermentation times	100

LIST OF FIGURES (cont.)

FIGURE		PAGE
Appendix A1	Chinese-style sausage formulation by different sweeteners treatment	126
Appendix A2	Chinese-style sausage formulation by xylitol concentration treatment	127
Appendix A3	Chinese-style sausage formulation by sucrose and xylitol treatment	128
Appendix B1	Trolox equivalent antioxidant capacity (TEAC) standard curve ranging	
	from 0.5-3 micromolar (µM)	134
Appendix B2	1,1,3,3 tetramethoxypropane (TEP) standard curve ranging from 0-50	
	micromolar (µM)	136
Appendix B3	Bovine serum (BSA) standard curve ranging from 0-3000 microgram	138
Appendix B4	Absorbance of 1 mM peroxynitrite (16x) [$\lambda_{max @ 301.8} = 1.651$]	141
Appendix B5	Sodium nitrite (NaNO ₂) standard curve ranging from 0-20 microgram	142
Appendix D1	HPLC chromatogram from roselle anthocyanin prepared in phosphate	
	buffer with sucrose and heat at 50 $^{\circ}\mathrm{C}$ for 0 and 386 hr	148
Appendix D2	HPLC chromatogram from roselle anthocyanin prepared in phosphate	
	buffer with sucrose and heat at 60 $^{\circ}$ C for 0 and 199 hr	149
Appendix D3	HPLC chromatogram from roselle anthocyanin prepared in phosphate	
	buffer without sucrose and heat at 60 °C for 0 and 199 hr	150
Appendix D4	HPLC chromatogram from roselle anthocyanin prepared in phosphate	
	buffer with sucrose and heat at 70 °C for 0 and 72 hr	151

LIST OF APPENDIXS

APPENDIX		PAGE
A1	Chinese-style sausage formulation by sweeteners treatment	126
A2	Chinese-style sausage formulation by xylitol concentration treatment	127
A3	Chinese-style sausage formulation by xylitol treatment	128
A4	Vienna sausage formulation by sodium nitrite treatment	129
A5	Thai pork fermented formulation by sodium nitrite treatment	130
A6	Thai pork fermented formulation by sodium nitrite treatment	130
B1	Mcllvaine's buffer system (pH 2.2-8.0)	132
B2	Sodium carbonate-sodium bicarbonate buffer solutions (pH 8.8-10.6)	133
В3	Ferrous ions chelating ability (FICA)	133
B4	Trolox equivalent antioxidant capacity (TEAC) assay	134
В5	Ferric thiocyanate antioxidant assay (FTC)	135
B6	Thiobarbituric acid reactive Ssbstances (TBARS)	136
B7	Protein oxidation (total carbonyls) by 2,4-dinitrophenylhydrazones	137
B8	Nitrite scavenging activity	139
В9	Nitric oxide radical scavenging	140
B10	Peroxynitrite scavenging activity	140
B11	Nitrite residue assay	142
C1	Questionnaire for sensory evaluation (QDA)	144
C2	Questionnaire for sensory evaluation (7-point hedonic scale)	146
E1	Analysis of variance for Hunter L-value in roselle extracts prepared in	
	different pH with and without sucrose during heating 50 to 70° C	153
E2	Analysis of variance for Hunter a-value in roselle extracts prepared in	
	different pH with and without sucrose during heating 50 to 70 $^\circ C$	154
E3	Analysis of variance for Hunter b-value in roselle extracts prepared in	
	different pH with and without sucrose during heating 50 to 70 $^\circ C$	155
E4	Analysis of variance for chroma in roselle extracts prepared in different pH	
	with and without sucrose during heating 50 to 70 $^{\circ}$ C	156
E5	Analysis of variance for hue value in roselle extracts prepared in different	
	pH with and without sucrose during heating 50 to 70 $^\circ$ C	157

LIST OF APPENDIX

APPENDIX	1	PAGE
E6	Analysis of variance for $A_{\rm 420}$ in roselle extracts prepared in different pH	
	with and without sucrose during heating 50 to 70 $^\circ$ C	158
E7	Analysis of variance for A_{520} in roselle extracts prepared in different pH	
	with and without sucrose during heating 50 to 70 $^\circ$ C	159
E8	Analysis of variance for color density in roselle extracts prepared in	
	different pH with and without sucrose during heating 50 to 70 $^{\circ}$ C	160
E9	Analysis of variance for degradation index in roselle extracts prepared in	
	different pH with and without sucrose during heating 50 to 70 $^{\circ}$ C	161
E10	Analysis of variance for monomeric anthocyanins in roselle extracts	
	prepared in different pH with and without sucrose during heating 50 to 70 $^\circ$	
	C	162
F11	Analysis of variance for polymeric anthocyanins in roselle extracts prepared	
EII	in different pH with and without sucrose during heating 50 to 70 $^{\circ}$ C	163
	Analysis of variance for ferric ions chelating ability of roselle extracts	
E12	prepared in different pH with and without sucrose during heating 50 to 70 $^\circ$	
	C	164
	Analysis of variance for Trolox equivalence antioxidant capacity of roselle	
E13	extracts prepared in different pH with and without sucrose during heating 50	
	to 70 °C	165
F14	Analysis of variance for ferrous thiocyanate of roselle extracts prepared in	
E14	different pH with and without sucrose during heating 50 to 70 $^{\circ}$ C	166
F16	Correlations among physicochemical properties of OG and NG roselle	
E15	extracts	167
E16	Correlation among antioxidative capacities of the OG and NG roselle	
	extracts	167

LIST OF ABBREVIATION

ACN	Anthocyanins
OG	"Original-grinding roselle extracts
Ng	"Nano-grinding roselle extracts
Су	Cyanidin
Pg	Pelargonidin
Mv	Malvidin
Pt	Petunidin
Pn	Peonidin
Dp	Delphinidin
FICA	Ferrous ions chelating ability
TEAC	Trolox equivalent antioxidant capacity
FTC	Ferric thiocyanate antioxidant assay
TBARS	Thiobarbituric acid reactive substances
TEP	1,1,3,3 tetramethoxypropane
ROS	Reactive oxygen species
RNS	Reactive nitrogen species
NaNO ₂	Sodium nitrite
ONOO ⁻	Peroxynitrite
NO^-	Nitric oxide
HNO_2	Nitrous acid
N_2O_3	Dinitrogen trioxide
RO_2^-	Peroxyl radicals
CSS	Chinese-style sausage
BHA	Butyric hydroxyanisole
RAE	Roselle anthocyanin extracts
IC ₅₀	inhibitor concentration which results in 50% inhibition of activity