CONTENTS

			PAGE
ABST	RAC	Г (ТНАІ)	iv
ABST	RAC	Γ (ENGLISH)	v
ACKN	NOWI	LEDGEMENTS	vi
CONT	TENT:	S	vii
LIST	OF TA	ABLES	ix
LIST	OF FI	GURES	Х
LIST	OF Al	BBREVIATIONS	xiv
CHAF	PTER		
Ι	INTR	ODUCTION	1
II	LITE	RATURE REVIEWS	4
	А	Anxiety	4
	В	Neural Circuitry of Anxiety	5
	С	GABAergic system	7
	D	Estrogen	11
	Е	Experimental models of anxiety	15
III	MAT	ERIALS AND METHODS	19
	А	Animals	20
	В	Chemicals	20
	С	Experimental protocols	20
	D	Methods	22
IV	RESU	JLTS	33
	1	To investigate the effects of estrogen deprivation on anxiety-	
		like behaviors, GABAA receptor subunits gene expression and	
		serotonergic activity in brain associated with anxiety in	
		ovariectomized rats	34

CHAPTER		PAGE	
2 To investigate wheth	2 To investigate whether lacking of estrogen causes alteration of		
GABA _A receptor fur	GABA _A receptor function and whether these alterations affect		
serotonergic activ	ity in brain associated with		
anxiety		53	
3 To investigate whe	ther estrogen can alleviate anxiety-like		
behavior in ovaried	tomized rat and whether the GABA _A		
receptor function is	modulated by estrogen, which in turn		
modulates the seroto	onergic activity in brain areas related to		
anxiety		65	
V DISCUSSION		78	
VI CONCLUSION		91	
REFERENCES		93	
BIOGRAPHY 114			

•

LIST OF TABLES

PA	GE

Table 2-1	1 Distribution and pharmacological characteristics of the GABA _A	
	receptor subtype in the rat brain	10
Table 3-1	Gene-specific real-time PCR primers for rat GABA _A receptor	
	subunits and 18s rRNA	31
Table 4-1	The body weights, the percent change of body weight and the	
	daily food intake in Ovx and E2 rats at day 7-, 14-, 21- and 28-	
	post-ovariectomy	35
Table 4-2	The uterine weight, percentage of uterine weight to body weight	
	ratio in 7-, 14-, 21- and 28-days Ovx rats	36
Table 4-3	The body weight, percentage change of body weight, daily food	
	intake uterine weight and percentage of uterine weight to body	
	weight in Ovx and E ₂ rats	66

LIST OF FIGURES

		PAGE
Figure 3-1	The elevated T-maze composed of two open- and one closed-	
	arms of equal dimension, connected by the center platform	24
Figure 3-2	The open field was a rectangular box of dimension, in which	
	the floor was divided into 6 x 8 squares	25
Figure 3-3	Diagrammatic representation of brain cutting block	
	illustrating orientation of brain and placement of razor blades	
	to obtain coronal brain sections	27
Figure 3-4	The chromatogram represents peaks of standard DHBA, 5-	
	HIAA and 5-HT measured by HPLC-EC	29
Figure 4-1	The effects of time of estrogen deprivation on anxiety-like	
	behavior in (A) Ovx groups and (B) E ₂ groups	37
Figure 4-2	The effects of time of estrogen deprivation on (A) escape	
	latency in ETM and (B) locomotor activity in the open field	38
Figure 4-3	The chromatograms represent 5-HT and 5-HIAA levels in	
	midbrain of (A) Ovx7, (B) Ovx14, (C) Ovx21 and (D) Ovx28	
	groups measured by HPLC-EC	39
Figure 4-4	The chromatograms represent 5-HT and 5-HIAA levels in	
	midbrain of (A) E7, (B) E14, (C) E21 and (D) E28 groups	
	measured by HPLC-EC	40
Figure 4-5	The effect of time of estrogen deprivation on (A) 5-HT, (B) 5-	
	HIAA levels and (C) 5-HIAA/5-HT ratios in midbrain	41
Figure 4-6	The effect of time of estrogen deprivation on (A) 5-HT, (B) 5-	
	HIAA levels and (C) 5-HIAA/5-HT ratios in amygdala	42

PAGE

Figure 4-7	The effect of time of estrogen deprivation on (A) 5-HT, (B) 5-	
	HIAA levels and (C) 5-HIAA/5-HT ratios in frontal cortex	43
Figure 4-8	The effect of time of estrogen deprivation on (A) 5-HT, (B) 5-	
	HIAA levels and (C) 5-HIAA/5-HT ratios in hippocampus	44
Figure 4-9	The effect of time of estrogen deprivation on (A) 5-HT, (B) 5-	
	HIAA levels and (C) 5-HIAA/5-HT ratios in nucleus	
	accumbens	45
Figure 4-10	The effect of time of estrogen deprivation on (A) 5-HT, (B) 5-	
	HIAA levels and (C) 5-HIAA/5-HT ratios in septum	46
Figure 4-11	The effect of time of estrogen deprivation on (A) 5-HT, (B) 5-	
	HIAA levels and (C) 5-HIAA/5-HT ratios in anterior	
	hypothalamus	47
Figure 4-12	Agarose gel electrophoresis of PCR amplification products of	
	GABA _A receptor $\alpha 2$, $\alpha 3$, $\alpha 4$ subunits and 18s rRNA	48
Figure 4-13	Dissociation curves of PCR amplification products of $\ensuremath{GABA}\xspace_A$	
	receptor (A) a2, (B) a3, (C) a4 subunits and (D) 18s	
	rRNA	49
Figure 4-14	The effect of time of estrogen deprivation on $GABA_A$ receptor	
	(A) α 2-, (B) α 3- and (C) α 4- subunit gene expressions in	
	midbrain	51
Figure 4-15	The effect of time of estrogen deprivation on $GABA_A$ receptor	
	(A) α 2-, (B) α 3- and (C) α 4- subunit gene expressions in	
	amygdala	52
Figure 4-16	The effect of benzodiazepine agonist on anxiety-like behavior	
	in the ETM of the (A) Ovx and (B) E2 groups	54
Figure 4-17	The effect of benzodiazepine agonist on locomotor activity in	
	(A) Ovx groups and (B) E2 groups	55

Figure 4-18	The chromatograms represent 5-HT and 5-HIAA levels in	
	midbrain of (A) vehicle-, (B) 0.25 mg/kg diazepam-, (C) 0.5	
	mg/kg diazepam- and (D) 1.0 mg/kg diazepam- treated Ovx	
	rats as measured by HPLC-EC	56
Figure 4-19	The chromatograms represent 5-HT and 5-HIAA levels in	
	midbrain of (A) vehicle-, (B) 0.25 mg/kg diazepam-, (C) 0.5	
	mg/kg diazepam- and (D) 1.0 mg/kg diazepam- treated E_2 rats	
	as measured by HPLC-EC	57
Figure 4-20	The effects of benzodiazepine agonist on (A) 5-HT, (B) 5-	
	HIAA levels and (C) 5-HIAA/5-HT ratios in the midbrain	58
Figure 4-21	The effects of benzodiazepine agonist on (A) 5-HT, (B) 5-	
	HIAA levels and (C) 5-HIAA/5-HT ratios in the amygdala	59
Figure 4-22	The effects of benzodiazepine agonist on (A) 5-HT, (B) 5-	
	HIAA levels and (C) 5-HIAA/5-HT ratios in the frontal cortex	60
Figure 4-23	The effects of benzodiazepine agonist on (A) 5-HT, (B) 5-	
	HIAA levels and (C) 5-HIAA/5-HT ratios in the hippocampus	61
Figure 4-24	The effects of benzodiazepine agonist on (A) 5-HT, (B) 5-	
	HIAA levels and (C) 5-HIAA/5-HT ratios in the nucleus	
	accumbens	62
Figure 4-25	The effects of benzodiazepine agonist on (A) 5-HT, (B) 5-	
	HIAA levels and (C) 5-HIAA/5-HT ratios in the septum	63
Figure 4-26	The effects of benzodiazepine agonist on (A) 5-HT, (B) 5-	
	HIAA levels and (C) 5-HIAA/5-HT ratios in the anterior	
	hypothalamus	64
Figure 4-27	The effects of benzodiazepine agonist on anxiety-like	
	behavior after long-term ovariectomy in Ovx and $E_{\rm 2}$	
	rats	68
Figure 4-28	The effects of benzodiazepine agonist on escape behavior	
	andlocomotor activity in the Ovx and E2 rats	69

xiii

Figure 4-29	The chromatograms represent 5-HT and 5-HIAA levels in	
	midbrain of (A) Ovx rats treated with vehicle, (B) Ovx rats	
	treated with diazepam, (C) E2 rats treated with vehicle and	
	(D) E2 rats treated with diazepam as measured by HPLC-EC	70
Figure 4-30	The effects of benzodiazepine agonist on the levels of (A) 5-	
	HT, (B) HIAA and 5-HIAA/5-HT ratio in midbrain	71
Figure 4-31	The effects of benzodiazepine agonist on the levels of (A) 5-	
	HT, (B) HIAA and 5-HIAA/5-HT ratio in amygdala	72
Figure 4-32	The effects of benzodiazepine agonist on the levels of (A) 5-	
	HT, (B) HIAA and 5-HIAA/5-HT ratio in frontal cortex	73
Figure 4-33	The effects of benzodiazepine agonist on the levels of (A) 5-	
	HT, (B) HIAA and 5-HIAA/5-HT ratio in hippocampus	74
Figure 4-34	The effects of benzodiazepine agonist on the levels of (A) 5-	
	HT, (B) HIAA and 5-HIAA/5-HT ratio in nucleus accumbens.	75
Figure 4-35	The effects of benzodiazepine agonist on the levels of (A) 5-	
	HT, (B) HIAA and 5-HIAA/5-HT ratio in septum	76
Figure 4-36	The effects of benzodiazepine agonist on the levels of (A) 5-	
	HT, (B) HIAA and 5-HIAA/5-HT ratio in anterior	
	hypothalamus	77

PAGE

LIST OF ABBREVIATIONS

°C	degree Celsius
μg	microgram
μΙ	microliter
μm	micrometer
μΜ	micromolar
5-HIAA	5-hydroxyindoleacetic acid
5-HT	serotonin
5-HTP	5-hydroxytryptophan
8-OH-DPAT	8-hydroxy-2-(di-N-propylamino) tetralin
А	amygdala;
AADC	aromatic L-amino acid decarboxylase
ACh	acetylcholine
Ag	chemical symbol; Silver
AgCl	silver chloride
aH	anterior hypothalamus
am	ante meridiem
BDZs	benzodiazepines
bp	base pair
BW	body weight
cDNA	complementary deoxyribonucleic acid
cm	centimeter
СР	caudate putamen
СТ	threshold cycle
d	day
DA	dopamine
DFI	daily food intake
DHBA	3,4-dihydroxy-benzyl-amine hydrobromide
DNase I	deoxyribonuclease I
DSM	diagnostic and statistical manual
DWG	daily weight gain

E2	17β-estradiol
EC_{50}	effective concentration
EPM	elevated plus-maze
ER	estrogen receptor
ERT	estrogen replacement therapy
ETM	elevated T-maze
FC	frontal cortex
GABA	gamma-aminobutyric acid
GAD	glutamic acid decarboxylase
gm	gram
GP	globus pallidus
Н	hippocampus
HPA	hypothalamic-pituitary-axis
HPLC-EC	high-performance liquid chromatography -
	electrochemical detection
hr	hour
i.p.	intraperitoneal injection
kg	kilogram
lx	lux
М	molarity
MAOI	monoamine oxidase inhibitors
MDMA	3,4-methylenedioxymethamphetamine
mg	milligram
min	minute
ml	milliliter
mM	millimolar
mRNA	messenger RNA
n	number
nA	nano ampere
NA	nucleus accumbens
NE	norepinephrine
ng	nanogram

nm	nanometer
No.	number
NPY	neuropeptide Y
OCD	obsessive-compulsive disorder
ОТ	olfactory tubercle
Ovx	ovariectomized
PAG	periaqueductal gray
PCR	polymerase chain reaction
PD	panic disorder
pН	posterior hypothalamus
pm	post Meridiem
PTSD	post-traumatic stress disorder
RC	remaining cortex
RNA	ribonucleic acid
rRNA	ribosomal RNA
S	seconds
S	septum
SEM	standard errors of mean
SN	substantia nigra
SSRI	selective serotonin reuptake inhibitor
Т	thalamus
TCAs	tricyclic antidepressants
UW	uterine weight
V	volt
veh	vehicle
VT	ventral tegmentum