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CHAPTER 2 THEORIES 
 

2.1 Study Area 
 

The study area is the Bang Pakong river basin, located at 60 kilometer to the east of 

Bangkok and Bang Pakong river basin, is one of the 25 river basins in Thailand. The 

details of physical and hydrological characteristics in the Bang Pakong river basin are as 

follows: 

Topography : Bang Pakong river basin is one of the 25 river basins in Thailand and 

located adjacent to the east of the Chao Phraya river basin. The western boundary of the 

basin is located at the distance of about 60 kilometer east of Bangkok, and its catchment 

area is 17,660 square kilometer.  

 

 

 
(Royal Irrigation Department of Thailand) 

 

 

Figure 2.1 Location of study area. 

 

2.2 Runoff 
 

This study use monthly runoff data from the Hydrology Division of  the Royal 

Irrigation Department of Thailand. Runoff is rain water falling on the ground and then 

flows along the surface down to the river after partial evaporation and seepage into the 

soil. Water flow along the surface is called overland flow, when it flows into the river, 

then it is called the Stream Flow. The usual amount of water flowing down the river is 

about 15% to 35% of the rainfall measured and depends on climate, soil water 

characteristics of the watershed areas and forests in the watershed area, etc.. 
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Table 2.1 Runoff Station in Each Sub-basin of Bang Pakong  River Basin 

 

 

No. 

 

Station 

Code 

 

Station Name 

 

Latitude 

 

Longitude 

 

D.A. 
2( )km  

 

Number of 

elements 

( )N  

 

Missing  

data (%)  

Record Length 

 

Begin date 
End date 

1 KGT1 Prachin Buri 14 03'01"N  101 22'03"E  9,209 132 25 Apr 1966 Mar 1997 

2 KGT3 Ban Ka bin Buri 13 59'05"N  101 42'32"E  7,425 864 25 Apr 1941 Mar 2003 

3 KGT6 Si Maha Phot 13 58'21"N  101 30'57"E  7,978 36 - Apr 1978 Mar 1981 

4 KGT9 
Ban Khao 

Chakan 
13 40'10"N  102 04'35"E  2,264 492 7 Apr 1969 Mar 2013 

5 KGT10 Ban Wang Khian 13 48'29"N  102 03'35"E  2,482 456 4 Apr 1966 Mar 2005 

6 KGT12 Ban Kaeng 13 56'02"N  101 58'41"E  1,478 564 4 Apr 1966 Mar 2013 

7 KGT13 Ban Nang Leng - - 5,347 348 5 Apr 1967 Mar 1997 

8 

 
KGT14 Ban Thung Faek 14 09'30"N  101 52'52"E  354 552 7 Apr 1966 Mar 2013 

9 KGT15 
Ban Rong Luai 

Khok Udom 
14 02'37"N  101 47 '30"E  789 108 23 Apr 1966 Mar 1975 

10 KGT15A 
Ban Kaeng Din 

So 
14 03'46"N  101 55'39"E  548 528 9 Apr 1968 Mar 2013 

11 KGT18 Ban Tha Kloi 13 28'29"N  101 37 '44"E  1,078 420 5 Apr 1969 Mar 2004 

12 KGT19 
Ban Tha Bun 

Mee 
13 23'17"N  101 20'40"E  473 480 4 Apr 1965 Mar 2006 

 

Table 2.2 Runoff Station in Each Sub-basin of Bang Pakong River Basin (Cont.)  
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No. 

 

Station 

Code 

 

Station Name 

 

Latitude 

 

Longitude 

 

D.A. 
2( )km  

 

Number of 

elements 

( )N  

 

Missing  

data (%)  

Record Length 

 

Begin date 
End date 

13 KGT25 
Ban Cham Pa 

Ngam 
13 41'09"N  101 36'32"E  243 156 31 Apr 1959 Mar 1990 

14 KGT27 Ban Khlong Yang 14 12'02"N  101 22'05"E  45 192 21 Apr 1983 Mar 1999 

15 KGT33 Ban Sapan Hin 14 07 '56"N  101 43'52"E  617 156 9 Apr 2000 Mar 2013 

16 KGT42 Ban Ta Ra Pa 13 59'21"N  101 57 '30"E  - 96 18 Apr 2005 Mar 2013 

 



8 
 

The monthly runoff data of Bang Pakong was collected from the Royal Irrigation 

Department of Thailand (RID). The availability and missing data of data each stations 

used in the study are shown in Table 2.4 

 

 

Table 2.3 Length of time series and location where they were observed 

 

No

. 

Station 

Code 

Station Name Number 

of 

elements 

Number 

of 

Missing 

data 

Begin 

Date 

End 

Date 

1 KGT1 Prachin Buri 132 33 Apr 1966 Mar 1997 

2 KGT3 Ban Ka bin Buri 864 88 Apr 1941 Mar  2013 

3 KGT6 Si Maha Phot 36 - Apr 1978 Mar 1981 

4 KGT9 Ban Khao Chakan 492 33 Apr 1969 Mar 2013 

5 KGT10 Ban Wang Khian 456 19 Apr 1966 Mar 2005 

6 KGT12 Ban Kaeng 564 21 Apr 1966 Mar 2013 

7 KGT13 Ban Nang Leng 348 17 Apr 1967 Mar 1997 

8 KGT14 Ban Thung Faek 552 41 Apr 1966 Mar 2013 

9 KGT15 
Ban Rong Luai 

Khok Udom 
108 25 Apr 1966 Mar 1975 

10 KGT15A Ban Kaeng Din So 528 47 Apr 1968 Mar 2013 

11 KGT18 Ban Tha Kloi 420 21 Apr 1969 Mar 2004 

12 KGT19 Ban Tha Bun Mee 480 20 Apr 1965 Mar 2006 

13 KGT25 Ban Cham Pa Ngam 156 48 Apr 1959 Mar 1990 

14 KGT27 Ban Khlong Yang 192 41 Apr 1983 Mar 1999 

15 KGT33 Ban Sapan Hin 156 14 Apr 2000 Mar 2013 

16 KGT42 Ban Ta Ra Pa 96 17 Apr 2005 Mar 2013 

 

Information of this monthly runoff is obtained from the Royal Irrigation Department of 

Thailand.  

In Table 2.3 runoff considered the monthly runoff data of each station in Bang 

Pakong river basin, where missing data points used SSA for gab filling missing data. 

The idea of filling in missing data is to the idea of forecasting and consists in the 

continuation of the structure of the extracted component to the gaps caused by the 

missing data. 
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2.3 The Singular Spectrum Analysis (SSA) 
 

The Singular Spectrum Analysis (SSA) is a data adaptive, nonparametric spectral 

estimation method based on embedding a time series  1,...,tX N in a vector space of 

dimension M . 

 

2.3.1 Defragmenter 
 

The process in this chapter is about the SSA method as follows: 

Step 1: Embedding  

1 2 2 1[ ... ]t N NX x x x x   ,     (2.1) 

1

2

3

1

T

t

N N

x

x

X x

x


 
 
 
 
 
 
  

 ,       (2.2) 

 

where: tX is the matrix of the set data 

 t  is time series, 1,2,3,...,t N  

Format the matrix from matrix T

tX  that contains the data time series in the first column, 

a lag-1 shifted version of that time series in the 2nd
column, etc. in the following matrix: 

 

1 2

2 3 0

0

0 0

N

N N N

x x x

x x
P

x


 
 
 
 
 
 

      (2.3) 

where P is the matrix of lag time. 

 

2.3.2 Covariance matrix 
 

Step 2: Calculating M M covariance matrix  

The SSA method can create the covariance matrix XC  from matrix D  as follows: 

 

' '

' ' '

1 2

2 3 1

11

1

M

M

NN N

NN N N M

x x x

x x x

D

x x x

x x x





 

 
 
 
 
 
 
 
 

     (2.4) 

 

Transpose matrix D , written as follows: 
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' '

' '

'

1 2 1

2 3 1

1 1

N N

T N N

M M N N M N

x x x x

x x x x
D

x x x x





  

 
 
 
 
 
 

    (2.5) 

 

where  

'

1 T

XC D D
N

         (2.6) 

 

Substituting (2.4) and (2.5) in (2.6) we obtain from the equation (2.6) as follows: 

 

' '

' '

' '

'

' ' '

1 2

1 2 1
2 3 1

2 3 1

'

11

1 1

1

1

M

N N
M

N N
X

NN N

M M N N M N
NN N N M

x x x
x x x x

x x x
x x x x

C
N

x x x
x x x x

x x x








  

 

 
  
  
  
  
  
  

 

  (2.7) 

 

1 2 3

2 3 4 1

3 4 5 2

1 2 2 1

M

M

X M

M M M M M M

c c c c

c c c c

C c c c c

c c c c





   

 
 
 
 
 
 
  

      (2.8) 

 

where: XC is the M M  covariance matrix,  

N  is number of data, 

M is number of columns by choosing from matrix, 
'N is 1N M  , 

 
' 1N N M    is number of each row in the matrix, 

 L  is lag time of the matrix, 

 D  is the matrix generated from sliding of a window size. 

 

2.3.3 Eigenvalue and eigenvector 

  

Compute eigenvalues and eigenvector of the covariance matrix XC by decomposing 

eigenvalues, eigenvector and time coefficient from matrix XC with dimension .M M

Solving eigenvalues of covariance matrix XC by finding   satisfies the following: 

   X k kC E E  , 

( ) ( ) 0X k kC E E  , 

     
( ) 0X kC I E  , 

      
 
( ) 0X kC L E  , 

 



11 
 

where: XC is the covariance matrix, 

kE   is the matrix of the eigenvector, 

   is the eigenvalues, 

0    is the zero vector, 

I   is the identity matrix. 

 

Find the nonzero vector and scalar   corresponding in the equation 0XC L   can be 

obtained by: 

 

0XC L  , 

1 2 3

2 3 4 1

3 4 5 2

1 1 2 1

0 0 0

0 0 0

00 0 0

0 0 0

M

M

M

M M M M M MM M

c c c c

c c c c

c c c c

c c c c













   

   
   
   
    
   
   
     

, (2.9) 

 

1 2 3

2 3 4 1

3 4 5 2

1 2 2 1

0

M

M

M

M M M M M M

c c c c

c c c c

c c c c

c c c c













   

 
 


 
  
 
 
  

,    (2.10) 

 

Since this is the M M covariance matrix, we can use the formula given above to find 

its determinant. 

1 2 3

2 3 4 1

3 4 5 2

1 2 2 1

0

0

X

M

M

M

M M M M M M

C L

c c c c

c c c c

c c c c

c c c c













   

 









     (2.11) 

 

Each eigenvalue 1 2 3, , ,..., M     corresponds to the eigenvector 1 2 3, , ,..., ME E E E  

1 2

1 2

M

ME E E

  

 

where each vector 

1

2

k

M

e

e
E

e

 
 
 
 
 
 

has M component. 

The vector 
kE  is the eigenvector of covariance matrix XC , where 1,2,3,...,k M   
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The eigenvectors : 1,2,3,...,kE k M  can be written in matrix form as: 

 

1 2 3

2 3 4 1

3 4 5 2

1 2 2 1

M

M

k M

M M M M M M

e e e e

e e e e

E e e e e

e e e e





   

 
 
 
 
 
 
  

    (2.12) 

where  
kE  is the matrix of the eigenvectors in which each column matrix is the 

eigenvector of matrix XC . For the eigenvector, each mode is extracted from the original 

data.   

 

2.3.4 Principal Components (PC) 
 

To compute the principal components time series of each EOFs by defined matrix A , 

the matrix A  is the principal components time series as follow in (2.13)  

' 'N M M N
A D E

 


     
(2.13) 

This can be written in matrix form as 

  

' '

' ' '

1 2

2 3 1

11

1

M

M

NN N

NN N N M

a a a

a a a

A

a a a

a a a





 

 
 
 
 
 
 
 
 

    (2.14) 

 

where A  is the principal components time series (PC) for each column matrix A , is the 

principal components time series of each EOF. 

 

 2.3.5 Reconstruction (RC) 
 

The process of reconstruction components (RC)  

To compute the reconstruction a missing data, defined matrix R  is the reconstruction as 

follow in  

' M MN M
R A E 
       (2.15) 

 It can be written in matrix form as 
 

' '

' ' '

1 2 1 2 3

2 3 1 2 3 4 1

3 4 5 2

11

1 2 2 11

M M

M M

M

NN N

N M M M MN N M MN M

a a a e e e e

a a a e e e e

R e e e e

a a a

a a a e e e e

 





   

   
   
   
   
   
   
     

  (2.16) 

 

By use linear combinations of these principal components and EOFs, They provide the 

reconstructed components (RCs) and the principal component time series  

The reconstructed matrix R  from the equation (2.15) can be written in matrix form as: 
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' '

' ' '

1 2

2 3 1

11

1

M

M

NN N

NN N N M

r r r

r r r

R

r r r

r r r





 

 
 
 
 
 
 
 
 

       (2.17) 

 

Find average of each diagonal Matrix R  and construct matrix R as follows: 

 

' '

' ' '

1 2

2 3 1

11

1

M

M

NN N

NN N N M

r r r

r r r

RC

r r r

r r r





 

 
 
 
 
 
 
 
 

       (2.18) 

 

2.4 Willmott’s index of agreement 
 

Willmott’s index of agreement is a theory to determine error values obtained by model 

and values obtained from real surveys and is between -1 to 1, the values closer to 1 

indicate that results obtained from the model are reliable but if the value is closer to -1 

indicates that results obtained from the model are not reliable. (Willmott, Robenson and 

Matsuura, 2012) Willmott’s index of agreement is found find as follows: 

 

1

1 1

1

1

1 1

1

1 , 2

2

2

1, 2

N

t t N N
t

t t tN
t t

t

t

r N

t N N
t

t t tN
t t

t t

t

P O

where P O O O

O O

d

O O

where P O O O

P O



 





 






    
 


 
 


   
 



 




 



 

 

where: rd is the value obtained from Willmott theory (the value between -1 to 1), 

 N is the number data, 

 tP  is data prediction from the model at any time t , 

 tO  is data from real survey at any time t , 

 O  is average of data from real survey. 

 

 


