
ROBUST HAND DETECTION IN LOW-RESOLUTION IMAGES

A Thesis Presented

by

Nyan Bo Bo

Master of Science

Information Technology Program

Sirindhorn International Institute of Technology

Thammasat University

October 2007



ROBUST HAND DETECTION IN LOW-RESOLUTION IMAGES

A Thesis Presented

By

Nyan Bo Bo

Submitted to

Sirindhorn International Institute of Technology

Thammasat University

In partial fulfillment of the requirement for the degree of

MASTER OF SCIENCE IN TECHNOLOGY

Approved as to style and content by the Thesis Committee:

Chair and Advisor

Asst. Prof. Bunyarit Uyyanonvara, Ph.D.

Co-Advisor

Asst. Prof. Matthew N. Dailey, Ph.D.

Member

Assoc. Prof. Stanislav S. Makhanov, Ph.D.

Member

Asst. Prof. Toshiaki Kondo, Ph.D.

October 2007

i



Acknowledgment

Firstly, I would like to give my greatest gratitude to my former advisor Asst. Prof. Dr.

Matthew N. Dailey and current advisor Asst. Prof. Dr. Bunyarit Uyyanonvara for their in-

valuable contribution to my research and thesis. I have successfully completed my research,

this thesis and all requirements for my masters degree because of their guidance, support

and encouragement. They are my source of knowledge and wisdom.

I also would like to express my appreciation to my thesis committee members Assoc.

Prof. Dr. Stanislav S. Makhanov and Dr. Toshiaki Kondo for their helpful support, sugges-

tions and comments on my research. Their suggestions and recommendations helped me to

have good progress on my thesis.

I am very grateful to Assoc. Prof. Dr. Thanaruk Theeramunkong, head of the School of

Information and Computer Technology (ICT), for his kind advice, the knowledge and expe-

riences he shared with. Throughout my study, the staff at SIIT, especially the secretaries of

the School of ICT, have helped me with all official paperwork. So, I would like to appreciate

their contributions here.

Then, I also would like to thank Sirindhorn International Institute of Technology (SIIT)

for providing me with a teaching assistant scholarship, not only waiving all of my tuition

fees but also giving me a chance to earn my living expenses.

During my study here in SIIT, my colleagues have created a pleasant atmosphere for me

with their friendly company, helped me to pass over hardship with my study, and shared

experiences they had in doing research. Therefore, I would like to thanks my colleagues for

everything they have done for me. Here, special thanks is given to Ms. Akara Sopharak, Mr.

Sakib Jalil and Mr. Yoichi Nakaguro for their great help during data collecting.

Last, but not least, I would like to give enormous thanks to my father, mother and all

family members for supporting me with their love and care.

ii



Abstract

Robust real-time hand detection and tracking in video sequences would enable many applica-

tions in areas as diverse as human-computer interaction, robotics, security and surveillance,

and sign language-based systems. The first contribution in this thesis is the introduction of

a new approach for detecting human hands that works on single, cluttered, low-resolution

images. My prototype system, which is primarily intended for security applications in which

the images are noisy and low-resolution, is able to detect hands as small as 24×24 pixels

in cluttered scenes. The system uses grayscale appearance information to classify image

sub-windows as either containing or not containing a human hand very rapidly at the cost of

a high false positive rate. To improve on the false positive rate of the main classifier without

affecting its detection rate, I introduce a post-processor system that utilizes the geometric

properties of skin color blobs. The four features, which help discriminating false positives

from real hand, are second contribution of this thesis. When my detector is tested on a test

image set containing 106 hands, 92 of those hands are detected (86.8% detection rate), with

an average false positive rate of 1.19 false positive detections per image. The rapid detec-

tion speed, the high detection rate of 86.8%, and the low false positive rate together ensure

that my proposed system is usable as the main detector in a diverse variety of applications

requiring robust hand detection and tracking in low-resolution, cluttered scenes.

iii



Table of Contents

Chapter Title Page

Signature Page i

Acknowledgment ii

Abstract iii

Table of Contents iv

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Problem Statement 1

1.2 Approach In This Thesis 2

1.3 Organization Of This Thesis 3

2 Literature Review 4

3 Hand Detection System Architecture 7

3.1 Scanning Window 7

3.2 Boosted Classifier Cascade 8

3.3 Skin Detector 12

3.4 Features Extractor 12

3.5 Mahalanobis Classifier 16

3.6 Grouping, Filtering, and Averaging Module 17

4 Experimental Procedures 18

4.1 Data Acquisition 18

4.2 Training and Testing 20

4.2.1 Boosted Classifier Training 20

4.2.2 Skin Detector Training 21

4.2.3 Mahalanobis Classifier Training 22

4.2.4 Parameter Tuning for the System 23

4.2.5 Testing the Complete System 23

iv



4.3 Summary of Experimental Specifications 23

5 Results and Discussion 25

5.1 Experimental Results 25

5.2 Discussion 26

6 Conclusion and Recommendations 30

Bibliography 31

Appendix A: List of Publications 34

v



List of Figures

Figure Page

1.1 Low resolution and relatively noisy image (640×488) captured inexpen-

sive IEEE1394 web cam. By looking at zoomed hand, it is obvious that

detecting hands in this image is very challenging. 2

3.1 Hand detection system architecture. Scanned image pages are classified

as hand or non-hand by a cascade based on Haar-like features then further

filtered by a post-processor based on skin pixel blob analysis. 7

3.2 Explanation of how the scanning window extracts image patches from the

image. 8

3.3 Classifiers in cascade arrangement speeds up the classification by rejecting

most non-hand image patches 8

3.4 Haar-like features used to construct weak classifiers in the boosted classifier

cascade. (a) Viola and Jones features. (b) Lienhart and Maydt features. 9

3.5 Gentle AdaBoost algorithm used to train the classifier cascade of my hand

detector system. 10

3.6 Cascading algorithm arranges boosted classifiers in cascade order to im-

prove detection speed. 11

3.7 (a) Ideal skin detected image of proper hand, which may be produced by

skin detector. (b)Largest connected skin blob of image (a), on which holes

are filled. (Images are synthesized to model problem.) 13

3.8 Illustration to demonstrate how useful four features are in the discrimina-

tion between image patches contain hand and those do not contain proper

hand. Here, feature values for each image are absolute values, i.e. they are

not normalized. (Images are synthesized to model problem.) 14

4.1 Example images from three video sequences taken while person is walking.

The walking path of the model is parallel to the direction of camera and it

is perpendicular to camera’s focal axis in sequence 2. In sequence 3, model

is walking diagonally across the field. 19

4.2 Example positive training images scaled to 24×24 for better visualization. 20

4.3 Example images used for skin detector training. (a) Original color image.

(b) Binary mask image, in which white pixels represent skin pixels and

black pixels represent non-skin pixels on the image (a). 21

vi



4.4 ROC cure between true positive and false positive for different threshold on

Mahalanobis distance. True positive and false positive rate are calculated

based on number of true detection and false detection input to the Maha-

lanobis Classifier. 23

5.1 Hands detected by our complete hand detector system. All detections are

scaled down to standard size 24x24 pixels for easy visualization. 25

5.2 Example detection results of our proposed hand detector system on six con-

secutive frames from test image sequence. Detection on right hand in image

2 is considered as false detection because of the relatively huge detection

window size. 27

5.3 Bar graph showing the reduction of false positives at each important stage

of the hand detector system. 28

5.4 Both image patch 1 and 2 are classified as hand by the boosted classifier

cascade. Skin detected images of those two images are shown below each

of the images. Boundary feature extracted from skin detected binary image

helps in elimination of this kind of false detection. 29

vii



List of Tables

Table Page

4.1 Table showing the performance of the cascade on the holdout set for each

time new stage is added. 22

4.2 Summary of the experimental parameters. 24

5.1 Summary of the result from the testing of complete hand detector system on

the test set containing 99 images. 26

5.2 False positives after each important modules of the detector system. This

table covers only six consecutive frames (shown in Figure 5.2) from test set

and gives the idea of how each stage of the system reduce false positives on

each image. 28

viii



Chapter 1

Introduction

If it were possible to detect and track human hands in video sequences, a variety of useful

applications would be possible. These applications include human-computer interaction,

human-robot interaction, gesture and sign-language recognition, intelligent security systems

and more.

Over the last 15 years, the problem of hand tracking has become an attractive area for re-

search in the field of computer vision. Many early hand tracking systems relied on un-

cluttered static backgrounds, high resolution imagery, and manual initialization. Most of

the modern hand tracking systems are oriented towards sign language recognition, human-

computer interaction, and human-robot interaction. In these applications, it is possible to

make the very useful assumption that only hands are moving while the rest of the scene is

stationary. The problem can be further simplified by assuming that there will be only two

hands, since there should be only one person performing sign language or gestures in the

scene. Nowadays, the systems are becoming more robust, but they generally still require

high resolution imagery.

1.1 Problem Statement

We are primarily interested in hand detection and tracking because monitoring peoples’

hands could be a key to predict what that person is doing. In security applications, it would be

very useful to detect and track hands of people in the scene and perform automated analysis

of their actions, e.g., by determining if they are walking, running, punching someone, or even

identifying any object they are holding. Detecting and tracking hands in security applications

is more challenging than in other applications such as human-computer interaction because

most surveillance cameras provide noisy images, with human figures quite far away and

therefore appearing at a fairly low resolution. The resolution of hands in those images may

be as small as 24×24 pixels or even smaller; detecting such small hands in static images

is a very challenging task. Another difficulty is that motion information is possible in the

security application which aim is to locate human hands and identify the object in the hand

from single image. The problem of detecting hands in single image becomes more difficult

if the hands in the image are in low resolution and noisy.

To track hands in video sequences, we must first detect hands, then use some tracking al-

gorithm to link detected hands from frame to frame. The majority of the hand trackers rely

mostly on relatively simple detection algorithms to initialize the tracker, then fairly power-

ful tracking algorithms maintain an estimate of the state of that hand. For example, some

1



systems simply use a skin detector to detect skin blobs. Systems using such simple detec-

tion algorithms will be less robust when video sequences are cluttered with many potential

hand blobs. A system that is able to robustly detect hands in static images will be a major

contribution to the development of robust hand tracking systems. The hand bounded by the

square in Figure 1.1 is indeed the size of 24×24 pixels and is corrupted by noise. When the

bounded region is cropped out and zoomed as show in lower right corner of Figure 1.1, it

is difficult even for humans to recognize what it is. The ultimate goal of my research is to

construct a system which is able to detect multiple small hands like this in cluttered noisy

single images.

Figure 1.1: Low resolution and relatively noisy image (640×488) captured inexpensive

IEEE1394 web cam. By looking at zoomed hand, it is obvious that detecting hands in this

image is very challenging.

1.2 Approach In This Thesis

Recently, several face detectors [1, 2, 3] have been introduced and some face detectors are

now in commercial applications such as focusing on faces in digital cameras. Among those

face detectors, I hypothesized that the Viola and Jones robust real-time face detection cas-

cade [3] would be useful for detecting hands in static images. But detecting low-resolution

hands is much more challenging than detecting faces since faces have are well structured,

with mouth, eyes, eyebrows, and nose in predictable positions. This structural information is

available even on faces in low-resolution noisy images. For low-resolution hands, in contrast

to faces, there is little useful structural information except the contour of hand, as shown in

Figure 1.1. I found that a straightforward detector based on the Viola and Jones cascade

[3] is not sufficient but does help to eliminate more than 95% of false positives at very high

speed. To provide better performance, I utilize other useful features of hands like skin color

and geometric properties to eliminate the remaining 5% of false positives.

2



I have conducted a thorough evaluation on our proposed system and found that its detection

rate was 86.8% and that its false positive rate was 1.19 false detections per image on average.

The system’s speed and accuracy will enable many useful applications that are based on hand

detection and tracking.

1.3 Organization Of This Thesis

This thesis is organized with six chapters:

Chapter 1 Brief introduction to hand detection and tracking, its applications, and an overview

of the thesis.

Chapter 2 Literature review on hand detection and tracking not only in modern days but

also in early time.

Chapter 3 Detailed explanation of the system architecture and each building block in my

hand detection system.

Chapter 4 Thorough step-by-step description of how data acquisition, training and testing

are carried out.

Chapter 5 Presentation and discussion of the results of the experiments described in Chap-

ter 4.

Chapter 6 Conclusion and recommendations for those who would like to use or improve

upon this work.

3



Chapter 2

Literature Review

Due to the limitations in computing technology and lack of powerful computer vision tech-

niques in early days, tracking of of single hand in less cluttered or non-cluttered scene with

high resolution imagery had been relatively difficult problem during that time. However, a

lot of robust, real-time and useful hand trackers [4, 5, 6] had been introduced. Visual hand

tracker [4], called DigitEyes can track a single hand with 27 degree of freedom in real-time

from gray scale images at the speed of 10 frames per second. Early hand trackers are not

limited only to 2D and some are capable of tracking hand in 3D space. One of the good

example of 3D hand tracker is the real-time 3D hand tracker of Ahmad [5], which can oper-

ate at very fast speed of 30 frames per second. However those systems are not suitable for

detecting and tracking hand in security application since they need high resolution imagery

and detail of hand must be visible in the image.

Some early hand tracking systems like Pfinder [7] would be applicable to the hand detection

problem for security. Pfinder is quite distinct in the fact that it attempts to follow the way

humans look for the hand in images. Instead of directly detecting hands in an image, Pfinder

looks for human bodies first and then easily segments out hands from the rest of the body by

using skin color. However, since detecting humans in a cluttered video sequence is itself a

very difficult problem, and the human body could easily be partially occluded in the scene,

I try to bypass the human detection problem in our work by finding hands directly, without

any attempt to find the entire human body first.

Over past 10 years, computer hardware and software technology is becoming more ad-

vanced, high computational power is available for researchers to implement powerful, so-

phisticated and computational costly algorithms in machine learning and image processing.

Those powerful algorithms enable many robust and practically usable hand detectors and

trackers. Most of the modern hand detectors and trackers are intended for human-computer

action applications and very few researches had been done for security applications.

There are several approaches to hand detection and tracking. The first approach uses skin

color information to segment hands from the background and then tracks segmented hands

between frames using a tracking algorithm. The face and hand tracking system for sign

language recognition [8] first segments the image into skin and non-skin regions using an

elliptical model for skin pixels in CbCr space. Then face detection is used to locate the face

skin blob ideally leaving only the skin blobs of hands. The system constructs a template for

each hand then in subsequent frames, finds the region best matching that template using a

minimum mean-squared error cost function. A similar approach is used by a real-time hand

gesture system based on evolutionary search [9] to detect and track hands for human-robot

interaction. The hands and face tracking system for VR application [10] also follows this

4



approach but this system is extended to track hands and faces in 3D for a virtual reality

application.

Some hand trackers used slightly different approach. The hand tracker of Shamaie and

Sutherland [11] does not use skin color information, so it works on monochrome video

sequences but slightly high resolution imagery and less clutter background seems to be

required. Hands are extracted from the background using a blob analysis algorithm then

tracked using a dynamic model from control theory. Unfortunately, the techniques used in

these systems to locate hand is just a image segmentation based on regional properties and

relying more on tracking. Since tracking algorithms normally require more than two consec-

utive frames, these approaches are not suitable when the goal is to extract hands from single

images.

The approach used in open hand detection in a cluttered single image using finger primitives

[12] is quite distinct from previously mentioned approaches. This system makes use of the

geometric properties of the hand, such as parallel edges of fingers, without the use of skin

color or motion information. Their proposed system is robust to the size and the orientation

of hands with the limitation that one or more fingers must be visible. So, it is not applicable

to my case due to its needs for high resolution imagery, although this system can detect hand

in cluttered single image robustly.

However, there is another approach, where a detection window is scanned over the image

and each of the scanned image patches are classified as hand or non-hand. In this approach,

various object detection techniques are used for classification of scanned image patches and

detector is able to locate hands in static images. This approach is used by robust hand

detector [13], which is able to detect upright hand in pretty high resolution image. Their

system utilized boosted classifier cascade object detector [14, 3] and poses of detectable

hands are limited to six fixed postures. Because of limitation on the postures of hand, their

system is not directly usable for my desired system where hand is assumed to be in arbitrary

posture. A boosted classifier tree for hand shape detection [15] uses similar approach, but it

constructs classifier tree instead of normal classifier cascade. Their system is able to not only

detect hand but also classify the shape and posture of hand. But their system experienced

the limitation of the constraints on the shape and orientation of hand making less applicable

for my problem.

Very robust object detector, boosted classifier cascade [14, 3] is made even more powerful

by introducing new set of Haar-like filters [16] and several variations of AdaBoost learning

algorithm [17]. This improved system was demonstrated as a hand detector, which is able to

detect a hand in infinite number deformations and poses, in research work for human-robot

interaction based on Haar-like features and eigenfaces [18]. According to the illustration of

hand detector output sequences, it seems that the detector was tested on the image sequence,

in which only a single high resolution hand is present, in contrast to our case, in which

multiples hands and entire humans’ body may present in the scene. This makes system less

suitable for applying to my problem without any modification and improvement.

The system intended for real-time hand tracking in crowded scenes [19] tried to utilized

the motion information between two adjacent frames addition to the appearance informa-

tion. The main idea behind this system is from pedestrian detector [20], in which AdaBoost

learning algorithm learn to recognize not only in appearance pattern in a single image but

also the pattern of motion between two consecutive frames. Unfortunately, this system does

5



not work as good as in the case of detecting pedestrian and is not practically usable due to

its high false positive rate. The main reasons for having high false positive rate is that the

speed of hand motion is varied widely and the learning process is not able to generalize the

motion pattern of hand.

From above literature review, some approaches can not be used for hand detection prob-

lem in security applications, although they are very efficient for their intended applications.

However, approach based on general object detector of Viola and Jones [14, 3] and improved

version of it [16, 17] are suitable starting point for my aimed system. Hand detector, men-

tioned in this thesis, is based mainly on this system with additional modules to improve the

performance.

6



Chapter 3

Hand Detection System Architecture

A block diagram of my hand detection system is shown in Figure 3.1. A scan window is

scanned over the input image at different scales and each of the resulting image patches is

fed into a classifier cascade which rapidly determines whether the image patch is a hand.

The classifier cascade eliminates more than 95% of the non-hand regions in a given image.

However, due to the large number of candidate regions in one image, to be practical, the

false positive rate must be further reduced. To serve this need, I add a post-processor to the

system, denoted by dash-line block in Figure 3.1, to further reduce false positive detections.

The post-processor takes advantage of a prior knowledge of hands color and geometry. Skin

detection, feature extraction, and Mahalanobis classification are the essential building blocks

of the post-processor.

Figure 3.1: Hand detection system architecture. Scanned image pages are classified as hand

or non-hand by a cascade based on Haar-like features then further filtered by a post-processor

based on skin pixel blob analysis.

3.1 Scanning Window

When an image is presented to hand detection system (Figure 3.1), a detection window is

scanned over the image at multiple scales, and each resulting image patch is passed to the

boosted classifier cascade. The scanning process is to begin with a detection at the images

original scale with the fixed scanning window size 24×24. After every possible image patch

at that scale has run through the classifier cascade, the image is scaled down by 90% and

the process is repeated until a minimum image size (maximum detection window size) is

reached. The scanning window moves a pixel at a time in either x or y axis, while making

sure that it scanned thorough out the whole image at every scale. The scanning process is

shown as sudo-code in Figure 3.2.

7



Given : Img, an image

Return : ImgSet, a set of image patches

1. Initialize wi = 1/N where i = 1, . . . ,N.

2. Repeat while smallest side of the image Img is equal or grater than

24.

(a) Scan 24×24 pixel window over Img with a step size of one pixel.

(b) Add scanned image patches to the image set ImgSet.

(c) Downscale Img to 90% of its current size.

3. Return the image set ImgSet.

Figure 3.2: Explanation of how the scanning window extracts image patches from the image.

3.2 Boosted Classifier Cascade

The research work on rapid object detection using boosted cascade of simple features [14]

originally proposed the cascade of boosted classifiers as a real-time general object detector

and applied it to face detection [3]. Their work showed that the system can robustly detect

faces in static images independent of the background. The system runs in real-time since

the feature detector is limited to a class of Haar-like filters that can be computed in constant

time with the help of integral images, regardless of the spatial extent of the filters. The speed

of the system is increased even further by arranging the classifiers in a cascaded fashion,

so that the early stages reject most of the image patches unlikely to contain the object of

interest. The cascade therefore only spends significant compute time on the image patches

most likely to contain the object of interest. The illustration shown in Figure 3.3 will give a

clear insight of how cascading helps faster classification.

Figure 3.3: Classifiers in cascade arrangement speeds up the classification by rejecting most

non-hand image patches

Each stage in the cascade is constructed from a set of simple Haar-like filters using AdaBoost

algorithm [21]. AdaBoost builds a strong nonlinear classifier from multiple weak threshold

classifiers, in this case each using a Haar-like filter, a threshold, and a weight, all of which are

selected by AdaBoost to minimize the weighted error for the whole stage over the training

set, while maintaining the desired detection rate. Original detector [14, 3] used the four types

of Haar-like filters shown in Figure 3.4 (a). The filters can take on arbitrary positions and

sizes within an image patch. The output of each filter is simply the difference between the

8



(a)

(b)

Figure 3.4: Haar-like features used to construct weak classifiers in the boosted classifier

cascade. (a) Viola and Jones features. (b) Lienhart and Maydt features.

average pixel value within the clear rectangular regions and the shaded rectangular regions.

They applied integral image technique to compute the value of Haar-like filters in constant

time regardless of the type and size of filter.

An integral image is a special representation of image, on which rectangle Haar-like features

can be computed very rapidly. The integral image is very similar to summed-area tables used

in texture mapping [22] and it is one of the contributions to achieve object detector to operate

in real-time. During detection, integral image for each input image is computed and then the

classifier computes all required features with a few simple mathematical manipulations, only

addition and subtraction.

Recently, an extended set of Haar-like features [16] are added to the original features [14, 3]

for better performance. Their additional rotated Haar-like filter types are shown in Figure

3.4 (b). On a particular test set, they found that their modified system gave 10% fewer

false positives than the original system for certain detection rates. The empirical analysis

of detection cascade of boosted classifier [17] compared Discrete AdaBoost (the algorithm

used by [14, 3]), Real AdaBoost [23], and Gentle AdaBoost[23]. The results from this

comparison analysis showed that classifiers trained with Gentle AdaBoost performed the

best.

Since the results from the work of [17] are very promising, I decided to used their system

as a core boosted classifier cascade in my hand detection system. Due to outstanding per-

formance over other boosting algorithms, Gentle AdaBoost is used as booting algorithm for

training process with all full features set, shown in Figure 3.4 (b). The Gentle AdaBoost is

very similar to AdaBoost algorithm but different in the way weights are updated. The brief

idea of Gentle AdaBoost is shown in Figure 3.5 and please refer to the original work [23]

for more detail.

As boosting algorithms are supervised learning algorithms, a large number of labeled posi-

tive and negative examples must be input to the training process. Positive examples manu-

ally located hands in the images and negative examples are extracted from are background

images. The process to get positives examples and background images will be discuss in

9



Given : αt p the desired true positive rate

α f p the desired false positive rate

N examples (x1,y1),(x2,y2), . . . ,(xN,yN) where x ∈ℜk and y ∈ {−1,1}
Return : A boosted classifier H(x)

1. Initialize wi = 1/N where i = 1, . . . ,N.

2. Repeat until required αt p and α f p is met, while increasing M by 1 at

each time.

(a) Fit the regression function fM(x) by weighted least-squares of yi

to xi with weights wi.

(b) Set new weights wi← wie
−yi fM(xi) where i = 1, . . . ,N.

(c) Renormalize new weights sum of all weight is equal to 1,

∑N
i=1

wi = 1.

(d) Find the αt p and α f p of current classifier H(x) =
sign

[

∑M
m=1

fm(x)
]

on the given N examples.

3. Output the classifier, H(x) = sign
[

∑M
m=1

fm(x)
]

.

Figure 3.5: Gentle AdaBoost algorithm used to train the classifier cascade of my hand de-

tector system.

Chapter 4, Section 4.1. Besides those examples, two important learning parameters must

be specified. Those parameters are the desired true positive and false positive rate for each

stage of the cascade, and one stage is trained at a time until that stage achieves the specified

true positive and false positive rates. Then a new stage is begun, and the process continues

until some stopping criterion is reached. Only the positive examples that are correctly clas-

sified by the previous stages and the negative examples that are incorrectly classified by the

previous stages are used to train each new stage. Figure 3.6 clearly shows how the training

process train and arrange boosted classifiers in cascade order to improve detection speed.

Once we have trained the classifier cascade, image patches can be fed to the cascade for

classification. Each stage in the classifier cascade classifies incoming image patch and passes

to the next stage only if it is classified as a hand until the end of the cascade. The image

patches that are positively classified by the last stage of cascade do have very high possibility

to be true hands but high percentage of false positives are present. So, further post-processors

are needed to reduce those false positives making the whole system to be practically usable.

The complete object detection system techniques mention above [14, 3, 16, 17] are im-

plemented in Open Computer Vision Library [24]. The boosted classifier cascade training

program allows users to train cascade with several choices of Haar-like feature sets and var-

ious boosting algorithms. I use this utility to construct boosted classifier cascade for my

prototype hand detector system.

10



Given : Nstage the desired number of stage in the cascade

αt p the desired true positive rate for each stage of cascade

α f p the desired false positive rate for each stage of cascade

NPstage number of positive example to train each stage of cascade

NNstage number of negative example to train each stage of cascade

Ptotal a set of NPtotal positive examples

where NPtotal ≥ [NPstage +(Nstage×αt p×NPstage)]
Bimage back ground images from which negative examples Nexamples

will be extracted

Return : A cascade of boosted classifier Hcascade

1. Extract NPstage of positive examples Ptrain from given positive exam-

ple set Ptotal .

2. Extract NNstage of negative examples Ntrain from background images

Bimage.

3. Repeat until desired number stage Nstage is exceeded in the cascade.

(a) Train single boosted classifier H that meets desired αt p and α f p

with positive examples Ptrain and negative examples Ntrain as de-

scribed in Figure 3.5.

(b) Add resulting boosted classifier H to the cascade Hcascade.

(c) Test resulting boosted classifier H on training examples Ptrain

and Ntrain.

(d) Positive examples from Ptrain, misclassified by H, are replaced

with new positive examples from positive example set Ptotal .

(e) Negative examples from Ntrain, correctly classified by H, are re-

placed with new negative examples extracted from background

images Bimage.

4. Output the boosted classifier cascade Hcascade.

Figure 3.6: Cascading algorithm arranges boosted classifiers in cascade order to improve

detection speed.

11



3.3 Skin Detector

There are many approaches to segmenting regions with similar color and texture from other

regions. To extract skin color blobs from images, color information is the obvious choice.

Nowadays, there are many skin detectors [25, 26, 27, 28, 29] available and some of those are

very robust. The skin detector for my hand detection system need not be extremely robust

but it should be fast.

The Bayesian maximum likelihood classifier based on color histograms [28], meets all of

these needs. Based on their results and my own follow-up study, I selected the HS (hue and

saturation) color model. The main reason to use only H and S while ignoring I (intensity)

from HSI color space is to eliminate non-uniform illumination problem. Using only HS

color model also saves computational cost and helps skin detector to work on different tone,

i.e. different skin tones over Caucasian, Asian, African, and so on. Histograms used in the

skin detector have two dimensions, namely hue and saturation. Each axis of the plane is

quantized into 16 bins, so that each histogram will have 16×16=256 bins. I selected 16-bin

quantization based on comparison experiments with different bins counts of 8, 16, 32, and

64. I found that 16 bins along each axis gave the best performance for my application.

I construct histograms for skin and non-skin pixels from a large training set. The normalized

histogram counts are used to construct a discrete class-conditional likelihood for a Bayesian

maximum likelihood classifier which I then use to determine whether a given pixel is most

likely skin or not skin. To classify whether a given pixel p is skin pixel or not, H and S

values are computed and quantized into 16 bins for each values. Then probability of being

skin pixel P(s|p) is found from skin histogram using those quantized H and S. From non-

skin histogram, the probability of being non-skin pixel P(¬s|p) is found. According to the

Bayesian maximum likelihood classification, pixel p is classified as skin if:

P(s|p)

P(¬s|p)
> 1.

Otherwise, p is considered as non-skin pixel.

Each image patch which is classified as a hand by the cascade is scaled to a standard size

24×24 pixels and then fed to the skin detector, which produces a binary image, in which the

value 1 represents a putative skin pixel and the value 0 represents a non-skin pixel.

3.4 Features Extractor

The shape and relative size of the skin blob within the detection window give useful informa-

tion for discriminating image patches containing hand from those not containing hand. There

are a many popular and classical shape descriptors like shape signatures, Fourier descriptors

and curvatures [30]. Even more powerful shape analysis and classification technique called

shape context [31] is available. But those techniques demand high computational cost and

are not suitable for classification pretty noisy shape in a small 24x24 pixels binary image. I

did research to find the efficient features best suited to my application.

Finally, I got four simple features which can be used to discriminate between hand image

patches and on-hand image patches. The binary images produced by skin detector may be

12



(a) (b)

Figure 3.7: (a) Ideal skin detected image of proper hand, which may be produced by skin

detector. (b)Largest connected skin blob of image (a), on which holes are filled. (Images are

synthesized to model problem.)

noisy and probably contain multiple connect skin blobs. So, the largest connected blob is

selected and fill the holes on it. The ideal skin detected image of proper hand is is shown in

Figure 3.7 (a) and image (b) shows the hole filled largest connected skin blob. Then, feature

extractor computes four simple features from the largest skin blob that are surprisingly useful

for accurate classification:

1. The area of the blob farea.

2. The length of the perimeter of blob fperimeter.

3. The eccentricity of the blob feccentricity.

4. The number of pixels on the boundary of blob that intersects the detection window

boundary fboundary.

The area feature farea is simply the number of pixels in the largest connected skin compo-

nent; it is normalized by the total number of skin pixels 24×24=576 in the image patch. It

is very obvious that the given image patch is unlikely to contain a hand if the area feature

is very large or very small. As shown in Figure 3.8, image patch containing very large (c)

or small (d) can be easily discriminate from the image patch containing real hand (a) based

only area feature. But (b) can not be discriminated from (a) only using area feature since the

area value for both images are the same. Fortunately, there are other features which are able

to handle this kind of problem.

The perimeter feature fperimeter is the total number of pixels on the perimeter of the largest

connected skin component; it is normalized in the same way as the area feature. I selected

perimeter feature based on the fact that although area and other region properties of two

shape may be the same, the perimeter can be different. Figure 3.8 (a) and (b) clearly demon-

strate this idea. Both images are having slightly same area, eccentricity and boundary but

perimeter feature helps to eliminate image containing non-hand (b) from the positive image

patch (a). However, this feature is usable only for detecting hand in low-resolution condition

where detail of hand is not visible. If detail of hand is visible the range of perimeter for

13



(a) Ideal Hand (b) Hand-like skin color blob

farea - 226 farea - 226

fperimeter - 62 fperimeter - 120

feccentricity - 0.7783 feccentricity - 0.7755

fboundary - 10 fboundary - 10

(c) Non-hand very large skin blob (d) Non-hand small skin blob

farea - 424 farea - 98

fperimeter - 122 fperimeter - 47

feccentricity - 0.4885 feccentricity - 0.7357

fboundary - 37 fboundary - 0

Figure 3.8: Illustration to demonstrate how useful four features are in the discrimination be-

tween image patches contain hand and those do not contain proper hand. Here, feature values

for each image are absolute values, i.e. they are not normalized. (Images are synthesized to

model problem.)

14



hand will be very large due to unlimited deformations and poses of hand in high-resolution

imagery.

The eccentricity feature feccentricity is basically the eccentricity of the ellipse having the same

second moments as the largest connected skin component, i.e., the ratio of the distance

between the foci of the ellipse and its major axis length. Eccentricity is computed with

technique used by function regionprops in Image Processing Toolbox of MATLAB 6.5 [32].

We know xi and yi, locations of x−y location of n skin pixels, from the skin detected binary

image. Then, the second order moments relative to x axis µxx, y axis µyy and both axis µxy

can computed as

µxx =
n

∑
i=1

(xi− x)2

n
+

1

12

µyy =
n

∑
i=1

(yi− y)2

n
+

1

12

µxy =
n

∑
i=1

(xi− x)× (yi− y)

n

where x is the mean value of xi

x =
n

∑
i=1

xi

n

and y is the mean value of yi

y =
n

∑
i=1

yi

n
.

From those second order moments, the eccentricity is computed by using following mathe-

matical formula.

feccentricity =

√

√

√

√

√

2

√

(µxx−µyy)
2 +

(

4µ2
xy

)

µxx +µyy +
√

(µxx−µyy)
2 +

(

4µ2
xy

)

The eccentricity value range is between 0 and 1, with 0 indicating a circle and 1 indicating

a line segment. This feature helps to discriminate face skin regions and other round shape

skin colored objects, which tend to be quite round, from true hand skin regions, which tend

to be more eccentric.

Finally, the boundary feature fboundary helps to discriminate between arm skin regions, which

tend to intersect the boundary of the detection window in two places, from true hand skin

regions, which only intersect the detection window at the wrist. The boundary feature

value is normalized by the total number of pixel on the perimeter of the detection window,

(24×2)+[(24−2)×2]=92 in our case.The boundary feature provides information about how

wrist-like the boundary is. Boundary feature also helps eliminate negative image patches

containing skin color blob that intersects with detection window at several places or does

not intersect at all. This can be seen clearly in Figure 3.8 (a), (c) and (d). Since skin-color

blob in (c) intersects with detection windows at several places its boundary value is very

much larger than that of image patch containing real hand (a). Moreover, boundary value of

negative image patch (d) is zero, very much lesser than that of positive image patch (a) be-

cause skin-color blob in image patch (d) does not intersect with detection window boundary.

15



3.5 Mahalanobis Classifier

No matter how good those four features are, they will not be efficiently utilized for classifica-

tion without a suitable classifier. There are many classification techniques available ranging

from very simple statistical Gaussian classifier to complex state of art classifiers such as

support vector machine (SVM). Among those, classical artificial neural networks are very

popular choices.

I prefer classifiers that are simple with few parameters to tune and training process of the

classifier to be simple. The computation cost of should be low so that there will be some pos-

sibility that hand tracking system or higher level applications based on my hand detector will

be able to run in real-time. I found that a simple classifier based on Mahalanobis distance is

a reasonable choice. The advantage of using Mahalanobis distance over Euclidean distance

is that it take account the patterns of covariance that exist in the data during computation

[33].

Each image patch can be represented by a feature vector consisting of the area, perimeter,

eccentricity, and boundary features. To classify a given feature vector ~f as a true hand or not

a hand, we calculate the Mahalanobis distance

dMahalanobis = (~f −~µ)T Σ−1(~f −~µ)

between the feature vector ~f and the mean feature vector µ, then we classify ~f as a hand

if dMahalanobis is less than some threshold θ. Here the mean hand feature vector~µ, the co-

variance matrix Σ and they are computed from the four features of given sample positive

examples matrix:

fsample =











~f1

~f2

...
~fn











=











farea1
fperimeter1

feccentricity1
fboundary1

farea2
fperimeter2

feccentricity2
fboundary1

...
...

...
...

farean
fperimetern

feccentricityn
fboundaryn











.

So, fsample is n×4 matrix, where n is the total number of sample positive image patches. The

procedure to get sample positive image patches will be described in Chapter 4, Subsection

4.2.3. The mean hand feature vector is simple computed from fsample as:

~µ =
[

µarea µperimeter µeccentricity µboundary

]

=
1

n

n

∑
i=1

~fi.

Then, covariance matrix Σ is computed by using following formula:

Σ =
χT ×χ

n

where χ is simply computed by subtracting~µ from each row of the matrix fsample:

χ =











~f1−~µ
~f2−~µ

...
~fn−~µ











16



and dimensions is same as dimensions of matrix fsample. The resulting covariance matrix

σ is 4×4 matrix. The distance threshold θ are estimated from the training set and will be

discussed more in Chapter 4, Subsection 4.2.3.

Once classification for each possible detection windows is done, the positively detected

hands are fed to the final module, the grouping, filtering, and averaging module. Further

reduction of false positives is done there.

3.6 Grouping, Filtering, and Averaging Module

The Mahalanobis classifier produces a few very sparsely distributed false positives and

densely distributed true detections around the actual targets. Since it produces several true

detections around each of the actual detections, grouping and averaging is necessary to en-

sure only one detection for each target. I use the existing implementation of this technique

in the OpenCV.

Grouping process groups the nearby detections together. Given square shape detection D1

and D2 are taken to be in the same group if the following requirements are met.

1. D2x is in the range of [D1x± (D1w×0.2)],

2. D2y is in the range of [D1y± (D1w×0.2)],

3. D2w ≤ (D1w×1.2), and

4. D1w ≤ (D2w×1.2).

Where D1x and D1y is the x, y location of D1

D2x and D2y is the x, y location of D2

D1w is the width of D1

D2w is the width of D2.

Once grouping is done, a group which contains less than some number of detections can be

disposed of on the assumption it is a false positive. Then the averaging process takes the

average of detection windows in each remaining group resulting only one detection window

for each group. The positively detected hands output from this module could then be for-

warded to another component in an integrated application, for example a gesture recognition

module. But, in this thesis, I simply evaluate the performance and efficiency of the proposed

algorithm on a series of video sequences. The following chapter describes my experiments

in detail.

17



Chapter 4

Experimental Procedures

4.1 Data Acquisition

For the purpose of training, testing and evaluation of the proposed hand detection system, I

captured 12 video sequences in a moderately cluttered laboratory environment. Four people

volunteered to be models, and I captured three video sequences for each person. In the first

sequence, each model walked away from the camera then came back to the starting position,

in a direction parallel to the camera angle (Sequence 1, Figure 4.1). In the second sequence,

each model walked back and forth across the field of view in a direction perpendicular to

the camera angle, at three different distances from the camera(Sequence 2, Figure 4.1). In

the last sequence, each model walked diagonally across the field of view, starting from a

position to the right or left of the camera then returned to the start position, and repeated the

procedure beginning from the other side of the camera (Sequence 3, Figure 4.1).

I captured the video sequences at 15 frames per second with an inexpensive Fire-i IEEE1394

web camera at a resolution of 640×480 pixels. Each sequence lasted approximately 30

seconds. After video capture, all visible hands not smaller than the standard size of 24×24

pixels in every image of all 12 sequences were manually located. A total of 2,246 hand

locations were obtained. Our criteria for locating the selection window on the hand was that

the hand should be roughly at the center of the window while taking up about 50% of the

pixel area of the selection window. Some examples are shown in Figure 4.2.

Of the 12 video sequences, 11 were used to train the system and the remaining sequence

was reserved for testing and evaluating the complete hand detection system. To train the

boosted classifier cascade, I used 2,000 hands as positive examples, and negative examples

were automatically extracted from a set of background images. As background images,

I used four randomly selected images from the video sequences that did not contain any

human. I created an additional set of background images using six randomly selected images

containing humans. From each image, I cut out two large regions that did not containing

hands but did contain other body parts such as faces and arms. From the test image sequence,

I selected 99 images, each of containing at least one hand not smaller than 24×24 pixels.

These 99 images contained a total of 106 proper hands. All of our test evaluation calculations

are based on those 106 proper hands. I also prepared a holdout set by randomly selecting 100

images from the 11 training video sequences. This holdout set was used to monitor system

performance as well as to tune system parameters.

I also captured 10 images at two different locations under different lighting condition to train

skin and non-skin histograms for skin detector. Skin pixels are manually marked on those

images by creating binary mask images where 1’s represent skin pixels and 0’s represent non-

18



Sequence 1

Sequence 2

Sequence 3

Figure 4.1: Example images from three video sequences taken while person is walking. The

walking path of the model is parallel to the direction of camera and it is perpendicular to

camera’s focal axis in sequence 2. In sequence 3, model is walking diagonally across the

field.

19



Figure 4.2 Example positive training images scaled to 24×24 for better visualization.

skin pixels as show in Figure 4.3. From 10 images, I obtained 70,475 skin and 1,203,094

non-skin pixels for the training of two histograms required for skin detector.

4.2 Training and Testing

To construct and test the hand classification system, I begin by training of a boosted classifier

cascade on positive and negative examples of hands. Then I train a skin detector using posi-

tive and negative examples of skin pixels. Based on the positive detections by the classifier

cascade and the output of the skin detector, I train a Mahalanobis classifier to filter out false

positives. To complete the classifier, I determine the optimal minimum number of positive

detections in a region of the image to be classified as a hand. For these steps I use a train-

ing set of 11 video sequences. Finally, after all system parameters have been determined,

I test on a never-seen twelfth video sequence. The details of each step are described in the

following subsections.

4.2.1 Boosted Classifier Training

To train the classifier cascade, I used the previously described 2000 manually located hands

from the eleven training video sequences as positive examples and the 16 previously de-

scribed background images.

The important parameters of the training process are the minimum hit rate (true positive rate

αt p) and maximum false alarm rate (false positive rateα f p). Every stage in the cascade must

20



(a) (b)

Figure 4.3: Example images used for skin detector training. (a) Original color image. (b)

Binary mask image, in which white pixels represent skin pixels and black pixels represent

non-skin pixels on the image (a).

satisfy these criteria on the training set. I used 100% for the hit rate αt p and 60% for the false

alarm rate α f p. This means when adding a new stage to the classifier, the training system

keeps adding additional weak classifiers to that stage until it correctly classifies all of the

positive training examples with at most a 60% false alarm rate. The training system extracts

the desired number of negative examples, 4,000 for my experiment, by scanning a window

with different scales over the background images. After training one stage of the classifier,

the negative examples which are correctly classified are disposed of and the system extracts a

sufficient number of new negative examples. As mentioned in section 3.2, I used the Gentle

AdaBoost [23] variant of AdaBoost and the full Haar-like feature set [16].

During the training process, I monitored the performance of the cascade on the holdout set

by examining both true positive rate and false positive rate every time new stage is added

to the cascade. By examining true positive and false positive rates displayed in Table 4.1, it

is obvious that cascade containing 12 stages of strong classifiers gave the optimum perfor-

mance. The 12-stage classifier had a 97.5% detection rate on the holdout set, while having a

reasonably low false positive rate of about 0.3% on the holdout set. A false positive rate of

0.3% may seem quite low but in fact this means I had an average of 1,033 false positive de-

tections per image because one image contains more than 300,000 possible image patches.

Clearly, these results indicate that a post processor is necessary to further eliminate false

positives if the system is to be usable in practical applications.

The training was done on Pentium 4 desktop personal computer with the processor speed of

3.00 GHz, 1.00 GB of RAM, and took about seven days to complete training of 14 stages.

4.2.2 Skin Detector Training

To train our skin detector, previously mentioned 10 training images and their mask images

were fed to the skin detector training process. The training process computes the hue (H)

and saturation (S) for each pixel and quantizes each value into one of 16 bins. From the

quantized values of skin pixels that is represent by value 1 on mask image, 2D histogram

for skin was constructed. Another histogram is constructed from the quantized values of the

non-skin pixels. Both histograms were constructed by simply counting the number of pixels

21



Table 4.1: Table showing the performance of the cascade on the holdout set for each time

new stage is added.

Cascade Size Number of True Positive Number of False Positive

(Total 121 hands) (for 100 holdout images)

1 121 More than 107

2 121 More than 107

3 121 More than 107

4 121 6,067,366

5 121 3,353,965

6 121 1,893,092

7 121 1,032,368

8 120 613,260

9 119 389,034

10 118 219,463

11 118 145,372

12 118 103,393

13 115 73,085

14 115 54,466

which belong to same bin, and they were normalized by the total number of pixels used to

construct the histogram.

4.2.3 Mahalanobis Classifier Training

The purpose of the Mahalanobis classifier is to eliminate the false detections made by the

boosted classifier cascade while still maintaining a high detection rate. As the detection win-

dow is scanned over every image in the training set, the boosted classifier outputs both true

positive and false positive image patches. I found 78,658 true positives on our training set

then randomly selected 6,000 true positives as sample positive image patches for computing

the mean feature vector µ and covariance matrix Σ for the Mahalanobis classifier.

After I obtained µ and Σ for the Mahalanobis classifier, I need to find the optimum threshold.

To do so, I scanned a detection window over every image in the holdout set and separated the

detected image patches into false positives and true positives using the known hand locations

for the holdout set. I extracted the Mahalanobis classifiers four features from each detected

image patches and calculated the Mahalanobis distance between the feature vector of each

image patch and the mean feature vector . As the class for each image patch is known, I

plotted the ROC curve as shown in Figure 4.4. At this point, a detection rate of less than

100% is acceptable because the classifier cascade typically produces multiple true detections

around each hand. Examining the ROC curve, I found that a Mahalanobis distance of 2.9

is a reasonable threshold since this threshold gives a very low false positive rate (6%) while

giving an acceptable true positive rate (60%) on the image patches output by the classifier

cascade.

22



Figure 4.4: ROC cure between true positive and false positive for different threshold on

Mahalanobis distance. True positive and false positive rate are calculated based on number

of true detection and false detection input to the Mahalanobis Classifier.

4.2.4 Parameter Tuning for the System

Once all the required building blocks for hand detection are in place, I need to specify one

last parameter, i.e., the minimum number of nearby positive image patches required for the

Group, Filter, and Average block. In practice, this parameter must be tuned to achieve a

good detection rate. To tune this parameter, I assembled all of the building blocks into a

complete system then tested it on the holdout set with various values for neither parameter.

I found that a minimum of 4 neighboring patches produced the optimal result: 81.8% of the

hands in the holdout set were detected and the false positive rate was also relatively low, an

average of 1.55 false positives per image.

4.2.5 Testing the Complete System

I tested the complete hand detection system on the test set that was never used in any part

of the training process. As previously described I used 99 images containing 106 hands in

known locations. The detailed results of the test are discussed in the next chapter.

4.3 Summary of Experimental Specifications

The experimental specifications for the experiments conducted in my study are clearly sum-

marized in Table 4.2.

23



Table 4.2 Summary of the experimental parameters.

Data Acquisition Total Number of video sequence 12

Frame size 640×480

Frame rate 15 fps

Boosted classifier Number of video sequence used 11

cascade training Number of positive examples 2000

Number of negative examples for each stage 4000

Desired true positive rate αt p for each stage 100%

Desired false positive rate α f p for each stage 60%

Total number of stage 12

Total number of weak classifier 391

Skin detector training Number of skin pixel 70,475

Number of non-skin pixel 1,203,094

Number of bin 16×16=256

Mahalanobis classifier Number of positive sample 3000

training Threshold on Mahalanobis distance 2.9

Group, Average and Filter Minimum number of member in eligible group 4

Testing Number of video sequence used 1

Total number of image tested 99

Total number of eligible hand 106

24



Chapter 5

Results and Discussion

5.1 Experimental Results

When system was tested on the test set, results turned out very satisfactory. The final hand

detector detects 92 hands (86.8%) of the 106 hands in the test set, with an acceptable false

positive rate of 1.19 false detections per image on average. A detection rate of 86.8% will

enable many applications based on hand detection. All hands detected are shown in Figure

5.1. Although all detected hand image patches are scaled down to 24×24 pixels for easy vi-

sualization, actually size image patched varied from 25×25 to 65×65 pixels. By examining

the result detections, I found that ratio between the size of the hand and detection windows

is almost constant. So, it is possible to predict the size of hand from the size of the detection

window.

Figure 5.1: Hands detected by our complete hand detector system. All detections are scaled

down to standard size 24x24 pixels for easy visualization.

For each detection, decision making of whether it is true positive or false positive is based on

ground truth bounding square box previously put around hands as described in Section 4.1.

For accepting a given detection as a true detection, the following criteria must be satisfied.

1. The Euclidean distance between a candidate detection and ground truth detection must

25



not exceed the size of the ground truth detection window.

2. The size of a candidate detection window must not be smaller the the half size of the

ground truth detection window.

3. The size of a candidate detection window must not exceed the twice of the ground

truth detection window size.

The summary results from my study is shown in Table 5.1.

Table 5.1: Summary of the result from the testing of complete hand detector system on the

test set containing 99 images.

Number of image in test set 99

Number of eligible hand 106

Number of hand detected 92

Detection rate 86.8%

Total number of false positive 126

Average number of false positive per image 1.19

5.2 Discussion

The example detections on six consecutive images from the test video sequence by complete

hand detector system are shown in Figure 5.2. All hands were detected in all six images

but detection on the right hand in Image 2 is not count as positive due to its size. The false

detection on the the desktop computer in the middle of scene is present in all six images and

almost all the rest of the images in the test set. The main cause of this false positive is that the

computers color and texture are in fact similar to that of a hand. So, any stage of the system

could not reject this false detection. But this kind of false positive detection on a stationary

object will be eliminated if we utilize motion information between two consecutive frames

in the video sequence. The negative result of using motion information is that only moving

hands will be detected and detector will miss the stationary hands.

I have also analyzed the performance of each module of the system. Over 107 false positives

from all 99 images in test set are reject only by boosted classifier cascade very rapidly,

while preserving 105 hands of total 106 hands. There are still 79,362 false positives for 99

images (about 800 false positives per image) and it is not practically usable. But 95.28% of

those positives are surprisingly reduced by skin detector, feature extractor and Mahalanobis

classifier, leaving only 3,748 false positives for whole test set, i.e. only average 37.85 false

positives per image. At this point, total of three true hands are lost, one is wrongly rejected

boosted classifier cascade and the other two are misclassified by Mahalanobis classifier.

Finally, the group, filter and average module could get rid of all false positives, except false

detection on the desktop computer as mentioned before. The reduction in average number

false positive for one image at each important modules of the system can be clearly seen

in Figure 5.3. Moreover, Table 5.2 shows false positives after each stage of system on six

images shown in Figure 5.2.

26



Image 1 Image 2

(Hit - 2, Miss - 0, False Positive - 1) (Hit - 1, Miss - 1, False Positive - 3)

Image 3 Image 4

(Hit - 2, Miss - 0, False Positive - 1) (Hit - 2, Miss - 0, False Positive - 1)

Image 5 Image 6

(Hit - 2, Miss - 0, False Positive - 1) (Hit - 1, Miss - 0, False Positive - 1)

Figure 5.2: Example detection results of our proposed hand detector system on six consec-

utive frames from test image sequence. Detection on right hand in image 2 is considered as

false detection because of the relatively huge detection window size.

27



Figure 5.3: Bar graph showing the reduction of false positives at each important stage of the

hand detector system.

Table 5.2: False positives after each important modules of the detector system. This table

covers only six consecutive frames (shown in Figure 5.2) from test set and gives the idea of

how each stage of the system reduce false positives on each image.

Image Name Number of FP after Number of FP after Number of FP after Group,

Cascaded Classifier Mahalanobis Classifier Filter and Average

Image 1 749 40 1

Image 2 762 56 3

Image 3 811 38 1

Image 4 933 20 1

Image 5 1047 96 1

Image 6 978 30 1

Most of the 14 missed hands from test set have relatively large detection windows around it,

i.e. system really did not missed those hands. During evaluation of the performance of the

system, I considered those large detection windows on hands as a false detections because

those detection windows do not meet the criteria mention above. This kind of error is caused

mainly by the groping and averaging operations. During grouping process, nearby false

detections are taken in to the group of real detections because those false detections meet

the criteria to be considered as a group member of real detections. Then group with widely

spread member detections are formed and when those detections are averaged, the resulting

detection window becomes relatively large to be considered as real detection. However, po-

sition and size of those missing hands can be estimated from two adjacent frames if detector

is working on video sequence.

From the through analysis, I also found that boosted classifier cascade sometimes classified

arm as a hand, as shown in image patch 2 of Figure 5.4. For human, it is quite obvious that

image patch 1 from Figure 5.4 is a hand and image patch is not. But my loosely trained

28



cascade could not discriminate between those two images. It is even difficult problem for

Mahalanobis classifier since area, perimeter and eccentricity values of image patch 2 are very

similar to those of image patch containing actual hands as you can see in the skin detected

images of image patch 1 and 2 in Figure 5.4. Fortunately, boundary feature is good enough

eliminate this kind of false positives because number of boundary pixels in image patch 2

is almost twice of the number of boundary pixels in image path 1. However, most of the

false positives produced by boosted classifier are sure to be eliminated mainly based on area

feature by Mahalanobis classifier since most of the false positives do not contain any skin

color pixels, or contain very less skin pixels.

[h]

Image patch 1 Image patch 2

Image patch 1 after skin detection Image Patch 2 after skin detection

Figure 5.4: Both image patch 1 and 2 are classified as hand by the boosted classifier cascade.

Skin detected images of those two images are shown below each of the images. Boundary

feature extracted from skin detected binary image helps in elimination of this kind of false

detection.

Since, my hand detection system mentioned in this thesis is only a prototype system, the

speed of the whole system could not be measured. However, the processing time for boosted

classifier cascade may not exceed 150 ms on modern desktop computers. The approximated

computing time for post-processor system is less than 100 ms. So, my hand detector is

expected to be able to detect hands at 4 frames (640x480 resolution) per second.

29



Chapter 6

Conclusion and Recommendations

From the literature, we know that hand detectors incorporating boosting and Haar-like fea-

tures perform quite well in applications like sign-language recognition, in which images

are relatively high resolution with less cluttered background and constrained hand gesture.

These approaches suffer from high false positive rates and low detection rates when applied

to detect less constrained hands in low resolution and cluttered images.

However, I find that these limitations can be overcome with the help of a simple but efficient

post processing system. In my experiments, the prototype hand detection system achieved

excellent performance on its test set. One important limitation of this work is that both the

training and testing image sequences were captured in the same environment. This means

that the performance of our current system is likely background dependent; if so, the reported

performance is optimistic. Another possible limitation is that the system may not work well

on the image, taken while human is the motion beside normal walking. I had doubt about this

limitation because the classifier cascade was trained only on the hands of working humans.

So far, current results indicate that my hand detector can be efficiently used to locate hands

for applications such as gesture recognition and human action recognition systems.

As recommendations for those who would like to make use of or improve my system, I

would like to recommend finding new features, which help discriminate true hand from false

hand more, from skin detected binary image. Then, more false positives can be eliminated.

Although I used boosted classifier cascade based on the rapid object detector [14, 3] because

of its rapid detection, it is not much robust to the rotation of hand according to the analysis on

the rotational robustness of hand detection with Viola-Jones detector [34]. The performance

of the system will be improved, especially in detection rate, if boosted classifier cascade can

be replace with a high speed classifier that is more robust to rotation. The tuning of system

parameters such as threshold of Mahalanobis classifier and number of neighbor may help

improving detection rate while reducing false positive rate.

30



Bibliography

[1] H. Rowley, S. Baluja, and T. Kanade, “Neural network-based face detection,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 1, no. 20, pp. 23–28,

1998.

[2] D. Roth, M. Yang, and N. Ahuja, “A SNoW-based face detector,” in Advances in Neural

Information Processing Systems (NIPS), pp. 855–861, 2000.

[3] P. A. Viola and M. J. Jones, “Robust real-time face detection,” International Journal of

Computer Vision, vol. 57, no. 2, pp. 137–154, 2004.

[4] J. M. Rehg and T. Kanade, “Visual tracking of high DOF articulated structures: An ap-

plication to human hand tracking,” in Third European Conference on Computer Vision,

pp. 35–46, 1994.

[5] S. Ahmad, “A usable real-time 3D hand tracker,” in Proceedings of the 28th IEEE

Asilomar Conference on Signals, Systems and Computers, pp. 1257–1261, 1995.

[6] J. Segen and S. Kumar, “Human-computer interaction using gesture recognition and

3D hand tracking,” in Proceedings of the IEEE International Conference on Image

Processing, pp. 188–192, 1998.

[7] C. R. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, “Pfinder: Real-time tracking

of the human body,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 19, no. 7, pp. 780–785, 1997.

[8] N. Soontranon, S. Aramvith, and T. H. Chalidabhongse, “Face and hands localization

and tracking for sign language recognition,” in International Symposium on Communi-

cations and Information Technologies, pp. 1246–1251, 2004.

[9] J. Wachs, H. Stern, Y. Edan, M. Gillam, C. Feied, M. Smith, and J. Handler, “A real-

time hand gesture system based on evolutionary search,” in Genetic and Evolutionary

Computation Conference, 2005.

[10] J. Varona, J. M. Buades, and F. J. Perales, “Hands and face tracking for VR applica-

tions,” Computers & Graphics, vol. 29, no. 2, pp. 179–187, 2005.

[11] A. Shamaie and A. Sutherland, “Hand tracking in bimanual movements,” Image and

Vision Computing, vol. 23, no. 13, pp. 1131–1149, 2005.

[12] M. B. Caglar and N. Lobo, “Open hand detection in a cluttered single image using

finger primitives,” in Proceeding of the 2006 Computer Vision and Pattern Recognition

Workshop, 2006.

[13] M. Kölsch and M. Turk, “Robust hand detection,” in Proceedings of the IEEE Interna-

tional Conference on Automatic Face and Gesture Recognition, 2004.

[14] P. A. Viola and M. J. Jones, “Rapid object detection using a boosted cascade of simple

features,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

vol. 1, pp. 511–518, 2001.

31



[15] E.-J. Ong and R. Bowden, “A boosted classifier tree for hand shape detection,” in Pro-

ceedings of the Sixth IEEE International Conference on Automatic Face and Gesture

Recognition, pp. 889–894, 2004.

[16] R. Lienhart and J. Maydt, “An extended set of Haar-like features for rapid object de-

tection,” in Proceedings of the IEEE International Conference on Image Processing

(ICIP), vol. 1, pp. 900–903, 2002.

[17] R. Lienhart, A. Kuranov, and V. Pisarevsky, “Empirical analysis of detection cascades

of boosted classifiers for rapid object detection,” tech. rep., Microprocessor Research

Lab, Intel Labs, 2002.

[18] J. Barreto, P. Menezes, and J. Dias, “Human-robot interaction based on Haar-like fea-

tures and eigenfaces,” in Proceedings of the 2004 IEEE Conference on Robotics and

Automation, pp. 1888–1893, 2004.

[19] M. N. Dailey and N. Bo Bo, “Toward real-time hand tracking in crowded scenes,” in

The 2005 Asian Conference on Industrial Automation and Robotics, 2005.

[20] P. Viola, M. Jones, and D. Snow, “Detecting pedestrians using patterns of motion and

appearance,” in IEEE International Conference on Computer Vision (ICCV), vol. 2,

pp. 734–741, 2003.

[21] Y. Freund and R. E. Shapire, “A decision-theoretic generalization of online learning

and an application to boosting,” Journal of Computer and System Sciences, vol. 5,

no. 1, pp. 119–139, 1997.

[22] F. Crow, “Summed-area tables for texture mapping,” in Proceedings of SIGGRAPH,

vol. 18, pp. 207–212, 1984.

[23] J. Friedman, T. Hastie, and R. Tibshirani, “Hand tracking in bimanual movements,”

Annals of Statistics, vol. 28, no. 2, pp. 337–374, 2000.

[24] Intel Corporation, “OpenCV Computer Vision Library (software).” Open source soft-

ware available at http://sourceforge.net/projects/opencv/.

[25] D. Saxe and R. Foulds, “Toward robust skin identificaiton in video images,” in Proceed-

ings of the Second International Conference on Automatic Face and Gesture Recogni-

tion, pp. 379–384, 1996.

[26] R. Kjeldsen and J. Kender, “Finding skin in color images,” in Proceedings of the Sec-

ond International Conference on Automatic Face and Gesture Recognition, pp. 312–

317, 1996.

[27] M. J. Jones and J. M. Rehg, “Statistical color models with application to skin detec-

tion,” in IEEE Computer Society Conference on Computer Vision and Pattern Recog-

nition, 1999.

[28] B. D. Zarit, B. J. Super, and F. K. H. Quek, “Comparison of five color models in skin

pixel classification,” in International Workshop on Recognition, Analysis and Tracking

of Faces and Gestures in Real-Time Systems, pp. 58–63, 1999.

32



[29] B. Jedynak, H. Zheng, and M. Daoudi, “Skin detection using pairwise models,” Image

and Vision Computing, vol. 23, no. 13, pp. 1122–1130, 2005.

[30] L. da Fontoura Costa and R. M. Cesar Jr., Shape Analysis and Classification, Theory

and Practice. CRC Press, 2000.

[31] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition us-

ing shape context,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 24, no. 24, pp. 509–522, 2002.

[32] The MathWorks, Inc, “MATLAB, The Language of Technical Computing (software).”

[33] J. Lattin, J. D. Carroll, and P. E. Green, Analyzing Multivariate Data. Thomson Learn-

ing, Inc., 2003.

[34] M. Kölsch and M. Turk, “Analysis of rotational robustness of hand detection with a

viola-jones detector,” in Proceedings of the 17th International Conference on Pattern

Recognition, vol. 3, pp. 107–110, 2004.

33



Appendix A

List of Publications

National Journal

• Nyan Bo Bo, Matthew N. Dailey and Bunyarit Uyyanonvara. Natural-posed Hand De-

tection in Low-resolution Images. Songklanakarin Journal of Science and Technology.

(Submitted Manuscript)

International Conferences

• Matthew N. Dailey and Nyan Bo Bo. Toward Real-Time Hand Tracking in Crowded

Scenes. In Proceedings of the 2005 Asian Conference on Industrial Automation and

Robotics (ACIAR 05). 11th – 13th May, 2005. Bangkok, Thailand.

• Nyan Bo Bo, Matthew N. Dailey and Bunyarit Uyyanonvara. Robust Hand Tracking in

Low-resolution Video Sequences. In Proceedings of the 3rd International Conference

on Advances in Computer Science and Technology (ACST 2007). 2nd – 4th April,

2007. Phuket, Thailand.

34


