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ABSTRACT

B°-ThalassemialHb E disease is a common genetic disease that reflects from the
defective pB-globin chain synthesis. Severa lines of evidence suggest that
cosegregation together with genetic determinants of high levels of Hb F which alter
the ratio of imbalance of a-and B-globin chains should ameliorate the severity of
symptoms. ZHX2 gene is among other candidate genes located in chromosome 8q
region which is identified as the QTLs influencing Hb F. Moreover, ZHX2
expressions have shown in various tissues. Therefore, this study determined the
potential effects of single nucleotide polymorphism (SNP) in the ZHX2 gene
(G779A) in influencing percentage of feta hemoglobin and examined ZHX2
expression altered in cultured erythroid cells of the p°-thalassemia/lHb E patients. The
expression level of ZHX2 during erythroid developmental stages in mild and severe
cases was analyzed using reverse transcriptase polymerase chain reaction (RT-PCR).
The results show that there is ZHX2 expression in cultured erythroid cells at low
level. The effect of this polymorphism was studied in 450 B°-thalassemialHb E
patients by polymerase chain reaction-based restriction enzyme analysis (PCR-
RFLP). The results showed that this polymorphism was not associated with Hb F
level and severity of B°-thalassemia/Hb E. The study therefore concludes that the
actual causative variant should be genetic loci other than those proposed to be
associated with Hb F level for f°-thalassemia/Hb E.
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CHAPTER' I
INTRODUCTION

Thalassemia is an autosoma recessive inherited blood disease affecting a
person's ability to produce hemoglobin, the important protein in red blood cells that
carry oxygen to every cell in the body. It is one of the most frequent genetic diseases
that are distributed worldwide. Thalassemiais particularly prevalent in areas in which
malaria is or was once endemic (Figure 1). Therefore, it occurs throughout the
Mediterranean, the Middle East, the India subcontinent, Southeast Asia including
Thailand (1). These lead to the hypothesis that the genetic effect of this disorder may
confer resistance to malaria parasite. The resulting environmental aterations inside
red blood cells do not promote normal growth and survival of malaria parasite (2).

Figure 1 Worldwide distribution of thalassemia, paralleling the distribution of
malaria (blue area) (3).
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Thalassemia s classified into a, B, y, 6B, 6 and €ydp thalassemias depending on
the globin chains which are affected. Defective synthesis of one of the globin chain
leads to the imbalance of o/p chains production and consequently precipitation of
excessive unmatched normal synthesized globin chains. The excess globin chains
precipitate in the bone marrow, lead to red blood cell membrane rigidity, ineffective
erythropoiesis and premature red blood cell destruction resulting in anemia. The two
important forms of this disorder, a- and p-thalassemia, emanate from the defective
synthesis of the a- or B-globin chains of hemoglobin, respectively (4). Gene deletion
is a common cause of o-thalassemia (5, 6), whereas base substitutions or small
deletions in the B-globin gene are the major cause of B-thalassemia (7-10).

B-thalassemia syndromes encompass a wide variety of clinical phenotypes
ranging in severity from clinically silent heterozygous pB-thalassemia to severe
transfusion-dependent thalassemia major (11). B-thalassemia disease that results from
the interaction of -thalassemia and Hb E (26 Glu— Lys), p°-thalassaemialHb E, is
a common form of B-thalassemia (12) pose an increasingly important health problem
in various parts of Asia (13) due to the high gene frequencies for both Hb E and -
thalassemia (14). pe°-thalassemia/lHb E patients aso show remarkable variability
clinical expression, ranging from asymptomatic or mild clinical symptoms with
normal growth development and survival without transfusions, to thalassemia major
who have marked anemia, transfusion-dependent, growth retardation, severe bone
changes, hepatosplenomegaly, and heavy iron overload (15, 16). In Thalland in
particular, the frequency of °- thalassemia reaches 3-9 % and Hb E approaches 13%
of total population and 50% in northeastern population in Thailand (14, 17-19). The
number of cases with B°-thalassemialHb E is 15 times higher than that of p°-
thal assemia homozygotes (20).

High Hb F values are known to reduce the severity of symptoms by minimizing
the degree of imbalance of a- and B-globin chains (21, 22). In normal twin study (23),
genetic factors alone are accounting for 89% of variation in the number of F cells
(FC) which is the number of erythrocytes that contain Hb F. Among genetic factors,
Xmnl-% polymorphism is accounting for 13% of total variance, thereby implicating
the presence of one or more other genetic loci that contribute to continuous phenotype

(quantitative trait loci, QTLsS) controlling FC levels in adults (24). Linkage studies in



Fac. of Grad. Studies, Mahidol Univ. M.Sc. (Biochemistry) / 3

Indian Kindred have identified two more trans-acting quantitative trait loci (QTLS)
for FC variance have been mapped, one on chromosome 623 (25, 26) and other on
chromosome 8q (27, 28). Furthermore, linkage analysis in sib pair with sickle cell
disease has localized the QTL to chromosome X22.2. Alleles on X22.2 appeared to be
codominant and not affected by X inactivation (29, 30).

Epidemiological studies have shown that a DNA sequence variant (C—T) a
position -158 upstream of the ®y-globin gene, referred to as the Xmnl-B
polymorphism increased HbF production in adult life (31, 32). The -158 substitution
is near a DNase | hypersensitive site located 50 to 150 bp 5’ of the y gene Cap sites
(33). Perhaps the -158 substitution increases the probability that the chromatin of this
region will have an “open” structure, more accessible to DNase in vitro and to
components of the transcription apparatus of the adult erythroid cell in vivo. In
addition, the ®y -158 variant does not always raise Hb F levels in otherwise healthy
individuals, suggesting that the effect of the Xmnl- Cysit e is modulated by the
presence of an intermediary factor (27). The linkage study of a large Asian Indian
kindred revealed that a genetic interaction between the Xmnl-  site and a locus on
chromosome 8q is one of the maor factors that influence adult F-cell levels (28).
Subsequently, Garner C et al. confirmed these results by replication of linkage to
chromosome 8q in a sample of European twin pairs. This result provides strong
evidence that a quantitative trait locus exists on chromosome 8q that influences the
developmental switch from fetal to adult hemoglobin (27).

Zinc-fingers and homeoboxes 2 (ZHX?2) gene or forma known as KIAA0854 is
the member of the zinc fingers and homeoboxes gene family that introduced as a
transcriptional repressor. This gene is located on chromosome 80g24.13. ZHX2
consists of 837 amino acid residues and contains two Cys2-His2-type zinc-finger
motifs and five homeodomains (HDs). ZHX2 not only forms homodimer but aso
forms heterodimer with ZHX1 and ZHX3, athough heterodimerization with ZHX1 is
not necessary for repressor activity. Therefore, ZHX2 is likely to possess inherent
repressor activity or acquires it through an interaction(s) with transcriptional
regulators other than ZHX1. The ZHX2 mRNA is detected among various tissues (34,
35). Further analysis revealed that ZHX2 is atranscriptional repressor that is localized

in the nuclei (34). For a number of proteins, nuclear localize signal (NLS) is mapped
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to a cluster of basic amino acid residues (36). In contrast, ZHX2 may associate with
other molecules for translocation to the nuclei, since the NLS of ZHX2 is mapped to
the amino acid sequence between residues 317 and 446 including the proline-rich
region but not the basic amino acid region. Besides ZHX2 is a transcriptional
repressor, it is the novel candidate genes for globin regulation in erythroid cells (37).
The study using sSiRNA inhibition showed that when ZHX2 levels are reduced, o-
fetoprotein (AFP) is re-expressed so ZHX2 was recently identified as one factor
involved in postnatal repression of fetal expressing genes including AFP (38) In 2007,
Shen H et a. indicated that overexpression of a ZHX2 transgene led to complete
silencing of AFP in the adult liver on a BALB/cJ background, confirming that this
gene is responsible for hereditary persistence of the a-fetoprotein (Afp) which is
transcribed at high levels in the mammalian fetal liver but are rapidly repressed
postnatally (39). Down regulation of ZHX2 was recently demonstrated in two HPFH-
2 subjects by real-time PCR (37). ZHX2 gene coincides on the QTL on chromosome
8q that has been reported to influence the absolute fetal hemoglobin levels (27).

After al, ZHX2 is a good candidate gene for regulating B-globin gene
expression. Nowadays, the molecular biology techniques are effective to use in
genetic analysis.  In this study, the strategies use to investigate the ZHX2
polymorphism is polymerase chain reaction-restriction fragment length polymorphism
(PCR-RFLP) and detection of the ZHX?2 expression during erythroid developmental
stages by reverse transcriptase polymerase chain reaction (RT-PCR). Moreover, [3°-
thalassemia/HbE patients were genotyped for ZHX2 polymorphisms in an attempt to
evauate the involvement of polymorphisms in predisposition to severity. The
observation of this polymorphism may have an impact of trend to use for therapy and

prevention the patients with thalassemia disease.
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Objectives

1. To determine the genotype and allele frequencies of ZHX2 polymorphism in
B°-thalassemia/Hb E patients.

2. To study the expression pattern of ZHX2 during erythroid developmental
stages.

3. To evauate the association of ZHX?2 polymorphism with percentage of Hb F
and degree of severity in °-thalassemia/Hb E patients.
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CHAPTER I
LITERATURE REVIEW

1. Red blood cells

Oxygen is required for aerobic organisms’ survival. Through the oxidation of
nutrients, organisms can generate energy. As organism size and complexity increased
through evolution, not all the cells of an organism were directly exposed to available
oxygen. To overcome this problem, vertebrates have evolved a circulatory system that
actively delivers oxygen to the cells. Red blood cells (RBCs) in the circulating blood
are the carriers, taking up oxygen in the lungs and delivering it to internal tissues to
maintain the viability of cells. The actual oxygen-binding molecule in the red blood
cells is hemoglobin, an iron-containing protein that gives blood its red color. One
milliliter of human blood contains approximately 5 billion RBCs that have a lifetime
of about three months. Aging cells are removed from the circulation and destroyed by
macrophages in the spleen and liver. To replace them, an adult produces about 2x10*
RBCs daily (40).

2. Hemoglobin

The human hemoglobin (Hb) molecule is the major component of red blood
cells. It consists of two duplicate polypeptide chains in combination with four heme
groups, which in turn allows the hemoglobin in erythrocytes to bind oxygen (Figure
2.1) (41). The varying oxygen requirements during embryonic, fetal and adult life are
reflected in the synthesis of different structural hemoglobins at each stage of human
development. They all have the same general tetrameric structure, however,
consisting of two different pairs of globin chains, each attached to one heme
molecule. Most normal human Hbs have identical a-chains while the non-o-chain f, y
and & differ from each other. In human, the genes for a—like globins are clustered on
chromosome 16 containing one gene for ¢ and two genes for a (a; and oy, the

proteins of which are identical). The genes encoding B-like globins are clustered on
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chromosome 11 that contains genes for €,  and d, one gene for each, and two slightly
different genes for y (°y and “y, the proteins of which differ in one amino acid) (42).
The majority of normal adult human consists of Hb A (a2p2) and a small amount (2-
3%) of Hb A; (0202) and <1% of Hb F (ozy2) (1). However, during development
different Hbs are produced. The structure of human hemoglobin (Hb) changes during
embryonic, fetal and adult life. Adult and fetal hemoglobin have o chains combined
with B (Hb A, a2p2), 6 (Hb Az, a20;) or y chains (Hb F, ayy,), whereas in the embryo
a-like chains (termed ¢ chains) combine with y (Hb Portland, {»y,) or € chains (Hb

Gower 1, {¢;), and o and € chains form Hb Gower 2 (o,¢;) (Figure 2.2).
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red blood cell R
B chain -' a chain

helical shape of the
polypeptide molecule

Figure 2.1 Hemoglobin structure (43)
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Figure 2.2 The embryonic, fetal and adult hemoglobin coded by different genes
during development are shown, together with the gene cluster that regulate their
production on chromosome 11 and 16. The B-LCR and HS-40 are the main regulatory

regions for these gene cluster (10).
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3. Hemoglobin switching

During development of all vertebrate animals, hemoglobin production is
characterized by ‘switches” in the hemoglobin composition of red cells (42). In
human, the o-like globin genes undergo a single switch occurs as development
proceeds, from {-globin gene expression during primitive erythropoiesis (embryonic)
to a-globin gene expression during definitive erythropoiesis (fetal and adult life).
While the B-like globin genes switch over one time. First, from embryonic (e-globin
gene) to fetal (°y- & “y-globin genes) and then around birth, to adults (B-globin gene)
globin expression (Figure 2.3). The first position of erythropoiesis occurs in the yolk
sac blood islands. Erythroid cells in the yolk sac are formed from embryonic
mesoderm at approximately 3 weeks of gestration. These cells produce first
hemoglobins in tetramers of two pairs of unalike globin chains. In embryonic state, a-
like globin gene called the (—globin gene gradually decreasingly expresses and a-
globin expression continuously increases over the next few weeks. For the B-like
globin gene, the e-globin gene is expressed during the first 6 weeks of gestation in
primitive, nucleated erythroid cells of the yolk sac, and y-globin gene expression
gently enlarge while the p-globin genes are silent (embryonic or primitive
erythropoiesis). So, the productions of embryonic Hbs are Gower 1 ({e;), Gower 2
(02e2) and Hb Portland ((yy2), respectively. During the first switch, approximately 5
weeks of development, ®y- and “y-globin gene expression is activated in the definitive
hematopoietic cells of the fetal liver and spleen (fetal definitive erythropoiesis); the -
globin gene is concomitantly silenced. Then these organs become the major site of
erythropoiesis. The majority of hemoglobin produced at this stage of development is

fetal hemoglobin, Hb F (ay,) which takes the place of embryonic hemoglobin.

Eventually, the second switch which occurs shortly after birth, the B-globin gene and,
to a lesser extent, the 6-globin gene is activated in the bone marrow (adult definitive
erythropoiesis). This organ becomes the main position of erythropoiesis and this is a
final switch in hemoglobin synthesis. When the adult B- and &- globin gene is
expressed, the y-globin genes are reciprocally silenced (7) and ensuing in Hb F being

replaced Hbs A and A;, (Figure 2.3). Hence, the adult Hb is Hb A: o3, (>98%, adult

major), and Hb A: a9, (<2%, adult minor) (10, 42, 44-46).
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However, regulation of each a- or - locus present on different chromosomes is
independent, as the level of expression of one has no effect on the other. In addition,
the y-globin gene still coordinately expressed throughout development. The Hb F in
these cells is estimated about 1% of total hemoglobin in adult blood (47).

At birth B-chain synthesis increases sharply whereas y-chain production falls
steadily. It takes about 1 year to reach the level that is characteristic of adult red cell
(~1%). Hb F is believed to confine in few erythrocytes call “F cell”. Approximately 3
to 7 percent of erythrocytes are F cells. Both the number of F cells and the amount of
Hb F in each F cell may be increased in various acquired and genetic conditions

characterized by elevated Hb F levels (48).
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Figure 2.3 Developmental changes in human globin chain production, sites of
erythropoiesis, and red cell morphology (49).
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4. Globin genes

The human Hb genes exist two separate clusters of related multigene families, a
frequent type of organization of mammalian genes. The a-gene cluster is located on
the short arm of chromosome 16 (16p13.3) over a 30 kb region while the €, vy, d, B
family is situated on short arm of chromosome 11 (11p15.5) across a 70 kb region.
The a-cluster from 5' to 3' (Figure 2.2) include embryonic  gene, the non functional
v(1, vay and yay pseudogenes, the duplicated adult o genes o, and a4 , and 6 gene of
undetermined function. While the location of the various genes on the B-cluster
(Figure 2.2) are, the embryonic e-gene, two fetal y genes, ®y- and “y- (Glycine or
Alanine at position 136), yB gene, and the adult 6 and B genes (8). The 5’ to 3’
arrangement of these genes is in order of ontogenetic expression during development.
Pseudogenes have DNA sequences that resemble those of their homologues.
However, various mutational alterations have inactivated transcription, so that there is
no functional expression. The 6-gene, whose gene product comprises only 2-3 % of
total non-a-chains, can be seen as a gene in transition to becoming a pseudogene.

Each globin gene of the a- or B-cluster has three exons and two introns (50). The
a-like globin chain has 141 amino acids while B-like globin chain has 146 amino
acids. Distinct functions have been correlated with each of the exons. Exon 2 encodes
for the segment involved in heme binding and a-f dimer formation whereas exon 3
encodes for many of the amino acids involved in globin subunit interactions required
for cooperativity of the Hb tetramer in binding oxygen. The intron lengths are variable
but the largest intron 1 of the {-gene is only 1265 bp (51, 52).

4.1 Molecular Regulation of Globin Genes

The molecular aspects of the expression of individual globin genes involve

cis-acting and trans-acting regulatory mechanisms which have been extensively
studied in cell lines and transgenic mice (45). The factors that regulate globin gene are
both tissue restricted and ubiquitous with respect to their pattern of expression. At the
murine and human B-globin loci, gene transcription is controlled by the complex

interactions between:
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1. cis-acting sequences: besides the local cis-acting sequences, like the
promoter sequences, the positive enhancer and negative regulatory elements, remote
cis-acting sequences are involved in regulation of globin gene expression, the Locus
Control Region in B-globin gene cluster (BLCR) and downstream globin gene
sequences embedded with histones in nucleosomes, in chromatin (Figure 2.4),
moreover the hyper sensitive site at position -40 (HS-40) in the a-globin cluster also
(53-56), and

2. trans-acting factors: transcription factors and chromatin remodeling
activities (57-59).
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Figure 24 The human B-globin locus. (A) The B-globin locus on chromosome 11
embedded in chromatin is shown. (B) A linear map with the globin LCR and its
hypersensitive (HS) sites is indicated by the vertical arrows. The structural e—, y—, o—,
and B-globin genes as well as the locations of the olfactory receptor (OR) genes are

shown (60).
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4.2 Regulatory Elements of the a-Globin Gene Cluster

Regulation of expression in the human a-globin locus is dependent,
beside the local-acting sequences, on an upstream regulatory element HS-40, which is
an erythroid specific DNase 1 hypersensitive site located 40 Kb upstream of the (-
globin gene cap-site (56). Sequence analysis of the 350 bp element HS-40, denoted as
the a Major Regulatory Element (aMRE) shows the presence of regulatory protein
binding sites (53) Even though HS-40 has some ability to form open chromatin in
transgenic mice, but it’s main function is probably to activate and enhance expression
from preformed complexes at the a-globin promoters in a constitutively “open”
chromatin environment (59, 61).

4.3 Regulatory Elements of the B-Globin Gene Cluster

The promoter, an intragenic enhancer and a downstream enhancer act
in concert in controlling B-globin gene expression (62). The promoter exhibits tissue
specific expression, it contains elements that interact with LCR located within the
erythroid specific DNase 1 hypersensitive sites HS 1, 2, 3, 4 and 5 which are
distributed over a region 4-20 Kb upstream of the e-gene and others that contribute
independently to increased gene expression with erythroid maturation. The enhancers
also have the potential to establish tissue and developmental stage specificity of -
globin gene expression (63).

In both non erythroid and erythroid cells the TATA, CCAAT and
CACC boxes are required for high expression of the B-globin gene promoter (64-66)
The CACC box is duplicated, but the proximal CACC box appears to be the most
functionally important. Mutations in the TATA and proximal CACC boxes cause the
B*-thal phenotype. There is a 10 bp direct repeated sequence between the CCAAT and
TATA boxes called the direct repeat element (DRE). Mutations in one of the 3-DRE
repeats have no effect on promoter function, but corresponding mutations in both
repeats do reduce promoter function. Furthermore, there is an enhancer within the [3-
globin gene near the junction of intron 2 and exon 3. Another enhancer is located just
downstream from the [-globin gene polyadenylation site. The intragenic and
downstream regions contain three and four binding motifs for GATA-1 respectively,

perhaps accounting for their enhancing activity. The intragenic enhancer is
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indispensable for high level B-globin gene expression because of an influence on the
efficiency of polyadenylation of the B-globin gene transcript (67).

Expression of the adult B-globin gene is controlled by a process
entirely different from that turns off the embryonic globin genes. A competitive
model for the y to B switch has been proposed. The model states that the probability of
LCR interaction with either the y or the B promoter is primarily determined by the
trans-acting environment. If the gene that successfully competes for the LCR is
expressed then the unsuccessful gene is switched off. This model is expanded to
explain the € to y to B switches. In the embryonic stage, the LCR interacts with the ¢-
globin gene. In the fetus, ¢ is silenced, and the LCR interacts with the ®y and “y
genes. In the adult, the y gene is silenced, and the LCR now recognizes B the last
available gene such a competition model was originally proposed to explain switching
in the chicken globin system by Choi and Engel in 1988 (68). Experiment using
combinations of tandem y or B globin genes suggested that gene order (relative to
LCR) contributes relatively less to developmental regulation than does the trans-
acting environment (67).

4.3.1 B-globin locus control region

The B-globin locus control region (BLCR) upstream (5°) of the
globin structural genes is the major structural component of the murine and human (-
globin loci (60). It was not only to be responsible for stimulating high-level
transcription of the -globin genes but also required for the formation of the active f3-
globin gene domain as defined by propensity to DNase | digestion (69). The murine
and human BLCRs contain 5 critical DNAase 1 hypersensitive (HS) sites, namely
HS1-5 (Figure 2.4), that are formed in regions devoid of nucleosomes and are more
accessible in comparison with other regions of chromatin to interactions with
transcription factors and downstream gene sequences (69, 70). Another HS site, 3’
HS1, is 3’ to the B-globin structural globin gene, and olfactory receptor (OR)
sequences are at both the 5” and 3’ borders of the p-globin locus (Figure 2.4) (69, 71).

High level globin gene expression at all stages of development is
achieved at least in part by the locus control region (LCR). The LCR acts as an

enhancer, resides 6- 20 kb upstream of the g-globin gene (72).
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4.4 Erythroid cell-specific Trans-acting Factor

There are several important transcription factors for erythroid cell
development and function which play critical roles in murine globin gene expression.
GATA-1 is a member of zing finger family (73, 74) which binds to BLCR sequences
(75, 76) and it is needed for early stage of erythroid cell differentiation (77). Mice
deficient in GATA-1 cannot produce mature erythroid cells (78-80) and
erythropoiesis can be normalized by restoring GATA-1 function (78, 79). Erythroid
Krupple-like factor (EKLF) is necessary for activation of the adult -globin gene. It is
able to interact with the sequence CCA CAC CCT, an essential element of the (-
globin promoter (BLCR) through its zing finger motifs (81-83). Mice deficient in
EKLF die in utero with a disease resembling severe [B—thalassemia (84). The
transcription factor NF-E2 is a member of the basic-leucine zipper (BZIP) family (85)
which is important in its function at the human B-globin locus although mice devoid
of in NF-E2 have only mild erythroid defects (86, 87). NF-E4 is a critical
transcription factor in chicken globin switching (88). More recently, a human
homolog of chicken NF-E4, NF-E4p22, has been shown to be active in human fetal

globin gene activation (89, 90).

5. Genetic polymorphisms

The crucial keys that underly human phenotypic differences are genetic and
environmental factors (91). There are numerous variations in the DNA sequence at
many points in every part of the genome when the genomic sequence on similar
chromosome of any two individual is aligned and compared. These genetic variations
have many forms. The simplest type results from a single base mutation which
replaces one nucleotide by another, called single nucleotide polymorphism (SNP).
Many other types result from the insertion or deletion polymorphism.
Insertion/deletion tends to occur in repetitive sequence element, where the repeated
nucleotide patterns or variable number of tandem repeat polymorphisms (VNTRS)
expand or contact as a result from insertion or deletion (92, 93).

DNA sequence variations are sometimes described as mutations and sometimes

as polymorphisms. A mutation is defined as any changes in a DNA sequence resulting
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in functional deviation in comparison to the normal allele. In contrast, a
polymorphism is a DNA sequence variation that is common in the population (1
percent). That is, to be considered as a polymorphism, the variation must have a
frequency of 1 percent or greater in the given population (94). Generally sequence
variants that directly and overly cause human diseases are rare in the population
because they reduce fitness. However, if a rare allele in one population confers an
advantage and increases in frequency, it could turn out to be a polymorphism in
another. For example the allele of thalassemia, which is a rare sequence variant of the
globin gene in Caucasian populations, is polymorphic in Southeast Asian populations
because it renders resistance against the blood-borne parasite that causes malaria (95).
Although more than 99 percent of human DNA sequences are identical across
the population, variations in DNA sequence contribute a major impact on how
humans respond to disease, bacteria, viruses, toxins, chemicals, drugs, and other
therapies (96). Clearly, many clinical phenotypes do have a considerable genetic
component. The existence of a specific variation allele can be implicated as a
causative factor in human genetic disorders. Therefore, screening for such an allele in
an individual enable the detection of a genetic predisposition to disease. The sequence
variants can be imagined to merely modifying risk for some phenotypes. Many may
be found within genes, but may influence characteristics such as height and hair color
rather than those of medical importance while some does contribute to disease
susceptibility and can also influence drug responses. However, many polymorphisms
are found outside of genes and are completely neutral in effect (93).
5.1 Single Nucleotide Polymor phisms (SNPs)
SNPs are genetic variation that occurs when a single nucleotide: adenine
(A), thymine (T), cytosine (C) or guanine (G) in the genome sequence is transformed.
SNPs are mostly biallelic polymorphisms, that is, the nucleotide identified at these
polymorphic positions is generally constrained to one of two possibilities in human,
rather than the three or four nucleotide possibilities that could occur, in principle (94).
SNPs are the most common form of genetic variation accounting for 90 percent of all
human genetic variations. Their density is estimated that occur about every 1,000
bases in the entire human DNA sequences, leading to a total of several million SNPs
in human population (97).
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SNPs can occur in both coding and non-coding regions of the genome.
However, because only about 3 to 5 percent of a human DNA sequence codes for the
production of proteins, changes in non-coding sequence is more common. SNPs
found within a coding sequence are of particular interest to researchers because they
are more likely to alter the biological function of a protein. Occasionally, a SNP may
actually cause a disease, and, therefore, can be used to search for and isolate the
disease-causing gene. However, most SNPs are not responsible for a disease state.
Instead, they serve as biological markers for pinpointing a disease on the human
genome map, because they are usually located close to a gene underlying a certain
disease. Many SNPs have no effect on cell function, but it is believed that they could
predispose people to disease or influence their response to drug. However, SNPs are
not absolute indicators of disease development. A good example is the genes
associated with the late onset Alzheimer’s disease, apolipoprotein E or ApoE (98).
This gene contains two SNPs that result in three possible alleles: €2, €3 and 4. Each
allele differs by one DNA base, and the protein product of each gene differs by one
amino acid. Recent study has shown that an individual who inherits at least one &4
allele will have a greater chance of getting Alzheimer’s disease (98). Apparently, one
amino acid change in the €4 protein alters its structure and function enough to make
disease development more likely. Interestingly, the €2 allele, on the other hand, seems
to indicate that an individual is less developing Alzheimer’s disease. Genetic studies
of other complex disorders such as heart disease, diabetes, or cancer are complicated
by numerous factors due to multiple gene interactions (perhaps influenced by
environmental factors), with variable clinical expression of the disease phenotype, but
a good SNP map would make such experiments more feasible (99).

The significance of SNPs in genetic studies stems from at least three
different considerations. First, SNPs can be used to construct the history of genome.
This is due to their abundance and most are inherited from one generation to the next,
evolutionary stable, making them easier to follow in population studies. Studying the
frequency and distribution of SNPs can lead to information on the evolution of the
species. Second, SNPs can be directly responsible for genetic diseases since they may
alter the sequence of gene or of a regulatory region. Finally, SNPs can be used as
markers to build the high-density genetic maps needed to perform association studies.
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A map of 100,000 or more SNPs has been proposed as an ultimate goal to enable
effective genetic-mapping studies in large populations (100). The conclusion of such
studies is that the polymorphism being tested either affects risk of disease directly or
is a marker for some nearby genetic variant (101).

6. Hemoglobinopathies

Inherited abnormalities of the hemoglobin tetramer may be divided into two
categories: those that are characterized by structural anomalies of the hemoglobin
chains, and others that result from an array of molecular defects that either reduce or
completely abolish the synthesis of one or more of the polypeptide chains of the
hemoglobin molecule (102). The term *‘hemoglobinopathy’ refers to the former
disorders, whereas the latter defines the term ‘thalassemia’ (103).

To date, nearly 700 mutant alleles have been characterized
(http://globin.cse.psu.edu) (13). These structural alterations may include amino acid
substitutions, deletions, and insertions. Many of these mutations are functionally
normal and, therefore considered as clinically silent.

6.1 Thalassemia

The name ‘thalassemia‘ is derived from the Greek word ‘thalassa’ (‘sea’),
because it is well recognized that there is a high incidence of people suffering from
this hemoglobinopathy near the Mediterranean Sea. The thalassemia syndromes are a
diverse group of inherited disorders that can be characterized according to their
insufficient synthesis or absent production of one or more of the globin chains. They
are classified into a, B, v, 8B, 6 and gyd thalassemias depending on the globin chains
which are affected. Defective synthesis of one of the globin chain leads to the
imbalance of o/f chains production and consequent precipitation of excessive
unmatched normal synthesized globin chains. The excess globin chains precipitate in
the bone marrow, causing red blood cell membrane rigidity, following ineffective
erythropoiesis and short red cell survival results in anemia (104).

Thalassemias can be classified at three levels.

1. Clinical

2. Genetic

3. Molecular
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Clinical

The thalassemias are divided according to the severity of the illness.

a) Thal-major: Patients are severe and transfusion dependent, results
either from the compound heterozygous state of two different B-globin mutations or
homozygous state. The subsistence without blood transfusion has to live with troubled
deformities. They feature all signs and symptoms associated with severe anemia such
as growth retardation, hepatosplenomegaly and thalassemic faces. The disease is
usually fatal early in life (105).

b) Thal-intermedia: Thalassemia intermediate patients are not as
severe as the major forms and associated with a more severe degree of anemia in the
intermediate. They are able to survive without blood transfusion. The differences can
be distinguished by the degree of anemia endurance and the threshold of the physician
to transfuse patients with thalassemia in association with intercurrent illness. Growth
and development during childhood is relatively uncompromised, pubescence takes
place normally and fertility is preserved (106, 107).

c) Thal-minor: A person has symptomless

d) Silent carrier state: Some forms of thal-trait, which are clinically
and hematologically completely silent.

Genetic

The thalassemias are classified according to their genetic basis by
describing the globin chain that is absent (0) or produced at the reduced rate (+) and in
turn reflects the structure of the globin genes involved in their synthesis. Accordingly
they are a, B, v, 6B, 6 and eydp varieties, depending on which chain or chains are
absent or synthesized at reduced rate.

Molecular

Thalassemias can be more accurately classified and it is now possible
to elucidate the genotype of a patient with the clinical feature of B-thal major
according to the particular mutations at the homozygous or compound heterozygote
condition like BIVS-1-5 G—»C/BIVS-1-5 G—C or BIVS-1-5 G—C/B8/9 (+G) (108,
109).
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Anyhow the most two important subdivisions of this disorder, a- and
B-thalassemia, resulting from the defective synthesis of the a- and B—globin chains of
hemoglobin, respectively.

6.1.1 a-Thalassemia

a-Thalassemia was first identified in 1925 when Detroit pediatrician
Dr. Thomas Cooley described a syndrome he observed in Italian children
characterized by extreme anemia, splenomegaly, and bone deformities (110).

a-Thalassemias which result in reduced a-chain synthesis are common
in Southeast Asia and Southern China. Since the a genes are duplicated, the genetics
of a-thalassemia is more complicated than that of -thalassemia. The genetic makeup
of normal individuals can be written ao/ao. Loss of both o genes on a chromosome is
called a° thalassemia (a-thalassemia 1), and is represented --/ao. Loss of one of the
linked pair of a globin gene is called o thalassemia (o-thalassemia 2), -o/aa. Usually
these o gene is lost by deletion, though sometimes they are inactivated by a point
mutation, as is the case in the 3 thalassemias (6).

Heterozygotes for a’- and o°-thalassemia show minor hematological
abnormalities but are clinically unaffected while compound heterozygotes for a°- and
o'-thalassemia, --/-a, have Hb H disease, a moderately severe hemolytic anaemia.
Homozygotes for a°-thalassemia have a lethal condition known as the Hb Bart's
hydrops fetalis syndrome. Furthermore, the unequal crossing over on a-globin cluster
results in the triplicated a-thalassemia (aoa/) with increasing a-globin chain synthesis.

Molecular analysis has shown that a-thalassemia is caused by a large
variety of genetic defects. o’-Thalassemia can result either from deletions which
remove one of the o genes (o>’ and —a*?, where the superscript indicates the size of
the deletion in kb) or a number of non-deletion defects (written as aa'). o°-
Thalassemia results from deletions which involve both a genes (-->5#, --MEP (¢)?°°
and ()2 where the superscripts SEA and MED refer to previously characterised a°
defects from Southeast Asia and Mediterranean subjects, and the superscripts 20.5
and 5.2 refer to the size of the deletions in two less common o° defects) (5).
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6.1.2 B-thalassemia
The B-thalassemia refer to a group of inherited hemoglobin disorders
which are characterized by a reduced synthesis (B*-thalassemia) or absence (B°-
thalassemia) of B-globin chain production (13). This leads to an imbalanced ratio of
a/non a-globin synthesis, which is the major factor in determining the severity of the
disease in the B-thalassemia syndromes (111). Over 200 different mutations of the -
globin genes have been found in patients with B-thalassemia (7, 10, 112). In Thailand,
more than 20 different mutations have been described with, the four most common
mutations are: 4 bp deletion (-TCTT) in codon 41-42; C—T, amber mutation in codon
17; C—T in position 654 of the IVS 2 and A—G at position -28 in ATA box (113).
Homozygous B°-thalassemia has a clinical feature of thalassemia major which is
severe form of pB-thalassemia and most of the patients die in the pediatric age group.
Whereas B*-thalassemia is a milder form of B-thalassemia since the patients can
produce certain amount of Hb A.
6.2 Hemoglobin variant
Hemoglobin variants are abnormal hemoglobin resulting from single amino
acid substitution in one of the globin chains. These changes may affect the structure
of the hemoglobin, its behavior, its production rate, and/or its stability. Usually there
are no alterations in amount of globin chain production in abnormal hemoglobin. The
most common abnormal hemoglobins which also have thalassemia-like defects are Hb
E and Hb Constant Spring (Hb CS).
6.2.1 Hemoglobin E
Hemoglobin E, the commonest structural hemoglobin variant in
Thailand and wouldwide, is innocuous in its heterozygous and homozygous states.
This variant results from a mutation in the hemoglobin beta chain which normal
glutamic acid residue is substituted by lysine in the 26™ amino acid of B chain (P26
Glu — Lys). It is synthesized at a reduced rate and can interact with °-thalassemia to
produce a condition called 3°-thalassemia/Hb E, the common form of p-thalassemia
presenting an increasingly important health problem in various parts of Asia (13) due
to the high gene frequencies for both Hb E and B-thalassemia (14). B°-thalassemia/Hb
E patients can suffer from a moderate to severe anemia and require regular blood

transfusion (18).
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6.2.2 Hemoglobin Constant Spring (Hb CS)

Hemoglobin Constant Spring is a variant in which a mutation in the
alpha globin gene produces an alpha globin chain that is abnormally long. It occurs
from the termination codon (UAA— CAA, Gln) of the ap-globin gene. This
abnormality results in a translation of a longer a-globin chain with an extra 31 amino
acids (114). The quantity of hemoglobin in the cells is low for two reasons. First, the
messenger RNA for hemoglobin Constant Spring is unstable (115). Some is degraded
prior to protein synthesis. Second, the Constant Spring alpha chain protein is itself
unstable. The result is a thalassemic phenotype (115).

In Southeast (SE) Asia, a-thalassemia , p-thalassemia, hemoglobin
(Hb) E, Hb Constant Spring (Hb CS) are common (111). In Thailand in particular, the
frequency of a-thalassemia reaches 25%, 3-9 % for 3°- thalassemia, Hb E approaches
60% in frequency in many regions of Thailand, Laos and Cambodia. Hb CS is found
between 1%—10% of the population in these areas (14, 17, 18).

7. p°-Thalassemia/Hb E disease

B°-Thalassemia/Hb E disease is the most common form of B-thalassemia in
many Asian countries (116, 117) because there are higher chances that an individual
could carry on genes for both thalassemia and structural hemoglobin variants
condition. It is a compound heterozygous state of f°-thalassemia and Hb E causes B°-
thalassemia/Hb E disease which generally has a wide clinical spectrum of the disease
ranging from mild to severe condition. In Thailand, approximately 3,000 children are
born with this condition each year, and there are some 100,000 patients with the
average life expectancy is about 30 years. It accounts for well over 50% of cases of
severe B-thalassemia in Indonesia and Bangladesh and is also very common in
Vietnam, Cambodia, Laos, and Malaysia. It is found occurs frequently on the eastern
side of Indian subcontinent, including Sri Lanka (117, 118). Nowadays we know few
factors that affect the severity is Hb F level. However we still do not know all of

them.
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8. Thalassemia with increased HbF levels

There are many types of thalassemia that increase Hb F production during adult
life. These mutations are clinically relevant, since increased synthesis of Hb F in
individuals with sickle cell anemia or B-thalassemia reduces disease severity. These
mutations are either deletion type, that is a portion of the B-globin gene cluster is
deleted, or non-deletion type in which point mutations are within or outside the
cluster. The major clinical significance of mutations that increase Hb F is found in
their interactions either the p-thalassemia or sickle cell anemia. Compound
heterozygotes have a much milder clinical syndromes like individuals with Sy*y
HPFH and either a B-thalassemia or an Hb S allele are asymptomatic and detected by
chance during population screening (45)

Thalassemia syndromes individuals who are homozygous for B-thalassemia have
striking increase in the proportion of Hb F that is of diagnostic significance. The
proportion of Hb F in the blood may range from 10 to 98%, depending on whether the
patient has inherited thalassemia mutations of the p* or p° variety. Interaction of the
B-thal genes with mutations that increase Hb F in compound heterozygote may give
rise to thalassemia syndromes of moderate severity (119). Hb F and F cell number are
also moderately increased in about3 0% of B-thal heterozygotes, although the

mechanism for this increase is obviously unknown.

9. Factors affecting Hb F level of p-thalassemia.

High Hb F values are known to reduce the severity of symptoms by altering the
degree of imbalance of a and B-globin chain (21, 22). Genetic factors involved in the
control of FC production have been reported including co-inheritance of a-
thalassemia, Xmnl polymorphism on chromosome 11 (24), QTL on chromosome
6023 (25), the X-linked locus at Xp22.2-p22.3 (29, 30), and QTL on chromosome 8q
(27, 28)

9.1 Xmnl polymor phism

A common variant (C—T) at position -158 upstream of the ®y-globin gene
have been associated with increased HbF levels in normal individuals, in f-
thalassemia and in sickle cell anemia (120, 121), namely the “Xmnl-Sy

polymorphism.” The Xmnl-®y site is believed to be involved in the expression of the
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“y-globin gene through interaction with transcription factors and polymorphisms in
the transcription factors could influence fetal Hb production (28). Were the molecular
events in hemoglobin switching better understood and Hb F could be more fully
reactivated in adult cells and might lead to a cure for these disorders.
9.2 Quantitativetrait locus on chromosome 6923
A quantitative trait locus (QTL) controlling HbF levels has previously been
mapped to chromosome 6023 in an Asian-Indian kindred with B-thalassemia and
heterocellular hereditary persistence of fetal hemoglobin (HPFH) (30). This interval
contains three (HBSLL, MYB, and AHI1) protein-coding genes which expressed in
erythroid progenitor cells (122). Common sequence variants situated between the
HBSIL and MYB genes on chromosome 6g23.3 that may influence the proportion of
F cells. cMYB and HBSILL have been demonstrated to simultaneously transcriptional
down-regulated in individuals with elevated Hb F levels (123, 124).
9.3 The X-linked locus at Xp22.2-p22.3
In 1992, G.J. Dover et al. observed that F-cell levels were significantly
higher in nonanemic females than males (mean + SD, 3.8% % 3.2% v 2.7% + 2.3%) so
they tested the hypothesis that F-cell production in both normal and anemic SS
individuals was controlled by an X-linked gene (29). Furthermore, Miyoshi et al.
reported evidence suggesting that F-cell production in heterocellular HPFH within the
Japanese population is controlled by an X-linked locus (125). A dominant locus on
the X chromosome has been shown to influence F-cell levels in nonanemic Japanese
blood donors (126).
9.4 Quantitativetrait locuson chromosome 8qg
Epidemiological studies have shown that a DNA sequence variant (C—T) at
position -158 upstream of the Sy-globin gene, referred to as the Xmnl-By
polymorphism increased Hb F production in adult life (31, 32). On the other hand,
the ®y-158 variant does not always raise Hb F levels in otherwise healthy individuals,
suggesting that the effect of the Xmnl-®y site is modulated by the presence of an
intermediary factor (27). The genome-wide linkage study of a large Asian Indian
kindred revealed that a genetic interaction between the Xmnl-®y site and a locus on
chromosome 8q is one of the major factors that influence adult F-cell levels (28).

After that, Garner C et al. confirmed these results by replication of linkage to
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chromosome 8q in a sample of European twin pairs. This result provides strong
evidence that a quantitative trait locus exists on chromosome 8q that influences the
developmental switch from fetal to adult hemoglobin.

Based on the finding that there is an interaction between the Xmnl-Cy site
and a QTL on chromosome 8q in influencing the production of Hb F. Zinc-fingers
and homeoboxes 2 gene (ZHX2), a transcription repressor, is a one of novel candidate
genes that regulates globin gene in erythroid cells and also found downregulated of
ZHX2 in HPFH and 6p-thalassemia (37). It plays an important role in the postnatal
repression of AFP and Glypican 3 (Gpc3) gene which are fetal genes (38, 39, 127,
128). Therefore, the polymorphic variations are displayed within the ZHX2 genes
which have an important field of investigation in this study.

10. ZHX2
10.1 History

The zinc-fingers and homeoboxes 2 was initially discovered in a fishing
expedition for novel transcriptional repressor. It is an outgrowth from the analysis of
molecular mechanism by which ZHX1 functions as a transcriptional factor. The
researcher firstly demonstrated the interactions of human ZHX1 with other
transcription factors by using the yeast two-hybrid system. The fusion protein
between whole coding sequence of the human ZHX1 and the DBD of the GAL4
transcription factor was conducted as a bait to screen a rat liver cDNA library. Indeed,
some 15 million independent clones were screened and 16 showed reproducible HI S3-
, ADE2-, MEL1-positive properties, and S-galactosidase activity respectively. After a
determination of their nucleotide sequences, they were compared with the Genbank
database using the BLAST search program. One of these clones exhibited a similarity
to the nucleotide sequence of the human KIAA0854 protein. Very noticeably, the
deduced amino acid sequence of the KIAA0854 protein has an open reading frame of
837 amino acid residues and contains two Cys2-His2-type Znf motifs and five HDs as
well as ZHX1, indicating that it also belongs to the Znf class of the homeobox protein
superfamily (129). Thereafter, they refer to the KIAA0854 as ZHX2 and report on its

further characterization.
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The cDNA encodes a protein of approximately 92 kDa and a pl of 6.42
(34). Initially the mRNA expression was found in various tissues at different levels
e.g. bone marrow and spleen, the two hematopoietic organs of human. Further studies
showed that the expression of ZHX2 may implicate in the globin gene regulation in
erythroid cells (37).

10.2 Zinc fingersand homeoboxes gene family

Most transcription factors are grouped into families on the basis of common
DNA- or protein-binding domains. ZHX2 has been classified to the zinc fingers and
homeoboxes genes family of transcription factors. These transcription factors bind
with the A subunit of the ubiquitous transcription factor nuclear factor-Y (34, 130)
which acts through the Y box sequence, an inverted CCAAT box, 5’-ATTGG-3’
(131), that are present in promoters, enhancers and locus control regions of numerous
genes. Besides that, they can form homodimers with themselves as well (34, 132,
133). A combination of two conserved Cys,His,-type zinc finger motifs found close
to the C-terminus and five homeodomains (HDs) from the N-terminus, defines the
transcription factors of the zinc-fingers and homeoboxes (ZHX) family. The name of
this family of proteins derives from the observation that a similar arrangement of zinc
fingers and homeoboxes was found in the Drosophila regulatory gene, called
homeotic genes (134). Of which mutations cause developmental abnormalities. In
human genome, 3 genes have been classified as belonging to this family of
transcription factors, ZHX1, ZHX2 and ZHX3. All these proteins function as
transcriptional repressors and are localized in the nuclei of cells (34, 133, 135).

10.3 Domainsin ZHX2

The gene coding for ZHX2 or KIAA0854 in human is located on
chromosome 8q24.13 (Figure 2.5) in the position 123863082-124055936. Four exons
code for 837 amino acid protein of approximately 92 kDa. The position of exonl is
123863082-123863366, exon 2 is 123944897-123944959, exon 3 is 124032713-
124035449, exon 4 is 124054663- 124055936 but exon3 is the only one coding exon.
The coding position in this exon starts at 124032932 to 124035445 (Table 2.1). In the
literature, the amino acids are commonly numbered from the ATG site as in Figure

2.6. zhx2 contains two Cys2-His2-type zinc-finger motifs and five homeodomains
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(HDs) (Figure 2.6). In addition to two Znf motifs and five HDs, zhx2 contains a
unique proline-rich region between HD1 and HD2.

The genomic structure is highly conserved between rat, mouse and human
(34, 132). The DNA binding domain, consisting of two Cys2His2 zinc fingers, is the
most conserved part. The homology of the amino acid sequence between rat and
human zhx2 and between mouse and human zhx2 domain among the genes are about
93.3% and 87%, respectively. Consequently, the proteins are believed to recognize
the same DNA sequences with very similar affinity. In human, the zinc fingers span
the region from residues 78-101 and 110-139.

Since zhx2 is a nuclear protein, it has to be imported from the cytosol to the
nucleus. Precisely residues 317-446 contain one Nuclear Localize Signals (NLS) (34).
For a number of proteins, NLS is mapped to a cluster of basic amino acid residues
(36). In contrast, the NLS of zhx2 is mapped to the amino acid sequence between
residues 317 and 446 including the proline-rich region but not the basic amino acid
region so zhx2 may associate with other molecules for nuclear translocation.

However, the most efficient nuclear localisation is found with the entire domain.
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Figure 2.5 Location of ZHX2 on chromosome 8

http://www.genecards.org/cgi-bin/carddisp.pl?gene=ZHX2

AFR1 OMIM : 609185 Transcription | 8 |123863082 | 124055936 | 192,855
KIAAQ0854 | Entrez Gene : 22882 Coding seq. 8 124032932 |124035445| 2,514
RAF SWISSPROT : Q9Y6X8 Exon 1 8 |123863082 | 123863366 | 285
Ensembl : ENSG00000178764 Exon 2 8 123944897 | 123944959 63
MRNAACC : NM_014943 Exon3 8 124032713 124035449 | 2,737
Exon4 8 124054663 | 124055936 | 1,274

Table 2.1 Information of ZHX2 gene
http://www.ensembl.org/Homo_sapiens/exonview?db=core;transcript=ENST0000031
4393
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10.4 ZHX2 functions

Zhx2 not only forms homodimer but also forms heterodimer with Zhx1 and
Zhx3, although heterodimerization with Zhx1 is not necessary for repressor activity.
Therefore, Zhx2 is likely to possess inherent repressor activity or acquires it through
an interaction(s) with transcriptional regulators other than Zhx1. The dimerization
domain with that of zhx1 is confined in the region containing HD1, between amino
acid residues 195 and 358. The domain that interacts with NF-YA is the HD1 to HD2
region, via the region between 263 and 497 of Zhx2. Therefore, the dimerization
domain of zhx proteins also overlaps with the interaction domain with the AD of NF-
YA. The repressor domain of Zhx2 is mapped to the amino acid sequence between
residues 263 and 446, which contains the HD1 and a proline-rich region, overlapping
with the dimerization domain. The ZHX2 mRNA is expressed among various tissues.
Further analysis revealed that Zhx2 is a transcriptional repressor that is localized in
the nuclei (34). Zzhx2 was recently identified as one factor involved in postnatal
repression of fetal expressing genes (38). In summary, ZHX2 is the novel candidate
genes for globin regulation in erythroid cells (37).
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Figure 2.6 Schematic diagram of the functional domains of human ZHX2
DD, dimerization domain; ID, interaction domain with NF-YA,;

RD, repressor domain; NLS, nuclear localize signal (34).
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In 2005, Perincheri S et al. indicated that overexpression of a Zhx2 transgene
restores H19 repression on a BALB/cJ background, confirming that this gene is
responsible for hereditary persistence of the o-fetoprotein (Afp) and H19 which are
transcribed at high levels in the mammalian fetal liver but are rapidly repressed
postnatally (39). Down regulation of ZHX2 was recently demonstrated in two HPFH-
2 subjects by real-time PCR (37).

ZHX2 gene coincides on the QTL on chromosome 8q that has been reported
to influence the absolute fetal hemoglobin levels (27). Taken together, ZHX2 is a

good candidate gene for regulating y-globin gene expression.

Table 2.2 Data for SNP rs3802264

SNP ID Chr 8 DNA Amino Amino acid  Locus MRNA
position Chg acid Chg position ID Accession
rs3802264 124035266 G/A G/S 779 22882 NM_014943

Several polymorphisms of human ZHX2 gene have been reported. Total SNPs
on this gene are 535, 26 of which are in exon by which 5 SNPs are nonsynonymous.
In this study, rs3802264 at chromosome position 124035266 in the third exon is
selected as:

1. This SNP occurs in coding regions (cCSNPs) and change nucleotide from G
to A resulting in an amino acid sequence change from glycine to serine at position
779.

2. The information from the International HapMap project demonstrates that
this SNP exhibits high heterozygosity and very polymorphic among Asian population.

3. The comparison in multiple alignments of zhx2 protein indicated the
highly conserved amino acid at position 779 among various species (Appendix A).

4. The identification of PhosphoMotif Finder search tool predicts that serine
position 779 is a putative phosphorylation site by serine kinase. However, it is not
known yet whether zhx2 protein is phosphorylated at Ser779 in addition to Ser16 or
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not. Phosphorylation of transcription factor may affect protein-protein interaction,
modulate its DNA binding affinity and nuclear translocation etc.
For these reasons, it is interesting to study the association of ZHX2 gene and

fetal hemoglobin levels in the B-thalassemia/Hb E patient.



Chiranya Sangprasert Materials and Methods / 36

CHAPTER I
MATERIALSAND METHODS

Materials

1. Enzymes
Enzymes used for this study were as followings:
a. Bgl I (10 U/ul); Fermentas, USA
b. Taq DNA polymerase (5 U/ul); Fermentas, USA
c. eAMVTMReverse Transcriptase; Sigma, USA
d. JumpStart AccuTag LA DNA Polymerase; Sigma, USA

2. Oligonucleotide primers
Oligonucleotide primers used for this study were synthesized by Bio Basic Inc.,

Canada that listed in the Table 3.1 and 3.2.

Table 3.1 Sequences of primers used for the ZHX2 genotyping

Gene Primer sequence Size (bp) Tm (°C)
ZHX2 (G779A)
Forward 5 —AGCTCTGCGAAGAGGACTTG -3 20 59.9
Reverse 5 —CGGAGTCTGATTCAGCCAGT -3 20 59.9

Table 3.2 Sequences of primers used for RT-PCR*

Gene Primer sequence Size (bp) Tm (°C)
ZHX2 for RT
Forward 5 —AGCTCTGCGAAGAGGACTTG -3 20 59.9

Reverse 5 —ACTTCCCTGTCTAGGCCTG -3 19 59.7
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Table 3.2 Sequences of primers used for the RT-PCR (continued)

Gene Primer sequence Size (bp) Tm (°C)
GAPDH (136)

Forward 5- TCATCCCTGAGCTGAACGGG -3 20 61.9
Reverse 5- TTACTCCTTGGAGGCCATGTG -3 21 60.0

* RT-primers include exon-exon junction.

3. Chemical Substances
The chemical substances that used in this study were analytica and molecular
biological grades.

Chemical Substances Company
Absolute ethanol (CoHsOH, MW = 46.07) Merck, Germany
Agarose Biorad, USA
Boric acid (HsBO3;, MW = 61.85) promega, USA
Bromophenol blue (C19HgBrsOsSNa, MW = 691.9) BDH, England
Deoxyribonucleotide triphosphate (ANTP) Fermentas, USA
Ethidium bromide (C12H20N2Br, MW = 394.31) Amersharm,United
Kingdom

Ethylene diamine tetraacetic acid disodium salt dihydrate

(EDTA, CyoH4N2N&0g.2H,0, MW = 372.24) BDH, England
Glyceral Sigma, USA
50 bp DNA Ladder Fermentas, USA
Sodium hydroxide (NaOH, MW = 40) Sigma, USA
Tris[Hydroxymethyl] aminomethane

(C4H11NO3, MW = 121.1) Sigma, USA
Tris[Hydroxymethyl] aminomethane hydrochloride

(C4H11NO3.HCI, MW = 157.6) Sigma, USA

Xylene cyanol Sigma, USA
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4. Equipments

Equipments

Autoclave

Automatic pipette

Bench top centrifuge

PTC-200 DNA Engine Thermal Cycler
Hotplate stirrer

Incubator

Personal microcentrifuge

pH meter

Power supply

Submarine agarose gel electrophoresis
Vortex mixer

Water bath

Universal Hood IT and Gel Doc EQ system

5. Miscellaneous
Plastic wares
Microcentrifuge tube (0.5, 1.5 ml)

Pipette tip (0.2 pl, 200 pl, 1000 ul)

6. Reagents

Materials and Methods/ 38

Company

Huxley, Tawan

Gilson, France

Heraeus Sepatech, USA
Biorad, USA

Barnstead International, USA
Heraeus Sepatech, USA
Daihan |abtech, Korea
Beckman, USA

Biorad, USA

Hoefer, USA

Scientific Industries Inc., USA
Precision pacific Inc., USA
Biorad, USA

Company
Axygen Scientific Inc., USA
Axygen Scientific Inc., USA

6.1 Reagentsfor DNA amplification by polymerase chain reaction (PCR)

a. Deoxyribonucleotide triphosphates, dNTPs mixture that contained 2 mM

in each dNTPs.

b. 10 x PCR buffer (Fermentas Inc., USA) consisted of 750 mM Tris-HCI

(pH 8.8), 200 MM (NH.),SO4, 0.1% Tween 20.

c. 25 mM MgCl,

d. Primersof ZHX2 geneasin Table 3.1.

e. Taq DNA polymerase
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6.2 Reagentsfor restriction enzyme digestion
a. 10 x buffer O for enzyme Bgl | (Fermentas Inc., USA) composed of 50
mM Tris-HCI (pH 7.5), 10 mM MgCl, 100 mM NaCl and 0.1 mg/ml BSA.
b. EnzymeBgl |
6.3 Reagentsfor agarose gel electrophoresis.
a. 1.5% and 3% agarosegd :
Weighed (w/v) in each percentage of agarose gel with 1X TBE buffer.
b. Ethidium bromide:
Dissolved 1 g ethidium bromide in 100 ml of sterilized RO water
c. Gd loading buffer :
Dissolved 0.125 g each of bromophenol blue and xylene cyanol in 50
ml RO water. 15 ml glycerol was added to this reagent.
d. 10X Tris-borate buffer (TBE) :
Dissolved 108 g Trizma base, 54 g boric acid and 40 ml of 0.5 M
EDTA (pH 8.0) in 1 L RO water and autoclaved. The stock solution was diluted 10
times before used.
e. Ladder marker :
- 50 bp DNA ladder
6.4 Reagentsfor reversetranscriptase polymerase chain reaction (RT-PCR)
a. Enhanced Avian HSRT-PCR Kit (Sigma-Aldrich, USA)
i. eAMVTMReverse Transcriptase
ii. JumpStart AccuTag LA DNA Polymerase
iii. 10x reaction buffers consisted of 50 mM Tris-HCI, pH 8.3, 40
mM KCI, 8 MM MgCI2, 1 mM DTT.
iv. 10 mM dNTP mix
V. Ribonuclease inhibitor
vi. Nuclease-free water
b. Primers(asin Table 3.2) wereused.
i. Primers of ZHX2 gene
ii. Primers of GAPDH gene
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M ethods

1. Study subjects

All of the subjects used for this study were classified mainly based on
symptomatic level as followings:

The patients taken for this study were diagnosed by hematological dataand DNA
analysis. They were categorized into mild, moderate and severe groups according to
the severity score, which depended on hemoglobin level, age onset of thalassemic
symptom, age as which patients receive their first blood transfusion, size of spleen
and degree of growth retardation (Table 3.3) (39). In general, patients whose total
severity score was less than 3.5 were categorized in mild cases, patients whose total
severity score ranged from 3.5 to 7.5 were considered to be the moderate case and the
patients whose total severity score was more than 7.5 were positioned in severe group
of B-thalassemia.

A tota of 450 DNA samples, 150 mild, 150 moderate, and 150 severe [B°-

thalassemia/Hb E with normal a.-globin genes were recruited in this study.
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Table 3.3 Clinical severity criteriaand scoring for classifying °-thalassemia/Hb E
patients (137).

Criteria Status Score Status Score Status Score
Hb at steady state (g/dL) =7.5 0 6.0-7.5 1 <6 2
Age at onset (year) >10 0 2-10 0.5 <2 1
Age at first transfusion (year) >10 0 4-10 1 <4 2
Requirement of transfusion Rare/none 0 Occasional 1 Regular 2
Spleen condition (cm) <3 0 3-10 1 >10 2
Splenectomy No 0 Yes 2

Growth development Normal 0 + 0.5 Retarded 1

Mild case Severity Score < 3.5

Moderate case Severity Score 3.5-7.5

Severe case Severity Score > 7.5
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2. DNA extraction

DNA samples were provided by Prof. Dr. Suthat Fucharoen (Thalassemia
Research Center, Institute of Science and Technology for Research and Devel opment,
Mahidol University). DNA was extracted from peripheral blood by Puregene kit
(Gentra Systems, Minneapolis, MN, USA). Two volume of red blood cell lysis
solution was added to one volume of whole blood in centrifuge tube and mixed
rigorously until homogenous, then let stand at room temperature for 10 minutes. Cell
pellets was collected after centrifugation at 12,000 rpm, 4 °C for 5 minutes. This step
was repeated until all red blood cells were lyzed. The cell pellets were packed at the
bottom and then one volume of cell lysis solution was added to cell pellets and mixed
well until the solution is homogenous. RNA-free DNA solution was obtained by
addition of 15 uL of RNase A solution. Then 200 pl protein precipitate solution was
added, gently mixed for precipitate proteins. After mixing, the sample was kept on
ice for 10 minutes. The sample was centrifuged at 12,000 rpm, 4 °C for 5 minutes.
Six hundred ul of 100% isopropanol was pipetted to fresh centrifuge tube and the
supernatant from previous step was gently added. DNA would be visible as threads
after gently inverting the tube several times. A small white pellet of DNA was
collected after centrifugation at 12,000 rpm, 4 °C for 5 minutes. The pellet was
washed once or twice to remove salt by adding 70% ethanol, mixed by inversion and
centrifuged at 12,000 rpm for 5 minutes. Air-dried DNA was entirely redissolved with
appropriate volume of TE buffer depends on clump of pellet and kept at -20 °C until
used.

3. RNA extraction

Total RNA samples were provided by Prof. Dr. Suthat Fucharoen (Thalassemia
Research Center, Institute of Science and Technology for Research and Devel opment,
Mahidol University). Total RNAs were isolated from cultured erythroid cells by
TRIZOL reagent (Invitrogen, Carlsbad, CA, USA). The sample was added with 1 ml
of TRIZOL reagent and mixed homogenously. The homogenized sample was
incubated at room temperature for 5 minutes. Next, 200 ul of chloroform was added
and shaken for 15 seconds, then left stand at room temperature for an additional 2-3
minutes, followed by centrifuged at 12,000 rpm, 4 °C for 5 minutes. Centrifugation
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separates the sample into three layers. The aqueous phase (upper layer) was
transferred to new 1.5 ml eppendrof. The RNA was recovered by precipitation with
500 ul isopropyl alcohol, inverted twice then incubated at room temperature for 10
minutes. This is the RNA precipitation step. The sample was centrifuged at 12,000
rpm, 4 °C for 10 minutes. The supernatant was discarded and 1 ml of 70% ethanol
was added to wash the RNA pellet to remove residua contaminating chemicals, the
tube was inverted twice then was centrifuged at 7,500 rpm, 4 °C for 5 minutes. The
RNA pellet was dried a room temperature. The pelleted RNA was dissolved in
DEPC-treated water and stored at -20 °C until used.

Total RNA of 2 patients with mild and severe °-thalassemia/Hb E was extracted
from days 7, 10, 12 of cultured erythroid cells which cultured by Fibach method
(138). Afterwards, the expression of ZHX2 and GAPDH, served as a contral, in the
different stages of erythroid maturation at serial days in culture were quantified by

reverse transcriptase pol ymerase chain reaction.

4. Polymerase chain reaction (PCR)
4.1 Principle (139, 140)

The polymerase chain reaction (PCR) is a powerful and clever procedure
that takes advantage of DNA polymerase enzymes and synthetic oligonucleotides to
make the rapid production of multiple copies of a specific target DNA sequence. The
principle of the PCR was first reported in 1971, but it was only after the discovery of
thermostable Tag DNA polymerase that this technology becomes easy to use. PCR
was invented by Kary Mullis and his colleagues in the 1980. PCR is basicaly an in
vitro method for the enzymatic amplification that its method based on a cycling
reaction in which template DNA is denatured by heating to separate the strands of the
molecule. Primer, 20-30 bases fragment of DNA complementary to a region of the
template, is annedled to single-strand templates. The cycle ends as the primer
molecules are elongated by the action of DNA polymerase to produce molecules that
are identical copies of the original template. Initialy, thermal cycling was handled
manually by transferring samples to be amplified from one water bath to another with
the addition of fresh enzyme per cycle after the denaturation step. The first
publication of PCR used Klenow polymerase as the elongation enzyme. Due to the



Chiranya Sangprasert Materials and Methods / 44

limitation of Klenow polymerase, this enzyme did not stand high temperatures (over
90 °C) needed to separate the strands of DNA before each round of replication, new
enzyme needed to be added for every new cycle. However, specia heat—stable
polymerase that can endure the heat are now available. One of these, Taq
polymerase, comes from Thermophilus aquaticus, a bacterium that livesin hot springs
and therefore has heat — stable enzyme. This polymerase greatly enhanced the value
of PCR lead to invention of automated PCR machine or Thermal cycler. All one has
to do is to mix the Tag polymerase with the primers, template DNA and DNA
precursors (deoxynucleotide triphosphates, dNTPs) in a cap tube, then place it in a
therma cycler. The thermal cycler is programmed to cycle over and over again
among three different temperatures: first a high temperature (about 95 °C) to separate
the DNA strands; then arelatively low temperature (about 50 °C — 70 °C) to alow the
primers to anneal to the template DNA strands; then a medium temperature (about 72
°C) to allow DNA synthesis. Each cycletakes aslittle as afew minutes, and it usualy
takes fewer than 40 cycles to produce as much amplified DNA as one need. Because
two primers are used, only the sequence between the two primers will be amplified.
Since the cycle is carried out multiple times with twofold increase in the amount of
DNA each time, a geometric amplification results such as after 20 cycles would result
in a 2%° increase in the DNA concentration as shown in figure 3.1. Thus PCR is
capable of producing large amounts of DNA fragments from a single piece of
template DNA as the amplification increase the amount of fragments produced
exponentially. In theory, it is possible to detect a single copy of template DNA by
PCR using simple methods. For this reason, PCR is used in medical and biological
research labs for a variety of tasks, such as the detection of hereditary disease, the
identification of genetic fingerprints, the diagnosis of infectious disease, the cloning

of genes and paternity testing.
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Figure3.1 Anillustration of the polymerase chain reaction (PCR). Step 1: Solution is
heated to 95°C to denature the two strands of the target DNA (A). Step 2: Solution is
cooled to ~60°C to alow the primers to anneal to the ends of the DNA strands (B).
Step 3: Solution is reheated to ~72°C to alow Tag polymerase to synthesize
complementary copies of each strand (C). Step 1-3 will repeat 30-35 cycles.
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4.2 ZHX2 amplification by PCR

For the analysis of the ZHX2 (G779A) polymorphism the genomic DNA
with its primers was used to amplify by polymerase chain reaction (PCR). PCR
condition of ZHX2 (G779A) polymorphism was created. The forward and reverse
oligonucleotide primers are listed in Table 3.1. Twenty five microliter total volume
of each PCR reaction in 0.5 ml PCR tube which consisted of 1 pl genomic DNA, 1
unit Tag DNA polymerase, 1X PCR buffer, 200 uM dNTPs, 1.5 mM of MgCl, and
0.2 uM of each oligonucleotide primers. The reaction was mixed. The optimized
PCR was conducted in an automated PTC-200 DNA Engine Thermal cycle.  After
an initial denaturation for 5 minute at 95 °C, and then followed by 30 cycles of 45
second 95 °C for denaturation, annealing at 58 °C for 30 second, and primer extension
at 72 °C for 45 second. Final extension at 72 °C for 5 minutes was performed after
final cycle to promote completion of partial extension products and complete the
annealing of single-stranded complementary products, and followed by chilling at 4
°C for stopped reaction. The PCR—amplified DNA products of ZHX2 (G779A)
polymorphism were analyzed by agarose gel electrophoresis. A specific PCR product
was then analyzed by restriction fragment length polymorphism.

5. Restriction fragment length polymorphism analysis
5.1 Principle (141, 142)

This is done with the help of special class of enzymes called restriction
endonucleases. Restriction endonucleases or restriction enzymes have been found to
play akey rolein all aspects of molecular biology. Most of the enzymes used today
are type Il enzymes from three types (I, IT and L), which have the simplest mode of
action. These enzymes are nucleases, and as they cut at an internal position in a DNA
strand with specific recognition sites, usually 6-4 basepairs in length, and cleave them
in a defined manner. The sequences recognized are palindromic or of an inverted
repeat nature; that is, they read the same in both direction on each strand (Figure 3.2).
Restriction enzymes can be multiple restriction sites for a single endonuclease within
agiven piece of DNA, there can be only one (a unique restriction site), or there can be
none. It al depends on the sequence of the specific piece of DNA in question. The
combination of PCR and restriction fragment analysis offers a very simple, quick and
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highly sensitive detection and typing strategy. The restriction endonucleases
digestion of each polymorphic PCR amplification product will yield a distinct, unique
banding pattern. This approach can also be employed in the diagnosis and detection
of alelic polymorphism or mutation associated with genetic influenced disease.
5.2 Restriction enzyme digestion reaction

The amplified DNA or PCR product digestion was performed in a fina
reaction volume of 15 pl. The reaction was contained with 10X buffer O (Fermentas
Inc., USA), 5 unit of Bgll restriction enzyme (Fermentas Inc., USA) and 7 pl of each
PCR product. The mixture was incubated at 37 °C for 16 hours. After that, the
restriction DNA fragments were analyzed by agarose gel el ectrophoresis.
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Figure 3.2 The schematic diagram of restriction enzyme digestion. Each restriction
enzyme will cut the DNA only when a certain sequence of bases occurs e.g. the
enzyme EcoRI cuts the DNA between bases G and A only when the sequence
GAATTC ispresent in the DNA. The other restriction enzyme used cuts the DNA at a
different sequence of bases. Thus, each restriction enzymeis specific.
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6. Electrophoresis(143)

Electrophoresis is the process of moving charged molecules in solution by
applying an electric field across the mixture. Because molecules in an electric field
move with a speed dependent on their charge, shape, and size, electrophoresis has
been extensively developed for molecular separations. As an anaytical tool,
electrophoresis is simple one relatively rapid. The method relies on the fact that
nucleic acids are polyanionic at neutral pH, i.e. they carry multiple negative charges
due to the phosphate groups on the phosphodiester backbone of the nucleic acid
strands. This means that the molecules will migrate towards the positive el ectrode
when placed in an electric field. The technique is carried out using a gel matrix which
separates the nucleic acid molecules according to size. There are two types of matrix
that commonly used for electrophoresis, agarose and polyacrylamide, and have
important consequences for the degree of separation achieved, which is dependent on
the porosity of the matrix.

6.1 Agarosegel electrophoresis (144, 145)

Gels are indispensable tools for the molecular biologist. Agaroseis one of
material that can be formed into hydrophilic polymers as well as hydrated gels in
aqueous solution or water. Agarose gels are more porous and have a larger pore size
as compared to polyacrylamide gels and are, therefore, used to fractionate large
macromolecules such as nucleic acids that cannot readily penetrate into and move
through other types of supporting materials. Agarose used for electrophoresis is a
more purified form of the agar that used to make bacterial culture plates. It isalinear
polymer of D-galactose and 3, 6-anhydro-L-galactose. Agarose gels are casted by
boiling agarose in presence of a buffer, then poured into a mold and allowed to
solidify to form a matrix. Porosity of the gel is determined by concentration of
agarose. Higher the agarose concentration, smaller the pore size and lower the
agarose concentration, larger the pore size. When an electric field is applied to an
agrose gel in the presence of a buffer solution which will conduct electricity, DNA
fragments, highly negatively charged at neutral pH move through the gel towards the
positive electrode at rates determined by their molecular size and conformation.
Since charge/mass ratio in nucleic acids is equal, rate of migration of DNA molecules
is inversely proportional to logip of their molecular weights, i.e. small linear
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fragments move more quickly than large ones, which are retarded by entanglement
with the network of agarose fibers forming the gel. The DNA samples are placed in
wells in the gel surface, the power supply is switched on and the DNA is alowed to
migrate through the gel in separate lanes or tracks. The added dye aso migrates, and
is used to follow the progress of electrophoresis. The DNA is stained by the inclusion
of ethidium bromide in the gel, or by soaking the gel in a solution of ethidium
bromide after electrophoresis. The DNA shows up as an orange band on illumination
by UV light (Figure 3.3).
6.1.1 Agarosegel preparation

The gel tray was fixed into gel setting block and placed the slot —
forming combs at the position. Agarose powder was dissolved at the desired
concentration (w/v) with 1X TBE buffer and boiled on the hot — plate or microwave
oven. When the gel was completely dissolved, the agarose solution was let to be cool
down at room temperature at approximately 50 °C, then poured into the block with
about 3 mm thickness. Once the block was tilted, the gel flowed behind the comb and
air bubbles were removed by a pipette tip. When gel was solidified at room
temperature, the comb was removed from the polymerized gel and placed the gel in
the electrophoresis apparatus. The chamber was added with 1X TBE buffer to fill the
electrode chambers and covered the gel with this buffer in a depth of about 1 mm.
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Figure 3.3 Anillustration of agarose gel electrophoresis. (A) load dye and DNA into
agarose gel, (B) an electric field is applied to an agrose gel in the presence of a buffer
solution which will conduct electricity, the DNA migrate from cathode to anode, (C)
The DNA is stained by ethidium bromide.



Chiranya Sangprasert Materials and Methods / 52

6.1.2 Detection of amplified ZHX2 (G779A) polymorphism and PCR
product of ZHX2

The PCR product of ZHX2 was detected by 1.5% agarose gel
electrophoresis. Five ul of amplified product of ZHX2 gene was mixed with 2 pl of
loading dye and loaded in each well of agarose gel compared with 50 bp DNA
marker. The agarose gel was run for 30 minutes at 90 volts. ZHX2 fragment was
stained by ethidium bromide and visualized on a uv — transilluminator as fragment of
276 bp.

The restriction DNA fragments of ZHX2 (G779A) polymorphism was
detected by 3% agarose gel electrophoresis. Five pl of amplified product of ACE gene
was mixed with 2 pl of loading dye and loaded in each well of agarose gel compared
with 50 bp DNA marker. The agarose gel was run for 35 minutes at 90 volts, then the
2 two fragments with 149 and 127 bp in the presence of G alele and 276 bp in the
presence of A alele were observed by submerged in ethidium bromide solution for 5
minute. The stained gel was destained in distilled water for 5 minutes and visualized
on UV —transilluminator. Photograph was taken by Gel Doc EQ system to collected
datafor anaysis.

7. Reversetranscriptase polymerase chain reaction (RT-PCR) (146, 147)
7.1 Principle (146, 147)

Reverse transcriptase polymerase chain reaction is the common techniques
used to detect or quantify the expression of mRNA. It is the process which allows
RNA sequences to be amplified indirectly by converting RNA to DNA and then
subsequent amplifying the DNA that has been reversely transcribed. The enzyme
reverse transcriptase is used to copy the RNA into complementary DNA (cDNA); the
cDNA isthen amplified by PCR. In the first step of RT-PCR, which is called the first
strand reaction, the complementary DNA (cDNA) is produced from mRNA template
that uses dNTPs, a reverse transcriptase and random primers, Oligo-dT or a gene-
specific primer in a reverse transcriptase buffer. When the reverse transcriptase
reaction has been completed, cDNA will have been produced from the original single
stranded mMRNA.. Then standard polymerase chain reaction, or second strand reaction,
isinitiated (Figure 3.4).
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Figure 3.4 cDNA synthesis using RT-PCR (reverse transcriptase PCR). The first
stand synthesis of cDNA (catalyzed by reverse transcriptase) may be primed by using
either a gene-specific primer (GSP), oligo(dT), or a mixture of random hexameric
oligonucleotides. Second strand synthesis (amplification cycle 1; catalyzed by a
thermostable DNA polymerase) is primed with the sense primer. Amplification

continues in the presence of both sense and antisense primers.
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7.2 Quantification of ZHX2 gene by rever setranscriptase polymerase chain
reaction (RT-PCR)
RT-PCR was performed by using the Enhanced Avian HS RT-PCR Kit
(Sigma). ZHX2 specific primers were used.
7.2.1 First strand cDNA synthesisfrom total RNA
0.25 pg total RNA of each sample was mixed with 1 pul Anchored oligo
(dT)23 (0.5 pug/ul), 1 ul ANTP mix (10 mM). DEPC-treated water was added up to the
final volume of 10 ul. Samples were mixed gently and briefly centrifuged to collect
all components at the bottom of the tube. Each sample was incubated at 70°C for 10
min for denature RNA secondary structure and chilled on ice for at least 1 min.
Samples were briefly centrifuged and 10 pl of the reaction mix, containing 2 pl 10X
buffer for eAMV-RT, 1 ul RNAse inhibitor, 1 pl of eAMV RT, 6 ul DEPC-treated
water , were added. Contents of the tubes were mixed and incubated at 50 °C for 50
min. The reaction was inactivated by incubating at 70°C for 15 min. The first strand
cDNA is now ready for subsequent PCR amplification. The cDNA synthesis was
verified by amplification of the GAPDH gene via PCR with control primers then they
were visualized after gel electrophoresis by ethidium bromide staining.
7.2.2 PCR amplification of cDNA
Two pl of reverse transcribed cDNA was used for PCR amplification
with specific primer pairs are listed in Table 3.2. The reaction volume was 25 pul in 0.6
ml PCR tube which consisted of 2 ul template DNA (cDNA) from RT reaction, 0.5 pl
JumpStart AccuTag LA DNA polymerase (2.5U/ul), 2.5 ul 10X AccuTaq buffer, 2.5
pul ANTP mix (2 mM), 13.5 pl water and 2 pl oligonucleotide primers (5 pmol/ul).
The reaction was mixed. The optimized PCR was conducted in an automated PTC-
200 DNA Engine Thermal cycle. The following PCR profile was used: after an initia
denaturation for 5 minute at 95 °C, and then followed by 30 cycles of 45 second 95 °C
for denaturation, annealing at 57 °C for 30 second, and primer extension at 72 °C for
45 second. Fina extension at 72 °C for 5 minutes was performed after final cycle to
promote completion of partial extension products and complete the annealing of
single-stranded complementary products, and followed by chilling at 4 °C for stopped
reaction. The PCR product was applied to an 1.5% agarose gel followed by visualized
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after gel electrophoresis by ethidium bromide staining.and bands of the expected size
were gel-extracted and sequenced.

8. Statistical analysis

All statistical analysis was conducted by software package STATA version 9.0
and MedCalC. The differential among hematological data such as fetal hemoglobin
(HbF) level measured as percentage of total hemoglobin, adjusted fetal hemoglobin
and proportion of Hb F to Hb E according to ZHX2 genotype in subjects were
compared by one way ANOVA. The alele frequencies or genotype frequencies were
analyzed by gene counting method and their distribution between the study groups
were compared by Chi—square (y°) analysis. The Chi—square analysis was carried out
to test deviation of genotype frequencies from those predicted by the Hardy—
Weinberg equilibrium hypothesis. Moreover, the Chi—square analysis was aso
determined the influence of ZHX2 polymorphism in the study. To assess the
association among ZHX2 and each factor (i.e. percentage of Hb F), Chi-sguare test
were applied. Crude (unadjusted or exposure) odds ratio and 95% confidence interval
(Cl) were estimated. To determine the association among ZHX2 and Xmnl
polymorphisms on percentage of fetal hemoglobin and on severity of thalassemia, a
condition logistic model or multiply logistic regression analysis were fitted. Adjusted
odds ratio and 95% CI obtained from the model were reported. The nominal level of
statistical significance for all analyses was <0.05.
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CHAPTER IV
RESULTS

1. Clinical characteristics of the study population

The study populations were selected from 3 groups of Tha-Chinese [°-
thalassemia/lHb E patients, including 150 mild, 150 moderate, and 150 severe [°-
thalassemia/Hb E patients with normal a-globin genes. Thereby, the cohorts used in
this study consisted of 450 patients; 219 males and 231 females. The characteristics of
Be-thalassemia/lHb E patients were divided into subgroups according to clinica
severity shown in Table 4.1.

The subjects of this study under age group 2-64 years old, 17.6 + 12.4 (mean *
SD). Their physical characteristics were: height 138.5 + 22.4 cm. and body mass 33.9
+ 14.1 kg. Total hemoglobin levels ranged between 3.4 and 12.1 g/dL and hematocrit
levels varied from 12.6 — 41.0 %. The subjects'age, height, weight, baseline
hemoglobin level and percent Hematocrit are statistically significant different among
the severity. Furthermore, Hemoglobin F (g/dL), percentage of Hemoglobin F and
propotion of Hb F to Hb E are assorted between 0.19 -6.56, 6.85 - 66.56, 0.07 - 1.99
respectively. And al of them showed significant difference among the severity group
aswell (p<0.0001).
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Table 4.1 Clinical data and biochemical characteristics of B°-thalassemialHb E

patients according to severity (Data expressed as mean + SD)

mild moderate severe X
Parameter p-value
(n=150) (n =150) (n=150)
Age (years) 18.23+11.82 | 19.55+14.69 | 15.04+9.73 | 0.0050
Sex
69/81 76174 74176 na
Mae/Female
Weight (kg) 38.01+15.36 | 34.59+14.32 | 29.01+10.79 | <0.0001
Height (cm) 143.00+23.41 | 139.67+22.61 | 132.79+20.04 | 0.0003
Baseline Hb level
7.87£1.15 6.85+1.14 599+1.13 | <0.0001
(g/dL)
Hematocrit (%) 25.15+3.42 23.22+3.95 21.48+3.77 | <0.0001
Hemoglobin F (g/dL) | 3.18+1.13 1.98+0.83 1.28+0.68 | <0.0001
Hemoglobin F (%) | 39.36+10.84 | 28.69+11.85 | 20.69+11.25 | <0.0001
Propotion of
0.76+0.34 0.58+0.25 0.44+0.23 | <0.0001
HbFtoHb E
" = Using oneway ANOVA test

na = not applicable
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2. Optimization Condition for PCR and RT-PCR

The PCR condition were optimized on normal DNA template sample by varying
the annealing temperature from 55 °C to 60 °C and MgCl; concentration from 1.5 mM
to 2.5 mM. After getting the optimized PCR condition (Table 4.2), the G779A region
a exon 3 of ZHX2 gene was amplified using genomic DNA of 450 [°-
Thalassemia/Hb E patients as a template by PCR method.

The RT-PCR condition were optimized on norma cDNA template sample by
varying the annealing temperature from 55 °C to 60 °C, MgCl, concentration from 1.5
mM to 2.5 mM and primer concentration from 0.04 uM to 0.2 uM. The optimized
RT-PCR condition of ZHX2 and GAPDH are shown in Table 4.2. Then the cDNA of
1 mild and 1 severe case of fB°-Thaassemia/Hb E erythroid culture cells was

amplified as atemplate.

Table 4.2 The optimized PCR and RT-PCR conditions *

Gene Primer Annealing MgCl;
Primer sequences (5 —3') (uM) Temp (°C) (mM)

PCR
ZHX2
Forward —AGCTCTGCGAAGAGGACTTG - 0.2 58 15
Reverese  — CGGAGTCTGATTCAGCCAGT — 0.2
RT-PCR
ZHX2
Forward —AGCTCTGCGAAGAGGACTTG - 0.2 57 15
Reverese - ACTTCCCTGTCTAGGCCTG — 0.2
GAPDH
Forward — TCATCCCTGAGCTGAACGGG — 0.2 57 15
Reverese — TTACTCCTTGGAGGCCATGTG — 0.2

* Each PCR reaction has 25 pL total volume with 1 X buffer, 0.2 mM dNTPs, 1 U
Taq polymerase.
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3. Analysis of G779A polymorphism of ZHX2 gene

In order to analyze the G779A base substitution at exon 3 of the ZHX2 gene, the
gDNA was amplified by PCR with oligonucleotide primers (Figure 4.1). The 276 bp
amplified-DNA product which contained a cutting site for the Bgll restriction enzyme
was separated in 1.5% agarose gel (Figure 4.2). The restriction enzyme Bgll cut 276
bp fragment into 149 bp and 127 bp that was defined asthe G allele. In contrast, the A
alele variant had no site cut by Bgll. The fragment after digestion would remain 276
bp. After restriction enzyme digested PCR-amplified DNA, the DNA fragments were
analyzed by 3% agarose gel el ectrophoresis (Figure 4.3).

Forward primer
A. 5 .3
37) S 5 (1] | T— 5’
5 | Exon.s | 3’
3 5

Reverse primer

127 bp

779 G M GEAGCCGGGACGGCCAGGw

276 bp

| |
779A  NGEAGCCGGGACAGCCAGGH

C.
Recognition site cut of Bgl1 S GCCNNNNANGG C-3'

3-CGGNANNNNCCG-3

Figure 4.1 (A). PCR amplification of ZHX2 gene used oligonucleotide primers. (B).
The amplicon which had one restriction site cut for restriction enzyme Bgll would be
digested into 2 fragments of 127 and 149 bp in the present of G at nucleotide 779,
whereas the amplicon in the presence of A at nucleotide 779 remain undigested (276

bp). (C). 11-bp sequence and the cut site by Bgll are displayed.
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Figure 4.2 The PCR-amplified product of ZHX2 gene in 1.5 % agarose gel
electrophoresis. Lane M was 50 bp ladders. Lanes 1-5 were ZHX2-PCR product (276

bp).
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Figure 4.3 Analysis of the G779A polymorphism of ZHX2. PCR product of ZHX?2
were digested with Bgll and analyzed by 3 % agarose gel electrophoresis. Lane M
was 50 bp ladders. Lane 1 was uncut ZHX2 PCR product. Lane 2 was homozygous
GG (149 bp and 127 bp), lane 3 was heterozygous AG (276 bp, 149 bp and 127 bp),
and lane 4 was homozygous AA (276 bp).
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4. Study on the genotype frequencies and allele frequencies of G779A
polymor phism of ZHX2 gene

4.1 Hardy-Weinberg equilibrium
Genotype distributions and alele frequencies of ZHX2 G779A
polymorphism among 3 groups were shown in Table 4.3. All genotypes of ZHX2
G779A polymorphism were conform with Hardy-Weinberg equilibrium using

(p=0.05) binomial equation as followed: (p+q)? = p + 2pq + ¢~

4.2 Genotype frequencies

Genotype frequencies of ZHX2 G779A polymorphism were analyzed in
150 mild, 150 moderate and 150 severe cases with B°-thalassemia/Hb E disease.
Table 4.4 showed the distribution of genotype frequencies. The frequencies of GG,
AG and AA genotypes in mild cases were 38.0%, 50.7% and 11.3%, respectively,
moderate cases. 36.7%, 50.7% and 12.7%, respectively and severe cases. 40.0%,
50.0% and 10.0% respectively.

Chi-squares analysis indicated that there was no statistically significant
difference in G779A genotype distributions between mild and moderate cases
(p=0.9050). In the same way, homozygous GG genotype among mild and severe
cases, moderate and severe cases as shown in this table were aso not significantly
different (p=0.8129, 0.6348).

4.3 Allele frequencies
Allele frequencies of G and A of ZHX2 G779A polymorphism among 3
groups were calculated and displayed in Table 4.4. Estimated allele frequencies of G
alele and A alele were not significant difference between mild and moderate cases
(x*=0.064, p=0.8001). The frequency of G alele in mild cases was 63.3% which was
not significant higher from 65.0% in severe cases. Consequently, this result refers to
no significantly difference of G and A alleles were observed between mild and severe

cases (%= 0.116, p = 0.7334). The result in moderate and severe cases was similarly

not significant difference (XZ: 0.460; p = 0.4975).
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Table 4.3 The genotype frequencies distribution of ZHX2 G779A polymorphism in

Hardy-Weinberg equilibrium

ZHX?2 G779A polymorphism
mild moderate severe
Genotype (n=150) (n=150) (n=150) All
GG S7 55 60 172
AG 76 76 75 227
AA 17 19 15 51
N 1.240 0.850 1.467 3.447
p-value 0.2655 0.3566 0.2258 0.0634
Allele G 0.63 0.62 0.65 0.63
95% Cl 0.5774-0.6858 | 0.5639-0.6731 | 0.5944-0.7018 | 0.6024-0.6652
Allele A 0.37 0.38 0.35 0.37
95% ClI 0.3142-0.4226 | 0.3269-0.4361 | 0.2982-0.4056 | 0.3348-0.3976
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Table 4.4 Distribution of genotype frequencies and allele frequencies of G779A
polymorphism of ZHX2 gene in mild, moderate and severe cases with p°-
thalassemia/Hb E patients

mild moderate severe
Genotype (n=150) (n=150) (n=150)
GG 57 55 60
(38.0%) (36.7%) (40.0%)
AG 76 76 75
(50.7%) (50.7%) (50.0%)
AA 17 19 15
(11.3%) (12.7%) (10.0%)
Allde G 190 186 195
(63.3%) (62.0%) (65.0%)
Allee A 110 114 105
(36.7%) (38.0%) (35.0%)
Mild cases VS Moderate cases.
GG : = 0.014; p= 0.9050; df = 1 Allele frequency: 7*= 0.064; p = 0.8001; df = 1
Mild cases VS Severe cases:
GG : 4*= 0.056; p= 0.8129; df = 1 Allele frequency: 7= 0.116; p= 0.7334; df =1

Moderate cases VS Severe cases.

GG: 4*= 0.226; p= 0.6348; df = 1 Allele frequency: °= 0.460; p = 0.4975; df = 1
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5. Clinical characteristics of the study population according to ZHX2 gene
(G779A) genotypes

The anthropometric characteristics of B°-thalassemia/Hb E patients were divided
into subgroups according to ZHX2 gene (G779A) genotypes shown in Table 4.5.

The subjects age and their physical characteristic; height, weight are not
statistically significant different among the three genotypes of ZHX2 gene (G779A).
Furthermore, the hematologica data; baseline hemoglobin level, percent Hematocrit,
Hemoglobin F (g/dL), percentage of Hemoglobin F and propotion of Hb F to Hb E
also showed no significant difference among the three genotypes of ZHX2 (G779A).

Table 4.5 Clinical data and biochemical characteristics of p°-thalassemia/Hb E
patients according to ZHX2 gene (G779A) genotypes (Data expressed as mean + SD)

AA AG GG .
p-value
Parameter (n=51) (n=227) (n=172)
Age (years) 16.82+12.15 | 17.82+12.55 | 17.58+12.35 | 0.8923
Sex
24127 118/109 89/83 na

Male/Female
Weight (kg) 33.36+£15.33 | 34.19+14.05 | 33.68+13.86 | 0.9199
Height (cm) 137.20+24.05 | 138.84+22.07 | 138.56+22.46 | 0.9110

Baseline Hb level
7.094+1.19 6.84+1.43 6.91+£1.35 0.5053
(g/dL)

Hematocrit (%) 24.33+3.43 23.12+5.71 23.53+4.19 | 0.2731
Hemoglobin F (g/dL) | 2.40+1.19 2.14+1.21 2.08+1.17 0.3179
Hemoglobin F (%) | 37.24+12.25 | 35.15+11.58 | 34.34+11.37 | 0.2951

Propotion of
0.66+0.35 0.59+0.30 0.57+0.31 0.2423

HbFtoHbE

" = Using oneway ANOVA test

na = not applicable
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6. Assessment the risk of ZHX2 G779A polymorphism genotype and allele
frequencies between mild and severe cases with pe-thalassemia/Hb E

To study the association of ZHX2 polymorphism on mild and severe cases, the
logistic regression was used to evaluate for the risk contribution of ZHX2 G779A
polymorphism on mild compared with severe cases. If the odds ratio is more than 1,
there will be a positive correlation between the ZHX2 G779A genotypes or alee
frequencies with severe case. In contrast, when the odds ratio is less than 1, thereis a
negative correlation. Moreover, 95% confidence interval (95% CI) vaues were
considered asthe risk factor indicator if the values of 95% CI equal and more than 1.

The odds ratio of ZHX2 G779A polymorphism genotype and allele frequencies
between mild subjects and severe subjects in this study were summarized in Table
4.6. The odds ratio of AG and AA genotypes were 0.9375 (95% CI: 0.5784-1.5195,
p=0.7934) and 0.8382 (95% ClI: 0.3830-1.8346, p=0.7085), respectively in severe
compared with mild cases. The results showed that having A or G alele of ZHX2
G779A polymorphism did not confer risk of being mild or severe among [°-
thalassemia/Hb E patients.
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frequencies between mild and severe cases with °-thalassemia/lHb E

and alele

Mild Severe _
Genotype Oddsratio 95% Cl p-vaue
(n=150) (n=150)
GG 57 60 1.0000 - -
(38.0%) (40.0%)
AG 76 75 09375 | 0.5784-1.5195| 0.7934
(50.7%) (50.0%)
AA 17 15 0.8382 | 0.3830-1.8346 | 0.6588
(11.3%) (10.0%)
AlldeG 190 195
(63.3%) (65.0%) 09301 | 0.6661-1.2986 | 0.6704
Allde A 110 105
(36.7%) (35.0%)
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7. Assessment the risk of ZHX2 G779A polymorphism genotype and allele
frequencies between high and low percentage of Hb F with p°-thalassemia/Hb E

G779A genotype and allele frequencies of ZHX?2 gene were also used to evaluate
the odds ratio for the risk assessment on high percentage of Hb F subjects compared
with low percentage of Hb F subjects. The odds ratio of G779A polymorphism
genotype distributions and allele frequencies between high and low percentage of Hb
F with B°-thalassemia/lHb E patients in this study were summarized in Table 4.7. In
this study, the results showed that the odds ratio (OR) of AG genotype, using the
genotype of major common allele as areference, in low percentage of Hb F compared
with high percentage of Hb F was 0.9126, 95% CI: 0.6139-1.3568 (p=0.6514) and
AA genotype was 0.6077, 95% CI: 0.3199-1.1543 (p=0.1281). This is due to no
different lower GG frequency in patients with high percentage of Hb F. Furthermore,
frequency of G allele demonstrated were no association with risk of low percentage of
Hb F compared with high percentage of Hb F (OR = 0.8364, 95% CI : 0.6368-1.0985,
p=1.990), as shown in Table 4.7. These results indicated that GG genotype and G
allele were not associated with the risk of having low percentage of Hb F and may not
exert a protective effect on high percentage of Hb F.

For the separation of % Hb F threshold, % HbF of 29 has been evaluated as a
threshold level for diminished Hb F level. Because from the histogram of percentage
of Hb F demonstrated the percentage of Hb F seperated into 2 groups and there are the
cutoff point at 29% (Figure 4.4). The high Hb F group shown the different from low
Hb F group that is the spleen size < 18 cm, almost no 3" degree of retardation and

they tend to have fewer requirements for blood transfusion.
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Figure 4.4 Histogram of percentage of Hb F
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Table 4.7 The odds ratio of ZHX2 G779A genotype and allele frequencies between

high and low percentage of Hb F with p°-thalassemialHb E

High Low
Percentage of | Percentage of
ag X Odds
Genotype Hb F Hb F a 95% ClI p-value
ratio
(n=239) (n=211)
87 85
GG 1.0000 - -
(36.4%) (40.3%)
AG 120 107 0.6139-1.3568 | 0.6514
(50.2%) G0.7%) | 0910 | T ' '
32 19
AA 0.6077 | 0.3199-1.1543 | 0.1281
(13.4%) (9.0%)
294 277
Allde G
(61.5%) (65.6%) 0.8364
184 145 - 0.6368-1.0985 | 0.1990
Allde A
(38.5%) (34.4%)
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8. Theinfluence of ZHX2 polymorphism on the per centage of Hb F

Perincheri, S. et a (39) demonstrated that ZHX2 gene was related to the
regulation of gene which expressed in fetal state. The one of gene that expressed is y-
gene which involve in Hb F level. The results of this study, we found that among the
450 cases of B°-thalassemia/lHb E subjects showed no significant differences in high
and low percentage of Hb F among ZHX2 gene (G779A) genotypes as shown in
Table 4.8.

Table 4.8 The influence of ZHX2 polymorphism and percentage of Hb F in p°-
thalassemia/Hb E patients

GG AG AA
Genotype p-vaue*
(n=172) (n=227) (n=51)
High Percentage
40.63+7.82 40.35+7.47 41.15+8.28 0.7772
of Hb F
Low Percentage
¢ Hb E 17.95+7.56 18.33+7.14 19.03+7.11 0.8329
0

" = Using oneway ANOVA test
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9. Study on the distribution of ZHX2 G779A polymorphism genotype and allele
frequencies between gendersin Thai population

Next, we study if whether there is sex preference among G779A genotypes. The
results was shown in Table 4.9 indicated the distribution of ZHX2 G779A
polymorphism genotypes between genders among three groups of subjects and

showed no significant difference between male and female.

Table 4.9 Distribution of ZHX2 G779A polymorphism genotype and alee

frequencies between gendersin Thai population (n = 450)

Genotype frequencies
Genotype Mae Female Statistical value
GG 83 (37.9%) 89 (38.5%) )
x~ =0.4229
AG 109 (49.8%) 118 (51.1%)
p=0.809, df =2
AA 27 (12.3%) 24 (10.4%)
Tota 219 (100%) 231 (100%)
Allele frequencies
Allele Male Female Statistical value
G 275 (62.8%) 296 (64.1%) v%=0.1598
A 163 (37.2%) 166 (35.9%) p=0.689,df =1
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10. Study on thedistribution of ZHX2 genotypes according to Xmnl genotypesin
mild and sever e cases with p°-thalassemia/Hb E subjects and high percentage of
Hb F and low percentage of Hb F subjects of g°-thalassemia/Hb E patients

From the Tables 4.10 and 4.11, genotype distributions and allele frequencies for
combination of both ZHX2 and Xmnl polymorphisms were significant different in
severity and individuals with percentage of Hb F. The result from the Table 4.10
showed that there was significant association between ZHX2-GG together with Xmnl-
CC and severe phenotype (OR=5.6667, 95%CIl=2.1032-15.2678, p=0.000281).
Similar result was observed with comparison of % Hb F groups in °-thalassemia/Hb
E (OR=5.7750, 95%CI|=2.6264-12.6980, p<0.0001) (Table 4.11). There was
significant association between ZHX2-GG and Xmnl-CC and low percentage of Hb F.
These results suggested that these two polymorphisms have synergistic effect on risks

of being severe and having low %Hb F among °-thalassemia/lHb E patients.
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Table 4.10 Distribution of ZHX2 genotypes according to Xmnl genotypes in mild

cases and severe cases with B°-thalassemia/Hb E subjects

ZHX2 - GG ZHX2 - AG+AA
severe mild severe mild
Xmnl - CC 24 6 32 11
Xmnl - TT+TC 36 51 58 82
Odds ratio 5.6667 4.1129
95% ClI 2.1032-15.2678 1.9174-8.8220
v 11.817 (df=1) 13.035 (df=1)
p-value 0.0006 0.0003
(p=0.000281 by Fisher ‘s
exact test)

Table 4.11 Distribution of ZHX2 genotypes according to Xmnl genotypes in high

percentage of Hb F and low percentage of Hb F subjects of B°-thalassemia/Hb E

patients
ZHX?2- GG ZHX2- AG+AA
low high low high
percentage | percentage | percentage | percentage
of Hb F of Hb F of Hb F of Hb F
Xmnl - CC 36 10 43 15
Xmnl - TT+TC 48 77 83 137
Odds ratio 5.7750 4.7317
95% ClI 2.6264-12.6980 2.4754-9.0448
v 19.812 (df=1) 23.108 (df=1)
p-value <0.0001 <0.0001
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11. Thecomparison of ZHX?2 allele frequenciesin different population

The allele frequencies of G779A polymorphism from Thai population in this
study were compared with other racial population as shown in Table 4.12. Chi-sgquare
analysis was used to test the statisticaly significant differences in G779A dléele
frequencies among the different populations. The result showed differences in alelic
frequencies between Thai and various populations. Caucasian population showed
highly diverse allele frequencies comparing with that of Thai population. The G alele
frequencies showed comparable extent among Asian populations.

In conclusion, these comparisons of G779A polymorphism of ZHX2 gene vary
among different racia or ethnic groups. A possible explanation for the discrepancy in
the ZHX2 polymorphisms among population could be due to random genetic drift or a

sel ective mechanism.
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Table 4.12 Comparison of G779A polymorphism in different populations.

Allele frequencies information in other populations

Allele
Population Population Sampl effrequenciestt aquencies! . .
Type Name Size chart eq p-value| Submitter
G| A
Thailand 450 ‘QG 0.63|0.37 - Present study
NORTH AFD_EUR_PANEL|( 48 0 0.98]0.02 [<0.0001] PERLEGEN
AMERICA - = G ' ' '
NORTH AFD_AFR_PANEL| 44 . 1.000.00[<0.0001] PERLEGEN
AMERICA - = G ' ' '
NORTH AFD_CHN_PANEL| 48 O 0.65(0.35|0.9133 | PERLEGEN
AMERICA - - G ' ' '
CSHL-
EUROPE HapMap-CEU 116 OG 0.990.01 [<0.0001 HAPMAP
CSHL-
EAST ASIA HapMap-HCB 88 OG 0.61(0.39| 0.5617 HAPMAP
CSHL-
EAST ASIA HapMap-JPT 84 ‘QG 0.660.34 | 0.5733 HAPMAP
WEST CSHL-
AFRICA HapMap-YRI 116 g 1.00]0.00 |<0.0001 HAPMAP
NORTH AGI_ASP
AMERICA population 78 OG 0.97(0.03 [<0.0001| APPLERA_GI
EUROPE HapMap-CEU 120 0 0.98]0.02 [<0.0001 CSHL-
G ' ' ' HAPMAP
CSHL-
EAST ASIA HapMap-HCB 90 OG 0.61(0.390.6118 HAPMAP
CSHL-
EAST ASIA HapMap-JPT 90 OG 0.66(0.34 | 0.5519 HAPMAP
WEST CSHL-
AFRICA HapMap-YRI 120 OG 0.98]0.02 [<0.0001 HAPMAP

http://www.genecards.org/cgi-bin/snps/snp_link.pl?rs_number=3802264& file=
/home/genecards/versions/2.39build76/cards_usr/entriesZH/card ZHX2.txt;& kind=A
IleleFregData; & chrom=8
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12. Detection of MRNA expression of ZHX2 by rever se transcriptase-polymer ase
chain reaction (RT-PCR)

The mRNA expression patterns of differentially expressed genes in cultured
erythroid cells was investigated by reverse transcriptase-polymerase chain reaction
(RT-PCR) using exon specific primers. Glyceraldehydes-3-phosphate dehydrogenase
(GAPDH) was used as the endogenous control gene and the levels of expression were
normalized to GAPDH expression. The expected RT-PCR product size of GAPDH
and ZHX2 were 351 and 318 bp respectively. The differentiation of erythroid cells
was observed in the erythroid cell culture from 1 mild and 1 severe case of [3°-
thalassemialHb E subjects. Preproerythroblasts, proerythroblasts, basophilic
erythroblasts were identified as the maor populations on days 7, 9, and 12,
respectively. The expression levels showed differences on each day of culture (see
figure 4.5, 4.6). ZHX2 expression in erythroid precursor cells is estimated to be
relatively low, while expression in ovary, prostate, spleen, skeletal muscle and
pancreas tissue is high (34). The human ZHX2 in mild case also shows similar
expression patterns as observed in severe cases with B°-thalassemia/Hb E. These
studies suggest that ZHX2 mRNA s transcribed in erythroid precursor cells, which
confirms that the ZHX2 protein may involve in transcription in erythroid precursor

cellsand not only in the liver (39).
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Mild case

Day in culture
|

prepro pro baso

Figure 4.5 RT-PCR analysis of ZHX2 mRNA expression of mild case in agarose gel.
The 351 bp and 318 bp bands corresponded to GAPDH and ZHX2. Lane 1, 2, 3 were
ZHX2 and GAPDH expression at day 7, 10, 12 of culture, respectively; prepro
indicates preproerythroblasts; pro, proerythroblasts; baso, basophilic erythroblasts.
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Severe case

Day in culture

7 10
prepro  pro basn

Figure 4.6 RT-PCR analysis of ZHX2 mRNA expression of severe case in agarose

gel. The 351 bp and 318 bp bands corresponded to GAPDH and ZHX2. Lane 1, 2, 3
were ZHX2 and GAPDH expression at day 7, 10, 12 of culture, respectively; prepro
indicates preproerythroblasts; pro, proerythroblasts; baso, basophilic erythroblasts.
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CHAPTER YV
DISCUSSION

B-thalassemia is an autosomal recessive genetic disease with many genes
involved. It is a heterogeneous disorder caused by variations in the inactivation
mechanism of the [-globin genes. Homozygous p-thalassemia and [°-
thalassemia’lhemoglobin (Hb) E are accounting for a majority of B-thalassemic
syndromes in Southeast Asia. Despite seemingly genotypes, the patients, especialy
those with B°-thalassemia/Hb E disease, have a remarkable variability in anemia,
growth development, hepatosplenomegaly, and transfusion requirements. The genetic
factors may differ in each race or ethnic group and variations in genes may alter these
parameters. Thus, it is very interesting to investigate the associations between these
gene and B°-thalassemia/hemoglobin (Hb) E in each ethnic group for therapy and
prevention. Despite remarkable successes in the treatment of [°-thalassemia/
hemoglobin (Hb) E in the past decades, it is still the leading cause of death and
premature disability in developed and developing countries. Possible factors that
influence the severity of anemia in thalassemia may be inherited or noninherited. The
inherited factors include type of p-thalassemia mutation, coinheritance of a-
thalassemia, and factors that stimulate Hb F production. Up to present time, it is still
speculative whether genotypes could be predictive of phenotype.

Many genes have been proposed as candidates for a genetic cause of Hb F level.
In recent years, SNPs have been used as genetic markers for the study of complex
traits. Co-inheritance of a-thalassemia and homozygosity for Xmnl site polymorphism
modify phenotype (148-150). Winichagoon et al.(151) found that mild phenotype
may be seen even in the absence of detectable a-thalassemia and Xmnl +/+. A genetic
interaction between the Xmnl-®y site and a locus on chromosome 8q was reported to
influence adult F-cell levels (28).
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In our study, there was significant association between ZHX2 - GG and Xmnl -
CC and low percentage of Hb F. These results suggested that these two
polymorphisms have synergistic effect on severity and percentage of Hb F among 3°-
thalassemia/Hb E patients.

Here we provide evidence for the first time that G alele of G779A
polymorphism of ZHX2 is associated with lessened Hb F levels among [3°-
thalassemia/Hb E patients with Xmnl-®y * and XmnlI-®y * polymorphisms. In this
study, we revealed a no significant association between ZHX2 and percentage of Hb F
in a B°-thalassemia/Hb E of Tha population. So these results indicate that ZHX2
variants, by modulating HbF levels, act as an important devious ameliorating factor of
the B-thalassemia phenotype and it is likely they could help ameliorate other
hemoglobin disorders. We expect our findings will help to characterize the molecular
mechanisms of feta globin regulation and could eventualy contribute to the

development of new therapeutic approaches for f-thalassemia
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CHAPTER VI
CONCLUSION

Be-thalassemia/lHb E is a monogenic disease however its phenotype results from
several genetic factors. A variety in the clinical manifestation of B-thalassemic
diseases may occur from the nature of f-globin gene mutations, interaction with o-
thalassemia gene interaction, or differences in the amount of hemoglobin (Hb) F
production. However, the biological mechanism of human globin gene regulation
underlying developmental determination during embryogenesis is not yet fully
defined. Studied polymorphisms may be involved in amodulation of arelative risk of
being severe affected by other factors. Simultaneous studies of several genetic
variants will allow the determination of genetic susceptibility to B°-thalassemia/Hb E
and evaluation of severity. Tiago Gomes de Andrade et a.(37) proposed a test for
candidate gene for globin regulation in erythroid cells. This study was conducted to
determine differentially expressed transcripts in reticulocytes from a normal and a
HPFH-2 subject, viz., these experiments observed the downregulation of ZHX2, a
transcriptional repressor, in two HPFH-2 subjects which have a delayed switch from
fetal to adult hemoglobin, resulting in high levels of HbF in the adult stage, without
clinical manifestations. This demonstration can assess the relationship between the
genotype and Hb F level of the disease |eading to phenotypic severity of patients with
B-thalassemia. In our study, we can conclude that:

1. Anayzing genotypes and alele frequencies of ZHX2 polymorphism at
position 779, G substituted by A in Tha B°-thalassemialHb E patients, has shown
remarkable similarity of with other Asian populations and exhibited no association
with degree severity of f°-thalassemialHb E patients.

2. This study provides no evidence in supporting the association of G779A

polymorphism of ZHX2 gene with Hb F level and severity of 3°-thalassemia/Hb E
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3. However, this preliminary study of ZHX2 gene expression during erythroid
development does support its fetal-expressed gene suppression.

4. ZHX?2 isindeed expressed at low level in early developmental stage of human
erythroid culture cells.

5. It is possible that other genetic loci exist and provide larger effect on Hb F

level, consequently are more important as risk factors for °-thalassemia/Hb E.
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