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Abstract 

In this research, we propose the novel spectrum sensing techniques for time reduction 

in cognitive radio (CR) network for smart grid (SG) communication. CR network is received highly 

consideration to the communications infrastructure for SG because CR has been proposed to 

solve the spectrum scarcity problem by offering several advantages to utilize spectrum 

opportunely with dynamic spectrum management techniques. CR network has two important 

actors: Primary user (PU) and Secondary user (SU). PU is the owner of a licensed channel that 

has the priority to use the spectrum and SU is the occasional user that is responsible for 

sensing the licensed spectrum, identifying the unused channels in the absence of PU. CR 

system has four main functions including spectrum sensing, spectrum management, spectrum 

mobility, and spectrum sharing. To achieve this requirement, the SU need to have the 

capability to detect the availability of spectrum bands for possible utilize and aware of the 

PU reclaim rights of usage which is referred to “spectrum sensing”. Thus, spectrum sensing is 

the function of cognitive radio that is playing a major role for efficiency spectrum usage.  

In this research, we propose four spectrum sensing schemes in CR network for SG 

communication system. First, we propose fast spectrum sensing with coordinate system (FSC). 

FSC is knowledge-based spectrum sensing method. This novel technique decomposes a 

spectrum with high complexity into a new coordinate system and it uses these features in its 

PU detection process. Not only is the space of a buffer that is used to store information about 

a PU reduced, but also the sensing process is fast. Second, we propose double constraints 

adaptive energy detection (DCAED) for spectrum sensing. DCAED is blind spectrum sensing 

technique. This method adapts the threshold based on 2 accuracy of performance metrics. 

By using probability of detection and probability of false alarm as the target accuracy 

performance metrics, DCAED overcomes a demerit of ED in tradeoff between probability of 

detection and probability of false alarm when the system threshold is set by selecting only 

probability of detection or probability of false alarm. Third, we proposed two-stage spectrum 

sensing scheme exploits the merits of ED, MME and CAV techniques to determine the 

existence of the primary user. The ED performs spectrum sensing within a short time and offers 

a reliable detection at high SNRs condition. MME and CAV are robust to noise power 

uncertainty. Due to the combination of these techniques, the proposed schemes offer much 

more reliable detection when the uncertainty of noise power occurs. Finally, we propose 

modified- fast spectrum sensing with coordinate system (MFSC), to perform spectrum sensing 

under path loss effect and noise uncertainty.  

Keyword: Cognitive radio, Spectrum sensing, PCA, Noise uncertainty, Path loss effect 



 

บทคดัยอ 

งานวิจัยฉบับน้ี ผูวิจัยนําเสนอการตรวจจับสเปคตรัมแบบใหมเพ่ือทําการลดเวลาในการทํางานของ

เครือขายคอกนิทีฟสําหรับการสื่อสารของระบบสมารทกริด ระบบคอกนิทีฟไดรับความสนใจเปนอยางมากใน

การที่จะนํามาประยุกตใชในการสื่อสารของระบบสมารทกริด เน่ืองจากระบบคอกนิทีฟเปนระบบที่สามารถ

แกปญหาความไมเพียงพอในการใชงานสเปคตรัม โดยระบบคอกนิทีฟจะทําการหาชวงสเปคตรัมที่ผูใชหลัก

ไมไดใชงานแลวนําสเปคตรัมที่วางนั้นมาใชในการสงขอมูลสื่อสาร องคประกอบหลักของระบบคอกนิทีฟประ

กอบดวย ผูใชหลักและผูใชรอง ผูใชหลัก คือ ผูใชสเปคตรัมที่ไดรับอนุญาตในการเขาใชงาน สวนผูใชรอง คือ 

อุปกรณของระบบคอกนิทีฟที่เขาใชงานสเปคตรัมของผูใชหลักเม่ือสเปคตรัมไมไดถูกใชงาน ระบบคอกนิทีฟมี

ฟงกชันการทํางานหลักอยู 4 ฟงกชันไดแก การตรวจจับสเปคตรัม การจัดการสเปคตรัม การยายสเปคตรัม 

และการแบงการใชงานสเปคตรัม โดยเงื่อนไขหลักของระบบคอกนิทีฟคือ ผูใชรองจะตองไมสรางการรบกวน

การใชงานสเปคตรัมของผูใชหลักอยางเด็ดขาด ซ่ึงฟงกชันที่จะปองกันการรบกวนของผูใชรองตอผูใชหลัก คือ 

ฟงกชันการตรวจจับสเปคตรัม ดังนั้น ในงานวิจัยฉบับน้ีจึงมุงเนนที่จะออกแบบการตรวจจับสเปคตรัมแบบใหม

ที่ใชเวลาในการทํางานต่ําและมีประสิทธิภาพในการทํางานดกีวาเทคนิคการตรวจจับเสปคตรัมทีมี่อยูในปจจุบนั 

ในงานวิจัยฉบับนี้ ผูวิจัยไดนําเสนอการตรวจจับสเปคตรัมแบบใหมทั้งหมด 4 ชนิด โดยแตละชนิดมี

รายละเอียดดังตอไปน้ี ชนิดที่ 1 การตรวจจับสเปคตรัมอยางเร็วโดยการใชระบบพิกัด วิธีนี้จะทําการแยก

สเปคตรัมของผูใชหลักชนิดตางๆใหไปอยูในระบบพิกัดแบบใหม แลวนําลักษณะที่อยูในพิกัดแบบใหมนี้ไปทํา

การตรวจหาการมีหรือไมมีการใชงานสเปคตรัมของผูใชหลัก ซ่ึงวิธีที่นําเสนอนี้สามารถตรวจสอบการใชงาน

สเปคตรัมไดอยางมีประสิทธิภาพอีกทั้งยังใชเวลาในการตรวจจับที่เร็วกวาวิธีเดิมๆ อีกดวย ชนิดที่ 2 การ

ตรวจจับพลังงานแบบปรับคาเงื่อนไข 2 คา วิธีน้ีเปนการตรวจจับแบบบอด คือ ไมจําเปนตองทราบขอมูลของ

ผูใชหลักในการตรวจสอบการใชงาน ทําใหความซับซอนของการตรวจจับมีคาต่ํา ชนิดที่ 3 การตรวจจับ

สเปคตรัมแบบสองขั้นตอน วิธีนี้จะทําการรวมขอดีของการตรวจจับแบบ ED, MED และ CAV เขาไวดวยกัน 

จากผลการทดลองพบวา การตรวจจับวิธีน้ีมีประสิทธิภาพสูงกวาการตรวจจับแบบ 1 ขั้นตอนปกติ อีกทั้งยัง

สามารถใชงานในสภาพแวดลอมที่มีภาวะสัญญาณรบกวนแบบไมคงที่ไดอีกดวย ชนิดสุดทาย คือ การปรับปรุง

การตรวจจับชนิดที่ 1 โดยทําการปรับปรุงคาตัวแปรบางคา เพื่อที่จะใหการตรวจจับชนิดน้ีสามารถใชงานใน

สภาพแวดลอมที่มีสัญญาณรบกวนแบบไมคงที่และสัญญาณที่เคร่ืองรับยังไดรับผลกระทบจากการสูญเสียคา

พลังงานตามระยะทางอีกดวย  

คําสําคญั: ระบบคอกนิทีฟ, การตรวจจับสเปคตรัม, พีซีเอ, สัญญาณรบกวนแบบไมคงที่, ผลกระทบจากการ

สูญเสียคาพลังงานตามระยะทาง 

  



 

Executive Summary 

1) ความสําคัญและที่มาของปญหา  

In general, the traditional power grids are used to carry power from a few central 

generators to a large number of users or customers. In contrast, Smart grid (SG) uses two-way 

flows of electricity and information to create an automated and distributed advanced energy 

delivery network. SG is the integration of secure, high-speed and reliable data communication 

networks to manage the complex power systems intelligently and effectively. Thus, SG has 

harsh and complex environmental conditions, connectivity problems, dynamic topology 

changes, and interference and fading issues during wireless communication. It is difficult to 

design the information and communication technologies (ICTs) system for the overall power 

grid. Thus, the choice of communication infrastructure for SG is highly critical to provide 

reliable, secure, and efficient data delivery between SG components. For solving these 

problems, Cognitive radio (CR)  networks can be benefited to address the unique challenges 

of SG, such as multipath fading, reliability and delay requirements, different spectrum 

characteristics changing over location and time, noise, and harsh environmental conditions. 

Cognitive radio (CR) network is proposed for overcome the “Spectrum crisis” problem 

by offering several advantages to utilize spectrum opportunistically with dynamic spectrum 

management techniques. CR network has two important actors: 1) primary user (PU) and 2) 

secondary user (SU). PU is the owner of a licensed channel that has the priority to user the 

spectrum. SU is the occasional user that is responsible for sensing the licensed spectrum, 

identifying the unused channels in the absence of PU and a SU is called a CR user. CR system 

has four main functions including spectrum sensing, spectrum management, spectrum 

mobility, and spectrum sharing. The spectrum sensing detects unused spectrum and sharing 

the spectrum without harmful interference with other users. The spectrum management 

captures the best available spectrum to meet user communication requirements. The 

spectrum mobility maintains seamless communication requirements during the transition to 

better spectrum. The spectrum sharing provides the fair spectrum scheduling method among 

coexisting other uses. Due to the legacy rights in spectrum band of PU, the SU must vacate 

the band whenever the PU need to reclaim the spectrum usage rights. To achieve this 

requirement, the SU need to have the capability to detect the availability of spectrum bands 

for possible utilize and aware of the PU reclaim rights of usage which is referred to “spectrum 

sensing”. Thus, spectrum sensing is the function of cognitive radio that is playing a major role 

for efficiency spectrum usage. 



 

In this research, we propose four spectrum sensing schemes in CR network for SG 

communication system. First, we propose fast spectrum sensing with coordinate system (FSC). 

FSC is knowledge-based spectrum sensing method. This novel technique decomposes a 

spectrum with high complexity into a new coordinate system of salient features and it uses 

these features in its PU detection process. Not only is the space of a buffer that is used to 

store information about a PU reduced, but also the sensing process is fast. Second, we propose 

double constraints adaptive energy detection (DCAED) for spectrum sensing. DCAED is blind 

spectrum sensing technique. This method adapts the threshold based on 2 accuracy of 

performance metrics. By using probability of detection and probability of false alarm as the 

target accuracy performance metrics, DCAED overcomes a demerit of ED in tradeoff between 

probability of detection and probability of false alarm when the system threshold is set by 

selecting only probability of detection or probability of false alarm. Third, we proposed two-

stage spectrum sensing scheme exploits the merits of ED, MME and CAV techniques to 

determine the existence of the primary user. The ED performs spectrum sensing within a short 

time and offers a reliable detection at high SNRs condition. MME and CAV are robust to noise 

power uncertainty. Due to the combination of these techniques, the proposed schemes offer 

much more reliable detection when the uncertainty of noise power occurs. Finally, we 

propose modified- fast spectrum sensing with coordinate system (MFSC), to perform spectrum 

sensing under path loss effect and noise uncertainty. 

2) วัตถุประสงค 

 This project proposes the novel spectrum sensing techniques in CR network for SG 

communication. The proposed techniques have a minimum time requirement and give a 

better performance than the conventional spectrum sensing methods. Moreover, we consider 

two channel environments including AWGN channel and the channel that consider the noise 

uncertainty and path loss effect. 

3) ระเบียบวิธีวิจัย 

1. Literature review of the spectrum sensing algorithms of cognitive radio (CR) networks: 

Study research papers relevant to the research works of the research. 

1.1 Study research papers relevant to spectrum sensing algorithms. 

1.2 Study research papers concerning with improving the spectrum sensing 

algorithms. 

1.3 Study research papers regarding the time requirement of the spectrum sensing 

algorithms. 

2. Simulation software implementation of the spectrum sensing algorithms  



 

2.1 Consider and compare the time requirement of each of spectrum sensing 

techniques from literature reviews. 

2.2 Provide time delay mathematical model of the spectrum sensing algorithm for 

CR network. 

2.2 Develop the time reduction of the spectrum sensing algorithm for CR network. 

3. Simulation software implementation of the proposed technique 

3.1 Develop the proposed technique for the spectrum sensing algorithm 

simulation program. 

3.2 Test the time requirement of the proposed spectrum sensing algorithm for CR 

network. 

4. Project summary 

4.1 Summarize the major finding as we found in step 3 and conclude the 

performance of the proposed time reduction in all concerned aspects. 

4.2 Check whether the conclusions meet all the objectives of the research work 

of the research. 

4.3 Write the research report. 

4) แผนการดําเนินงานวิจัยตลอดโครงการในแตละชวง 6 เดือน 

1st year of the project 

Months 1-3 Literature review of Spectrum sensing algorithm of Cognitive 

radio networks. 

Months 4-6 Improved observation model for spectrum sensing algorithm. 

Months 7-10 Simulation software implementation of improved observation 

model. 

Months 11-12 Literature review of communication protocol for smart grid. 

2nd year of the project 

Months 13-15 Improved observation model for spectrum sensing algorithm 

that can be used under noise uncertainty and path loss effect. 

Months 16-18 Simulation software implementation of improved observation 

model. 

Months 19-21 Evaluation of developed model and algorithm and write the 

journal. 

Months 22-24 Project summary.  



 

Chapter 1 

Introduction 

1.1 Introduction to the research problem and its significance 

In general, the traditional power grids are used to carry power from a few central 

generators to a large number of users or customers. In contrast, Smart grid (SG) uses two-way 

flows of electricity and information to create an automated and distributed advanced energy 

delivery network. SG is the next-generation of electric power system since 2005. Therefore, SG 

becomes one of the fast growing research topics [1-11] because this system is a promising 

solution for energy crisis. In [1], J. Ekanayake, et al. present the six major advantages of SG 

such as SG can manage demand response and demand side through the integration of SG 

devices and SG can provide information related to energy use and price to customers. One of 

the important features of SG is the integration of secure, high-speed and reliable data 

communication networks to manage the complex power systems intelligently and effectively. 

Thus, SG has harsh and complex environmental conditions, connectivity problems, dynamic 

topology changes, and interference and fading issues during wireless communication. It is 

difficult to design the information and communication technologies (ICTs) system for the 

overall power grid. Thus, the choice of communication infrastructure for SG is highly critical to 

provide reliable, secure, and efficient data delivery between SG components. 

The communication infrastructure between energy generation, transmission, and 

distribution and consumption needs two-way communications, interoperability between 

advanced applications and end-to-end secure and reliable communications with sufficient 

bandwidth and low-latencies [2-11]. The important communication and networking 

technologies which may be applicable in future SG. Six important communication types [2] 

include wireless mesh network, such as WiMAX, cellular communication system, such as GSM, 

WCDMA, and CDMA-2000, wireless communications based on 802.15.4, such as ZigBee, 

WirelessHART, and ISA100.11a, microwave or free-space optical communications, fiber-optic 

communications and power line communication (PLC). The first four communication 

technologies are the wireless communication and the last two technologies are the wired 

communication. The compare the performance between wireless technologies and wired 

technologies for SG are considered in [3]. They can conclude that the wireless communication 

technologies have significant benefits more than wired technologies because the wireless 

communication has low installation cost, rapid deployment, mobility, and more suitable for 

remote end applications. In [4-5], they study the performance of the current communication 

technologies that are applied to SG. They found that the current communication capabilities 



 

of the existing power systems are limited to small-scale local regions and these methods 

implement basic functionalities for system monitoring and control which do not yet meet the 

demanding communication requirements for the automated and intelligent management in 

the next-generation electric power systems. Therefore, a key point in the success of SG 

technology is how to meet the complicated requirement in the communication. It demands 

high communication quality and energy efficiency while taking care of the system expenses 

and bandwidth. The bandwidth is needed to manage, store and integrate the large amounts 

of data that smart devices will produce. For solving these problems, Cognitive radio (CR) 

networks can be benefited to address the unique challenges of SG, such as multipath fading, 

reliability and delay requirements, different spectrum characteristics changing over location 

and time, noise, and harsh environmental conditions. 

Many works in literature proposed shown that CR network appropriates to SG 

communication [12-28]. These works also present the research challenges of CR network for 

SG communication that can be summarized as shown below: 

 Quality of Service (QoS)  
CR network for SG applications have different QoS requirements including reliability, 

latency, and data rate. Additionally, SG is a heterogeneous network and it contains electric 

equipment which has dramatically different limitations, such as storage capability and 

computing power. Hence, it is still an open research issue to design QoS-aware communication 

protocols capable way.  

 Interoperability 
SG needs advanced communication protocols among each of its component to 

exchange information independent from manufacture or any type of physical device. Thus, 

different communication technologies and several standards will be used to proper the 

specific QoS requirements of SG components and applications. These communication 

technologies may demand operating on different spectrum bands.  

 Interference  
Interference avoidance scheme should be applied to the CR networks under SG 

environments. The spectrum management cycle can exclude this problem by providing 

spectrum sharing functionality.  

 Dynamic Spectrum Usage 
After the selection of the best available channel for the required SG application, the 

next step is to make the network protocols adaptive to the chosen spectrum.  



 

Cognitive radio (CR) Network is proposed for overcome the “Spectrum crisis” problem 

by offering several advantages to utilize spectrum opportunistically with dynamic spectrum 

management techniques [29-35]. CR network has two important actors: 1) primary user (PU) 

and 2) secondary user (SU). PU is the owner of a licensed channel that has the priority to user 

the spectrum. SU is the occasional user that is responsible for sensing the licensed spectrum, 

identifying the unused channels in the absence of PU and a SU is called a CR user. In [29-30], 

an introduction of the CR technology and its network architecture are provided. They define 

the main functions for CR into four topics including spectrum sensing, spectrum management, 

spectrum mobility, and spectrum sharing. The spectrum sensing detects unused spectrum and 

sharing the spectrum without harmful interference with other users. The spectrum 

management captures the best available spectrum to meet user communication 

requirements. The spectrum mobility maintains seamless communication requirements during 

the transition to better spectrum. The spectrum sharing provides the fair spectrum scheduling 

method among coexisting other uses.  

Spectrum sensing is an important to play a role in CR network to efficiently and 

accurately detect primary user for avoiding interference to primary user [36-42]. The 

requirement for real-time processing indeed poses challenges on implementing spectrum 

sensing algorithms. Trade-off between the complexity and the effectiveness of spectrum 

sensing algorithms should be taken into consideration. Therefore, in this research, we will 

propose the new spectrum sensing schemes that has the minimum time requirement and 

gives the good performance. 

1.2 Literature review 

In this research, we propose the new spectrum sensing techniques in CR network for 

SG communication. The proposed techniques can classify into two types of channel 

environment. First, we present two spectrum sensing methods under AWGN channel. Second, 

we propose two spectrum sensing techniques under noise uncertainty and path loss effect. 

Therefore, in this section, we will review the relevant research papers, published in the 

conferences and journals, which cover spectrum sensing techniques of both environments. 

In this part, we will review the literatures about CR network for SG communication [12-

28]. In [12], they provide an overview at the current communication technologies for SG, and 

discuss the still-open research issues in this field. Furthermore, they review the CR network 

based SG communication for solving the resources scarcity crisis problem. In [13], they present 

a comprehensive review about SG characteristics and CR-based SG applications. They also 

discuss architectures to support CR networks in SG applications, major challenges, and open 



 

issues. Four major challenges that are considered include Quality of Service (QoS), 

Interoperability, Interference, and Dynamic spectrum usage. In [14], they compare SG with 

communication systems in general and with CR. Their simulation results confirm that CR 

technique is a solution for the problem of spectrum scarcity. In [15], they propose the 

application of CR based on the IEEE 802.22 standard in SG wide area networks (WANs). The 

proposed method can work as a secondary radio particularly: urban and rural. In urban area, 

the proposed scheme is a backup in disaster management. On the other hand, a stand-alone 

radio based on IEEE 802.22 can effectively provide broadband access for rural area. In [16-17], 

they present an unprecedented CR based communications architecture for SG, which is mainly 

motivated by the explosive data volume, diverse data traffic, and need for QoS support. The 

proposed architecture is decomposed into three subareas: cognitive home area networks 

(CogHANs), cognitive neighborhood area networks (CogNANs), and cognitive wide area networks 

(CogWANs), depending on the service ranges and potential applications. Finally, they focus on 

dynamic spectrum access and sharing in each subarea.  

When we combine CR network and SG system together, the most of researches 

propose techniques for solving spectrum management functionality in CR network for 

improving the performance of CR network for SG communication. The spectrum management 

functionality can be classified into four processes: spectrum sensing, spectrum decision, 

spectrum sharing, and spectrum mobility. In [18-20], they propose dimensionality reduction 

techniques such as principal component analysis (PCA), kernel PCA, and landmark maximum 

variance unfolding (LMVU) for spectrum sensing context on Wi-Fi signal measurements. 

Moreover, they provide the compressed sensing algorithms such as Bayesian compressed 

sensing and the compressed sensing Kalman filter for recovering the sparse smart meter 

transmissions. In [21], they propose parallel processing techniques based on graphics 

processing unit (GPU) for accelerate processing of spectrum sensing and dynamic access. In 

[22], they focus on the spectrum resource management in CogNANs for efficient SG services. 

They propose a new spectrum access paradigm called hybrid spectrum access, in which both 

licensed and unlicensed spectrum bands are intelligently scheduled for the transmission of 

SG services. Numeric results indicate that the proposed technique strategy significantly 

improves the network capacity in supporting the SG services, compared to the traditional fixed 

spectrum access strategy. In [23], they propose spectrum-aware and cognitive sensor networks 

to overcome spatio-temporally varying spectrum characteristics and harsh environmental 

conditions for wireless sensor networks (WSN)-based SG applications. Specially, potential 

advantages, application areas, and protocol design principles of spectrum-aware and cognitive 

sensor networks (SCSN) are introduced. A case study is also presented to reveal the reliable 



 

transport performance in SCSNs for different smart grid environments. The goal of A. O. Bicen, 

et al. is to envision potentials of SCSNs for reliable and low-cost remote monitoring solutions 

for smart grid.  

On the other hand, the time requirement problem is the one of fundamental problems 

for data communication [24-28]. In [24], they consider the current communication 

technologies for SG. Their knowledge can conclude that the current communication 

techniques are not support for the real time communication of SG. Moreover, In [25], they 

confirm that SG requires the critical real-time systems. For CR network for SG communication, 

several works have studied the optimization of sensing time to tradeoff between interference 

avoidance and sensing efficiency [26-27], since spectrum sensing and data transmission cannot 

be performed at the same time. In [28], they introduce spectrum sensing and channel 

switching techniques of CR into SG communication. They find optimal sensing time to reduce 

packet loss rate and delay, under the constraint that the PU is sufficiently protected. They 

formulate the sensing-delay tradeoff problem and prove that it has unique optimal sensing 

time which yields the minimum delay. However, this paper did not compare the proposed 

technique with the conventional techniques. Additionally, they also consider in only CogHANs 

network architecture. Therefore, CR network for SG communication needs a novel spectrum 

sensing technique that has a minimum time requirement and gives a good performance when 

compare with other techniques.  

In this research, we will propose a new spectrum sensing that has a minimum time 

requirement and gives the good performance. Hence, in this part, we will review the literatures 

about the spectrum sensing in CR network. 

Three parameters are defined to evaluate the efficiency of spectrum sensing — 

accuracy of detection, computational complexity, and sensing time. The accuracy of detection 

is defined by the rate of correct detection of PUs when such users are actually present and 

occupying the spectrums concerned. This is a prime concern of spectrum sensing because a 

PU must not be affected by an SU. On the other hand, detecting the presence of a PU when 

in fact the PU is absent, otherwise known as false detection, has to be minimized to fully 

utilize spectrum bands. The accuracy of detection is usually shown in terms of a statistic; that 

is, in terms of a probability, which is often referred to as the probability of detection (Pୢ ). 

Likewise, false detection is sometimes referred to as the probability of false alarm (P୤ୟ). In 

terms of the probability of detection, the higher the probability, the less likely it is that a PU 

will experience interference. 



 

The second quality of service (QoS) parameter, computational complexity, is described 

by the computational burden. The complexity of a spectrum sensing technique affects both 

the amount of energy consumed by the technique during sensing and the latency of the 

technique. The higher the complexity, the higher the amount of energy consumed and the 

higher the latency, neither of which is desired. It generally comes at a cost when the spectrum 

sensing technique needs to improve its accuracy of detection.  

The third QoS is sensing time, which is highly related to computational complexity. It 

should be noted that the computational complexity of a spectrum sensing technique can also 

be described by sensing time, since this is increased when the computational burden is 

increased. From the perspective of sensing time, the more channels an SU monitors, the more 

opportunities they will have of accessing a licensed band. In addition, an increase in sensing 

time will result in a decrease in an SU’s throughput. It is stated in the IEEE 802.22 standard 

[43] that an SU needs to perform spectrum sensing within 2 s of a set sensing period with a 

false alarm probability of less than 0.1 and a detection probability higher than 0.9. 

Generally, spectrum sensing techniques [44-58] can be classified into the following two 

groups: blind techniques and techniques based on prior knowledge of a signal. Blind 

techniques — energy detection (ED) [43-49], maximum eigenvalue detection (MED) [50], 

covariance absolute value (CAV) [50-52], and maximum to minimum eigenvalue (MME) 

detection [53-56] — determine the presence of PUs by measuring the energy or correlation 

of a received signal. Knowledge-based spectrum sensing techniques — matched filter 

detection (MFD) [43-47], cyclostationary detection (CFD) and leading eigenvector detection 

(LED) [58] — require information on the patterns of signals from PUs to analyze observed 

signals. In general, knowledge-based techniques perform with higher accuracy than blind 

techniques. However, their computational burden and sensitivity to prior information are also 

higher than blind techniques such as MFD has to know an exactly waveform pattern of primary 

user signal while CFD needs to know cyclic frequency of primary signal. Furthermore, the 

performance of knowledge-based techniques are dependent upon on databases of patterns 

of PU signals; the pattern of a wireless microphone (WM) signal changes from one pattern to 

another in reality, even though it operates at the same frequency. The IEEE 802.22 standard 

categorized WM signals into three patterns — silent, soft speaker, and loud speaker [59]. If a 

new pattern belonging to a WM signal, one not yet in the database, is observed, then the 

accuracy of the knowledge-based techniques performances will drop. To keep track of all the 

possible patterns, large-sized databases are required, which in turn, would require the use of 

large memory spaces. It is factors such as these that will eventually result in a high 

computational time. 



 

ED [60-63] is the most widely utilized because it consumes the shortest sensing time 

with the least complexity. However, the accuracy of detection of ED is unreliable under bad 

condition of communication channel or at low signal to noise ratio (SNR) condition. In [64-65], 

the performance of ED is improved by using an adaptive threshold. In general, the threshold 

of ED is set by fixing target performance metrics. There are 2 ways to set a threshold for ED. 

The first way is done by fixing target probability of false alarm which is called “constant false 

alarm rate (CFAR)”. The other way is done by fixing target probability of detection which is 

called “constant detection rate (CDR)”. An adaptive threshold energy detection (ATED) 

changes its decision threshold depending on the condition of communication channel. The 

system threshold switches between the threshold of CFAR and CDR. Although the detection 

performance of ED is improved, the false alarm detection rate does not achieve the target 

performance stated by IEEE 802.22 standard which the spectrum sensing technique has to 

perform spectrum sensing with probability of false detection less than 0.1. 

In this paper, we propose double constraints adaptive energy detection (DCAED), a 

novel adaptive scheme that adapts the threshold controlled by 2 target detection 

performance including probability detection and probability of false alarm. Since there is no 

directly way to set the threshold by fixing 2 target performance metrics. There is a parameter 

that can be set by fixing 2 target performance metrics. This parameter known as “critical 

sample (Nୡ)”. DCAED exploits a relation between critical sample and two target performance 

metrics to set an adaptive factor. The adaptive factor is used to change the threshold of 

DCAED. The simulation results prove that DCAED gives good detection performance in both 

performance metrics even at low SNRs. In addition, an average sensing time of DCAED also 

achieves the requirement of IEEE 802.22 standard which is lower than 2 seconds. 

On the other hand, we known that the knowledge-based techniques perform with 

higher accuracy than blind techniques. Therefore, we propose fast spectrum sensing with 

coordinate system (FSC) that is a knowledge-based technique, whereby the information of a 

PU is a prerequisite. The main difference from MFD, CFD and LED is that only significant 

features of original signals are used to construct a coordinate system. While these features 

reveal the intrinsic patterns of a PU, their dimension is much smaller than the original signal. 

To construct the new coordinate system, a feature-extraction process and feature-selection 

processes of a principal component analysis (PCA) [66-67] algorithm are adopted. To 

determine the existence of a PU, the FSC algorithm measures the percentage (weight) of 

correspondence between the received signal and a coordinate system. The magnitude of this 

weight will rise when a PU exists. Alternatively, it will fall when a PU does not exist. The FSC 



 

algorithm consumes little memory, requires little computational burden, and has a short 

sensing time. 

The two proposed techniques that are previously descripted are considered in only 

additive white Gaussian noise (AWGN) channel. However, there are many factors that degrade 

the performance of the spectrum sensing technique [56] such as low signal-to-noise ratio (SNR) 

condition, environment of noise uncertainty, fading and shadowing. Therefore, in this paper, 

we focus on two main factors, including low SNR condition and environment of noise 

uncertainty. Low SNR condition refers to the condition that power of noise is much more than 

power of real signal. This condition effects to the decision making of the existence of primary 

user and may cause harmful interference to primary user. On the contrary, an environment as 

noise uncertainty always presents in practical. The uncertainty of noise power is caused by 

transmission of other users. When the uncertainty of noise occurs, there will be a difference 

in an estimated noise power and real noise power that cause the performance of spectrum 

sensing technique significantly degrades. 

The third proposed technique that considers the noise uncertainty is two-stage 

spectrum sensing. Since no single-stage spectrum sensing technique is perfect enough to be 

implemented in CR device, two-stage spectrum sensing technique is proposed. The two-stage 

spectrum sensing technique improves the performance of conventional spectrum sensing 

techniques by exploiting individual advantages of conventional spectrum sensing techniques. 

The framework of the two-stage spectrum sensing technique can be separated into 2 stages 

including coarse sensing stage (or first stage) and fine sensing stage (or second stage). For a 

given channel, the existence of primary user is firstly determined by the coarse sensing stage, 

if the decision value of the first stage is greater than the threshold of the first stage then the 

spectrum band is declared to be existed. If the decision value of the first stage is lower than 

the threshold of the first stage, the second stage is activated. 

There are two existing two-stage spectrum sensing techniques including energy 

detection (ED) to cyclostationary detector (CS) two-stage spectrum sensing technique [68-69] 

and energy detection (ED) to maximum eigenvalue detection (MED) two-stage spectrum 

sensing technique [70-72]. Mostly, ED [50] is utilized as a first stage of two-stage spectrum 

sensing technique because it uses less sensing time than the other techniques. For the second 

stage, there are two types of conventional spectrum sensing techniques that were proposed 

for this stage such as CS and MED [51, 73]. CS technique offers a reliable performance of 

detection at low SNRs. However, the CS technique is cannot be used when the cyclic 

frequency of primary signal is unknown. On the other hand, under the combination of ED and 



 

MED algorithms, the two-stage spectrum sensing technique offers reliable detection at low 

SNRs and uses short sensing time at high SNRs. The second stage of ED to MED two-stage 

spectrum sensing technique offers a reliable detection when the noise power is exactly known. 

However, an environment as noise power uncertainty always presents in practical which makes 

the detection performance of MED technique significantly degrades. 

In this paper, we propose two novel schemes of two-stage spectrum sensing technique 

for CR, i.e., ED to CAV (covariance absolute value detection) two stage spectrum sensing 

technique and ED to MME (maximum-minimum eigenvalue detection) two stage spectrum 

sensing technique. ED is used as the first stage of the proposed algorithms because it performs 

spectrum sensing within short sensing time and gives reliable detection at high SNR 

environment. In the second stage, we exploit two difference type of blind detection 

techniques, including CAV [52-54, 74] and MME [55]. The merit of blind detection technique is 

that it is robust to the uncertainty of noise power. Under the combination of ED and blind 

detection techniques, our algorithms offer better detection performance than the existing 

two-stage spectrum sensing techniques. The simulation results proved that ED to CAV two 

stage spectrum sensing technique gives the best performance among the others. The 

performance of spectrum sensing techniques are evaluated through three standard patterns 

of wireless microphone signal, including, including silent, soft speaker and loud speaker, based 

on IEEE802.22 document [59]. In our simulation, the patterns of received signal changes 

randomly. 

Finally, we propose modified FSC that re-derives some parameters of FSC algorithm in 

order to perform spectrum sensing under path loss effect and noise uncertainty since a 

conventional FSC did not take these factors into the account therefore it is not appropriate 

to perform spectrum sensing under path loss effect and noise uncertainty. This is due to the 

fact that the FSC threshold is very sensitive to the strength of signal’s power since it performs 

spectrum sensing under a framework of pattern recognition. Therefore, the FSC threshold is 

needed to re-derived and vary on the changing in the strength of path loss. In simulation 

results, we evaluate the performance of MFD, LED and MFSC under path loss effect and take 

a noise uncertainty into the account in order to make the environment of the communication 

channel nearly to the practical communication system. From the evaluation, we found that 

MFD still gives the highest dܲ when noise uncertainty does not exist. On the other hand, the 

effect of noise uncertainty does not cause any degradation to the detection performance of 

LED, while the detection performance of MFD degrades significantly. MFSC algorithm is the 

most achievable of spectrum sensing requirement when it gives high detection performance 

while consumes the least average sensing time under noise uncertainty with path loss effect. 



 

1.3 Objectives 

 This project proposes the novel spectrum sensing techniques in CR network for SG 

communication. The proposed techniques have a minimum time requirement and give a 

better performance than the conventional spectrum sensing methods. Moreover, we consider 

two channel environments including AWGN channel and the channel that consider the noise 

uncertainty and path loss effect. 

1.4 Methodology 

1. Literature review of the spectrum sensing algorithms of cognitive radio (CR) networks: 

Study research papers relevant to the research works of the research. 

1.1 Study research papers relevant to spectrum sensing algorithms. 

1.2 Study research papers concerning with improving the spectrum sensing 

algorithms. 

1.3 Study research papers regarding the time requirement of the spectrum sensing 

algorithms. 

2. Simulation software implementation of the spectrum sensing algorithms  

2.1 Consider and compare the time requirement of each of spectrum sensing 

techniques from literature reviews. 

2.2 Provide time delay mathematical model of the spectrum sensing algorithm for 

CR network. 

2.2 Develop the time reduction of the spectrum sensing algorithm for CR network. 

3. Simulation software implementation of the proposed technique 

3.1 Develop the proposed technique for the spectrum sensing algorithm 

simulation program. 

3.2 Test the time requirement of the proposed spectrum sensing algorithm for CR 

network. 

4. Project summary 

4.1 Summarize the major finding as we found in step 3 and conclude the 

performance of the proposed time reduction in all concerned aspects. 



 

4.2 Check whether the conclusions meet all the objectives of the research work 

of the research. 

4.3 Write the research report. 

1.5 Scope of research 

 The research problem is the time reduction of CR network for SG communication. The 

scope of these researches is as follows: 

 Study the performance and the limitation of spectrum sensing in the CR 
network.  

 Study the factors that degrade the performance of the spectrum sensing 
technique. 

 Simulate and compare the time requirement communication of the 
conventional spectrum sensing techniques in the CR network.  

 Propose the new spectrum sensing techniques that has lower time requirement 
and good performance in the CR network.  

 Simulate and compare the time requirement communication of the proposed 
technique in the CR network.  

1.6 Schedule for the entire project and expected outputs 

1st year of the project 

Months 1-3 Literature review of Spectrum sensing algorithm of Cognitive radio 

networks. 

Months 4-6 Improved observation model for spectrum sensing algorithm. 

Months 7-10 Simulation software implementation of improved observation model. 

Months 11-12 Literature review of communication protocol for smart grid. 

2nd year of the project 

Months 13-15 Improved observation model for spectrum sensing algorithm that can 

be used under noise uncertainty and path loss effect. 

Months 16-18 Simulation software implementation of improved observation model. 

Months 19-21 Evaluation of developed model and algorithm and write the journal. 

Months 22-24 Project summary.  



 

Chapter 2 
Basic Concept 

This chapter gives a brief introduction to wireless microphone signals based on the 
IEEE 802.22 standard and conventional spectrum sensing techniques. After that, two factors 
that degrade the performance of spectrum sensing techniques, i.e., noise uncertainty and path 
loss, are briefly reviewed. 

2.1 Wireless microphone signals 
In this research, a wireless microphone (WM) signal is considered as a PU signal. To 

evaluate the performance of spectrum sensing techniques for WM signal, the WM signal is 
modeled by IEEE 802.22 [59]. Therefore, the WM signal is categorized into 3 models — silent, 
soft speaker and loud speaker. Silent means that the PU transmits only the frequency 
modulation (FM) carrier and tone key. Soft speaker means that the PU transmits the FM carrier 
with some moderate amount of deviation. Loud speaker means that the PU transmits the FM 
carrier with near the maximum amount of deviation. 

The WM signal can be expressed as 

(ݐ)ݏ = ccos (2πܣ c݂ݐ + 2π݇f ∫ ݉(߬)d߬௧
଴ ),                            (2-1) 

݉(߬) = sin ( m݂(2-2)                                              ,(ݐ 

where ܣc  is amplitude of carrier signal, ݉(߬)  is the modulating signal, m݂  is message 
frequency, c݂ is carrier frequency and ݇f is frequency modulation (FM) deviation factor. 

Based on IEEE 802.22, the parameter of silent, soft speaker and loud speaker of the 
WM signal are set as shown in Table 2-1. 

Table 2-1. Model of wireless microphone signal [59]. 

 Silent Soft speaker Loud speaker 
݉(߬) frequency (kHz) 32 3.9 13.4 

FM deviation factor (kHz) (݇f) ±5 ±15 ±32.6 

Figure 2-1 modulation of wireless microphone signals at silent situation, soft speaker 
situation and loud speaker situation, respectively. 



 

 

Figure 2-1 Three models of wireless microphone signal  

2.2 Spectrum Sensing Techniques 

Spectrum sensing is a critical function of CR that periodically detects the existence of 

a PU during its sensing period. Generally, spectrum sensing techniques can be broadly 

classified into two types: 1) detection techniques based on prior knowledge about signal, 2) 

blind detection techniques which do not require any prior knowledge. The detection 

technique based on prior knowledge requires for the information of primary signal’s pattern. 

This sensing technique normally offers better sensing performance than blind detection 

technique. Nevertheless, when the secondary user does not have the information about the 

pattern of PU, the sensing performance of this technique is also drop. The solution of this 

problem is that the secondary user has to keep various signals’ pattern of PU in the database 

which makes the system requires large size of memory. In addition, the increasing of the 

information also makes the increasing in the computational burden which effect to the 

increasing in the complexity and also sensing time. On the contrary, blind detection technique 

does not require any prior knowledge about primary signal which make it is more flexible. The 

advantages of blind detection technique are less computational complexity, less time to 

perform sensing and can be applied to any pattern of primary signal. The disadvantage is the 

performance of detection, which degrade greatly at low Signal-to-Nosie Ratio (SNR). 

Accuracy of detection can be evaluated through statistical models, including 
probability of detection (Pୢ ), probability of false alarm (P୤ୟ) and probability of misdetection 
(P୫). The probability of detection refers to correct declaration of a secondary user when a 
primary user actually presents or absents. The probability of false alarm refers to the 
declaration that a primary user presents when it actually absents. Conversely, the probability 
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of misdetection refers to the declaration that a primary user absents when it actually presents. 
Target performance in perspective of an accuracy of detection is to maximize the probability 
of detection while the probability of false alarm and probability of misdetection should be 
minimized. The other performance metric is sensing time which is the duration that a 
secondary user performs spectrum sensing. IEEE 802.22 standard states that the duration to 
perform spectrum sensing is 2 seconds [43]. However, there is a tradeoff between duration to 
perform spectrum sensing and an accuracy of detection. In general, the secondary user should 
delicately perform spectrum sensing to achieve high accuracy of detection. This will make the 
system consumes more sensing time, more complexity and the system throughput also 
decreases. 

To detect the existence of a PU, there are two hypothesis models of a received signal 
that are expressed as follows: 

 

ܠ = ൜ િ               when a PU is absent  [0ܪ], 
s + િ         when a PU is present  [1ܪ],                            (3-2) 

 

where ܠ is the signal an SU receives, િ is additive white Gaussian noise, and s is the signal 
transmitted by a PU.  

In this section, we conclude the well-known spectrum sensing techniques including 
its own operational requirement and merits/demerits. Individual requirements and 
merits/demerits are briefly reviewed as follows:  

A. Energy Detection 
Energy detection (ED) is one of the most widely used techniques because it is easy to 

implement and does not require any prior knowledge about signal’s pattern. However, the 
performance of detection degrade greatly at low SNRs. The average energy of received signal 
is define as a decision statistic which can be expressed as 

Y୉ୈ =  ଵ
ே

 ∑ |x(t)|ଶே
௧ୀଵ                                              (2-4) 

where Y୉ୈ and ܰ  denote test statistic and the sample interval, respectively. The threshold is 
determined by using probability of false alarm (P୤ୟ). In addition, probability of detection (Pୢ ) 

can also be used. Mathematical models of probability of false alarm and probability of 
detection are given by 

P୤ୟ = ܲ[Y୉ୈ ≥  [଴ܪ|୉ୈߛ

=  Q ቂቀఊుీ
ఙ౤మ − 1ቁ √ܰቃ                                          (2-5) 

Pୢ = ܲ[Y୉ୈ ≥  [ଵܪ|୉ୈߛ



 

=  Q ቂ √ே
ఈାଵ

ቀఊుీ
ఙ౤మ − ߙ − 1ቁቃ                                    (2-6) 

ߙ =
ୱߪ

ଶ

୬ߪ
ଶ 

where ߛ୉ୈdenotes decision threshold, Q(. ) is standard Gauss complementary cumulative 
distribution function, ߪ୬

ଶ is the variance of noise, ߪୱ
ଶ is the variance of desired signal. To 

determine the existence of primary user, the test statistic is compared to the threshold. The 
spectrum band is vacant if test statistic is less than the threshold 

B. Matched Filter Detection 
Matched filter detection (MFD) uses the correlation between the received and 

known signals. The output from MFD is compared to a threshold to determine the 
existence of a PU. The test statistic of MFD, MܻFD, is given by  

MܻFD =   ∑ ேିଵ(݊)ݔ
௡ୀ଴ s*(݊),                                 (2-7) 

where s*(݊) is the conjugate of the known signal. The decision threshold, ߛMFD, is 
determined from the probability of false alarm, fܲa(MFD). Alternatively, the probability of 
detection, dܲ(MFD), can also be used as the decision threshold. Mathematical models for 

fܲa(MFD) and dܲ(MFD) are given as 
 

fܲa(MFD)   = ܲ[ MܻFD ≥  (8-2)                                 [0ܪ|MFDߛ

     =  ܳ ൤൬ఊMFD
ఙિ√ா

൰൨, 

 
              dܲ(MFD)  = ܲ[ MܻFD ≥  (9-2)                                  [1ܪ|MFDߛ

         =  ܳ ൤൬ఊMFD ିா
ఙિ√ா

൰൨, 

 
where ܧ is the energy of desired signal. 

C. Maximum Eigenvalue Detection 
Maximum eigenvalue detection (MED) is the sensing technique based on statistical 

covariance of the signal. Since the covariance matrix contains the correlation between 
signal samples, thus this detector calculate the maximum eigenvalue of covariance matrix 
and used as test statistic in order to determine the existence of primary user. A received 
signal comprising ܮ consecutive samples is given by 

ܠ = ݊)ݔ (݊)ݔ] − ݊)ݔ …(1 − ܮ − 1)]T,                             (2-10) 

s = [s(݊)  s(݊ − 1)… s(݊ − ܮ − 1)]T,                             (2-11) 



 

િ = ݊)ߟ (݊)ߟ] − ݊)ߟ …(1 − ܮ − 1)]T,                            (2-12) 

where ܮ is a smoothing factor. Since the statistical covariance matrix cannot be directly 

calculated, the sample covariance matrix of the received signal is computed by the following 

procedure: 

1. The sample auto-correlations of the received signal are firstly expressed as 
 

߮(݈) = ଵ
ே

∑ ݉)ݔ(݉)ݔ − ݈)ேିଵ
௠ୀ଴ ,     ݈ = ܮ ,…,2 ,1 ,0 − 1.                  (2-13) 

2. Secondly, the sample covariance matrix of the received signal is calculated as 
 

(ܰ)ܠ܀ = ൦

߮(0)
߮(1)

߮(1)
߮(0) ⋯ ߮(݈ − 1)

߮(݈ − 2)
⋮ ⋱ ⋮

߮(݈ − 1) ⋯ ߮(0))

൪.                                         (2-14) 

 
Note that the sample covariance matrix is a Toeplitz and symmetric matrix. 
 

3. Thirdly, the eigenvalues of (2-14) are calculated using an eigen-decomposition 
algorithm. Note that only the maximum eigenvalue of the received signal, ߣmax, is used 
in step 4 to determine the existence of a PU. 
 

4. Finally, the existence of a PU can now be determined from the value of ߣmax.  
 

(ܰ)maxߣ > િߪMEDߛ
2  when a PU is present,                       (2-15) 

(ܰ)maxߣ ≤ િߪMEDߛ
2  when a PU is absent,                        (2-16) 

where ߛMED denotes a predetermined decision threshold. 

Since the sample covariance matrix of the noise is nearly a Wishart random matrix, 
MED is analyzed using the probability distribution of the normalized largest eigenvalue — 
referred to as “Tracy–Widom distribution”. Thereby, fܲa(MED) can be expressed as 

fܲa(MED) = ((ܰ)િ܀)maxߣൣܲ > િߪMEDߛ
2 ൧                     (2-17) 

             ≈  1 − ܨ ቂቀఊMEDேିఘ
௩

ቁቃ, 

ߩ  = ൫√ܰ − 1 + ൯ܮ√
2
,                                      (2-18) 

ݒ  = ൫√ܰ − 1 + ൯ܮ√ ቀ ଵ
√ேିଵ

+ ଵ
√௅

ቁ
1

3ൗ
.                         (2-19) 

 



 

D. Covariance Absolute Value Detection 

With covariance absolute value detection (CAV), an SU determines the existence 
of a PU from the received signal. This is done by comparing the auto-correlation of the 
received signal to the CAV threshold. However, CAV will perform poorly when the auto-
correlation of the received signal is low. The test statistic of CAV, CܻAV , is given by 

 

CܻAV =  ቀ߮(0) + ଶ
௅

∑ ܮ) − ݈)|߮(݈)|௅ିଵ
௟ୀଵ ቁ ൫߮(0)൯

-1
.                      (2-20) 

 
The threshold for CAV detection, ߛCAV, can be expressed as 

 

CAVߛ =  ቆ1 + ܮ) − 1)ට ଶ
ேπ

ቇ ቆ1 − ܳ-1( fܲa)ටଶ
ே

ቇ
-1

.                       (2-21) 

 
A PU is present if  CܻAV ≥ .CAVߛ  Mathematical models for fܲa(CAV) and dܲ(CAV) are 

given as 
 

fܲa(CAV) = 1 −  ܳ ቎
భ

ംCAV
ቆଵା(௅ିଵ)ට మ

ಿπቇିଵ

ට మ
ಿ

቏,                           (2-22) 

 

dܲ(CAV) = 1 −  ܳ ቎
భ

ംCAV
ା൬

ംL SNR
ംCAV (SNRశభ)൰ିଵ

ට మ
ಿ

቏,                           (2-23) 

 
where ߛL is given by 
 

Lߛ ≜ ଶ
௅

∑ ܮ) − ௟|௅ିଵߙ|(1
௟ୀଵ                                       (2-24) 

 
and ߙ௟ is given by 
 

௟ߙ = ݊)s(݊)s]ܧ  − ݈)]
sߪ

2൘ .                              (2-25) 

 

E. Maximum to Minimum Eigenvalue Detection 

The procedure of maximum to minimum eigenvalue detection (MME) is similar to 
MED. However, the MME method determines the existence of a PU by comparing the ratio 
of the maximum and minimum eigenvalues with the threshold ߛMME. MME detection can 
be calculated using (2-14). The test statistic for the MME detection method is given by 



 

MܻME = maxߣ 
minߣ

ൗ .                                         (2-26) 

 
The probability of false alarm for MME detection is given by 

 

fܲa(MME)  ≈  1 − ܨ ቈఊMME൫√ேା√௅൯
2

 ିఘ
௩

቉.                            (2-27) 

The threshold of the first stage can be expressed as 

୑୑୉ߛ = ிషభ(ଵି୔౜౗)௩ାఓ

൫√୒ା√௅൯
మ                                                (2-28) 

F. Leading Eigenvector Detection 

Leading eigenvector detection (LED) calculates the correlation between the leading 
eigenvector of the received signal and the leading eigenvector of the known signal. Similar 
to MFD, the output is compared to a threshold to determine the existence of a PU. Since 
LED keeps only the most significant feature of the received signal, the technique requires 
less memory than MFD. However, since the LED technique needs to calculate the leading 
eigenvector of the received signal, the sensing time and complexity of computation is 
increased. 

Let us define the following PU signals, ܠ௜, ݅ =  ݀ each of which has ,ܯ , … ,2 ,1

dimensions, as 

ଵܠ = ݊)ݔ (݊)ݔ] + 1) … ݊)ݔ  + ݀ − 1)]T, 

ଶܠ = ݊)ݔ] + ݊)ݔ (1 + 2) … ݊)ݔ  + ݀)]T,                                (2-29) 

                                                                  ⋮              

ெܠ   = ܰ)ݔ] + ݊ − ݀) … ܰ)ݔ  + ݊ − 1)]T. 

The LED procedure can then be summarized as follows: 

1. The sample covariance matrix of a received signal ܠ௜ is given by 
 

x܀ = ଵ
ெ

∑ ௜ܠ௜ܠ
T.ெ

௜ୀଵ                                          (2-30) 

 
Note that we assume the sample mean to be zero. 
2. The eigenvalues and eigenvectors of the received signal can be calculated using 

(2-30). Only an eigenvector corresponding to the largest eigenvalue, 1ܞ, is considered. 
The test statistic for LED is given by 
 



 

LܻED =  max
௟ୀ଴, ଵ, ଶ, … , ௗ

ห∑ ݆]ො1ܞ[݆]1ܞ + ݈]ௗ
௝ୀଵ ห.                             (2-31) 

 

3. The existence of a PU can now be determined from the value of LܻED. 
 

LܻED >  LED when a PU is present,                            (2-32)ߛ

LܻED ≤  LED when a PU is absent,                            (2-33)ߛ

where ܞො1 is the leading eigenvector of the received signal, 1ܞ is the leading 
eigenvector of the known signal, and ߛLED is a predetermined threshold. 

2.3 Noise uncertainty  
In practical communication system, noise may occurs from more than one sources. 

Then the variance of noise is difficult to be exactly estimated. Once noise occurs from various 
sources, the disturbance of noise is undesirable that is referred to an “uncertain behavior” or 
“noise uncertainty” [75]. The noise uncertainty may occur from the time-varying of thermal 
noise in a receiver and the non-linearity of the receiver. In addition, the transmission of other 
users also causes the noise uncertainty. When the uncertainty of noise occurs, the variance of 
noise distributes within range of ቂߪߙિ

ଶ, ଵ
ఈ

િߪ
ଶቃ . Then, an estimated noise power can be 

expressed as  

ොિߪ
ଶ = િߪߙ

ଶ                                                     (2-34) 

where ߙ is a noise uncertainty interval and ߪિ
ଶ is a noise variance. Then, noise uncertainty 

factor (in dB) distributes within range [−B, B] when noise uncertainty factor (in dB) is given 
as 

B = ݔܽ݉ {10log10  (2-35)                                             .{ߙ

2.4 Path loss  
In practical communication networks, the received signal power of the transmitted 

signal may be lower than its transmitted power due to an attenuation of signal strength 
(power) due to the propagation distance between PU and SU. This is referred to path loss [76-
77]. The mathematical model of path loss is derived as 

PL ≡ Cdିℵ                                                     (2-36) 

where PL is path loss, d is distance between PU and SU, C is loss constant and ℵ is path loss 
exponent.  
 Then, the received SNR due to path loss effect can be expressed as  



 

෤PLߛ = PL∙ఙs
2

ఙિమ                                                      (2-37) 

where ߪs
2 is a signal variance. 

2.5 Principal Component Analysis  

Principal component analysis is a main trend in classical feature extraction and data 
compression method which data is represented in lower dimensionality (subspace) through 
linear transformation technique. PCA algorithm commonly used in the field of pattern 
recognition, such as face recognition and vehicle license plate recognition. The main objective 
of PCA algorithm is to reduce original data dimensionality by performing a covariance analysis 
between factors and eliminating the extrinsic features (or later principal components). In other 
words, PCA algorithm attempts to find significant features (or principal components) of the 
distribution of data. Through the computation of linear transformation, a new coordinate 
system is chosen for the data set comes to lie on the axis. Mathematical theory that used in 
PCA algorithm including standard deviation, covariance, eigenvectors, eigenvalues and also 
linear transformation. 

PCA algorithm reduced the dimension of data while the variance in the original-
dimensional space is preserved as much as possible. In addition, PCA algorithm perform this 
reduction with minimum mean square error compared to the desired data. In term of 
computation, the principal component can be found by performing computed the eigenvector 
and eigenvalue of covariance matrix of the data. Eigenvector corresponding to the largest 
eigenvalue represented the most significant feature of the data (principal component). In other 
words, the principal component is the direction (or axis on a new coordinate) of greatest 
variation which data can relied on. The second component is the orthogonal direction with 
the next highest variation (or eigenvalue) and so on.  

Referring to face recognition, eigenface is a vital element that effectively represent face 
image using PCA algorithm. The main concept of eigenface is to reconstruct any collected face 
images using the weight combination of significant features of images which obtained from the 
collection. Thus, eigenfaces can be defined as the principal directions of all possible face 
images in a new coordinate systems. Referring to face recognition, eigenface is a vital element 
that effectively represent face image using PCA algorithm. The main concept of eigenface is 
to reconstruct any collected face images using the weight combination of significant features 
of images which obtained from the collection. Thus, eigenfaces can be defined as the principal 
directions of all possible face images in a new coordinate systems. Training operations of face 
recognition can be summarized as the following: 

The PCA algorithm can be summarized as follow. 
1. Obtain images ଵܷ , ଶܷ, … , ܷே  



 

2. Represent every image ௜ܷ as vector ܫ௜ 

3. Compute the average of image vector (ߤ):  
 

ߤ  = ଵ
ே

∑ ௜ܫ
ே
௜ୀଵ                                                (2-38) 

 
4. Subtract the mean image (ߛ௜):  

 
௜ߛ  = ௜ܫ −  (2-39)                                                ߤ

 
5. Compute the covariance matrix (ܥ) :  

 
ܥ  = ଵ

ே
∑ ௜ߛ௜ߛ

்ே
௜ୀଵ                                             (2-40) 

 
6. Compute the eigenvectors (ܸ = ,ଵݒ] ,ଶݒ … , ݑ) ௄]) and eigenvaluesݒ ) of ܥ  . 

Where eigenvectors (ܸ) known as eigenfaces or eigenspace. 
7. Keep only ܭ best eigenvectors corresponding to the ܭ largest eigenvalues. 
8. Each image (subtract the mean image:  ߛ௜) in the training set can be represented 

as a linear combination of the ܭ best eigenvectors: 
 

௜ߛ  − ߤ = ∑ ෤௝ݔ
௄
௝ୀଵ  ௜                                                   (2-41)ݒ

or 
෤௝ݔ             = ௜ݒ

 ௜                                                         (2-42)ߛ்
 

9. Represent   ߛ௜ as       ݔ෤ =

⎣
⎢
⎢
⎢
෤ଵݔ⎡

௜

෤ଶݔ
௜

⋮
෤௄ݔ

௜⎦
⎥
⎥
⎥
⎤
                                                          (2-43) 

It is clear that 95% of the total number of features present in the images is a sufficient 
amount to be representative of all the existing features. Hence, having decided to only select 
the ݇  best eigenvectors, the dimension of the images is reduced. Reducing the dimension of 
the WM signals avoids a huge amount of computational burden. Moreover, the effect of noise 
from the original signal is avoided due to the reduction in dimension of the images.  

For given an unknown image (ܫ௧௘௦௧ ) follows these procedure. 

1. Normalize I: ߛ௧௘௦௧ = ௧௘௦௧ܫ −  (2-44)                                                            ߤ

2. Project on the eigenspace: ߛ௧௘௦௧ − ߤ = ∑ ෤௝ݔ
௄
௝ୀଵ  ௜                                (2-45)ݒ

 



 

3. Represent ߛ௧௘௦௧ as  ݔ෤௧௘௦௧ = ൦

෤ଵ,௧௘௦௧ݔ
෤ଶ,௧௘௦௧ݔ

⋮
෤௄,௧௦௘௧ݔ

൪. 

  



 

Chapter 3 

Proposed Techniques 

 In this chapter, we descript four spectrum sensing techniques that we are proposed. 

Two methods are double-constrain adaptive energy detection (DCAED) and fast spectrum 

sensing with coordinate system (FSC) for additive white Gaussian noise (AWGN) channel. Two 

techniques are two-stage spectrum sensing and modified FSC for noise uncertainty and path 

loss environment. 

3.1 Double constraints adaptive energy detection 

From chapter 2, we known that ED [60-63] is the most widely utilized because it 
consumes the shortest sensing time with the least complexity. However, the accuracy of 
detection of ED is unreliable under bad condition of communication channel or at low signal 
to noise ratio (SNR) condition. In [64, 65], the performance of ED is improved by using an 
adaptive threshold. In general, the threshold of ED is set by fixing target performance metrics. 
There are 2 ways to set a threshold for ED. The first way is done by fixing target probability of 
false alarm which is called “constant false alarm rate (CFAR)”. The other way is done by fixing 
target probability of detection which is called “constant detection rate (CDR)”. An adaptive 
threshold energy detection (ATED) changes its decision threshold depending on the condition 
of communication channel. The system threshold switches between the threshold of CFAR 
and CDR. Although the detection performance of ED is improved, the false alarm detection 
rate does not achieve the target performance stated by IEEE 802.22 standard which the 
spectrum sensing technique has to perform spectrum sensing with probability of false 
detection less than 0.1. 

3.1.1 Conventional energy detection technique 
As shown in Figure3-1, the PU signal is received by SU. The output from bandpass filter 

is digitized by analog to digital converter (ADC). The existence of PU is determined by 
measuring the energy of the received signal and compares to predetermined threshold.  
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Figure 3-1 Model of conventional energy detection technique [64]. 

The decision statistic of ED is given as  

EܻD =  ଵ
ே

 ∑ 2ே|(݊)ܠ|
௡ୀଵ .                                          (3-1) 



 

When the PU absents, the decision statistic can be represented as 

୉ܻୈ =  ଵ
୒

 ∑ |િ (n)|ଶ୒
୬ୀଵ .                                        (3-2) 

If both of primary signal and noise is an independent and identically distributed (i.i.d.) 
random process. The mean (ߤ଴) and variance ߪ଴

ଶ under hypothesis ܪ଴ can be derived as 

଴ߤ = |ܧ ୉ܻୈ| =  
1
N ෍|િ (n)|ଶ

୒

୬ୀଵ

 

=  ଵ
୒

 ∑ િߪ
ଶ୒

୬ୀଵ = િߪ
ଶ                                  (3-3) 

଴ߪ
ଶ  = |ܧ ୉ܻୈ − ଴|ଶߤ =  ଵ

୒
 หܧ|િ (n)|ସ − િߪ

ସห.                           (3-4) 

If Gaussian noise is real-valued, ܧ|િ (n)|ସ = િߪ3
ଶ. The variance ߪ଴

ଶ can be expressed 
as 

଴ߪ
ଶ = ටଶ

ே
િߪ

ଶ.                                                    (3-5) 

Thus, the probability of false alarm (P୤ୟ) can be expressed as 

P୤ୟ = ܳ ൭൬ ఒ
ఙિమ − 1൰ ටே

ଶ
൱                                               (3-6) 

where ߣ is decision threshold, ߪિ
ଶ is the variance of noise and ܛߪ

ଶ is the variance of primary 
user signal and ܳ(∙) is standard Gauss complementary cumulative distribution function. 

When the PU presents (ܪଵ), the decision statistic is given as 

୉ܻୈ =  ଵ
୒

 ∑ (n)ܛ| + િ (n)|ଶ୒
୬ୀଵ                                         (3-7) 

Under hypothesis ܪଵ, the mean (ߤଵ) can be derived as 

ଵߤ = |ܧ ୉ܻୈ| =  
1
N ෍|ܛ(n) + િ (n)|ଶ

୒

୬ୀଵ

 

= ܛߪ
ଶ + િߪ

ଶ = ߛ) + િߪ(1
ଶ                                          (3-8) 

ߛ = ఙܛమ

ఙિమ                                            (3-9) 

where ߛ represents signal-to-noise ratio (SNR). The variance  ߪଵ
ଶ is given as 

ଵߪ
ଶ  = |ܧ ୉ܻୈ −  ଵ|ଶ                                                   (3-10)ߤ

                                                                  =  ଵ
୒

 หܛ|ܧ (n)|ସ + િ (n)|ସ|ܧ − ൫ܛߪ
ଶ − િߪ

ଶ൯ + ܛߪ2
ଶߪિ

ଶห    



 

If Gaussian noise is real-valued, ܛ|ܧ(n)|ସ = ܛߪ3
ଶ and  ܧ|િ (n)|ସ = િߪ3

ଶ. The variance 
ଵߪ

ଶ can be expressed as 

ଵߪ
ଶ = ටଶ

ே
ߛ) + િߪ(1

ଶ.                                           (3-11) 

Thus, the probability of detection (Pୢ ) can be represented as 

Pୢ =  ܳ ቎
ට୒

ଶൗ

ఊାଵ
൬ ఒ

ఙિమ − ߛ − 1൰቏.                                       (3-12) 

There are 2 ways to set the threshold for ED technique. The first technique is called 
CFAR which the threshold is set by fixing P୤ୟ. Thus, the threshold for CFAR can be computed 
by 

஼ி஺ோߣ =  ቆܳିଵ(P୤ୟ)ටଶ
ே

+ 1ቇ િߪ
ଶ.                                  (3-13) 

To set the threshold by fixing Pୢ  , which is called CDR, can be done by 

஼஽ோߣ =  ቆටଶ
ே

ߛ) + 1)ܳିଵ(Pୢ ) + ߛ + 1ቇ િߪ
ଶ.                           (3-14) 

However, it should be realized that the predetermined thresholds (ߣ஼஽ோ and ߣ஼ி஺ோ) 
are set by fixing only a single target performance metric. Thus, there is always be a tradeoff in 
the performance of ED technique by fixing only a single target performance metric. ED with 
threshold based on CDR gives poor detection performance in perspective of P୤ୟ. Conversely, 
ED with threshold based on CFAR gives poor detection performance in perspective of Pୢ . 

3.1.2 Adaptive threshold energy detection 
From [63, 64], the adaptive threshold energy detection (ATED) technique was 

proposed. The adaptive parameter (ߙ) was introduced to vary the threshold depending on 
the condition of communication channel. As shown is Figure 3-2, the SNR estimator plays as 
an important part of the system. The SNR estimator estimates the variance noise from the 
received signal and sends it to the threshold setter device. The threshold setter device 
generates a new threshold which is appropriate to the communication channel at the period 
of time 
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Figure 3-2 Model of adaptive threshold energy detection technique [64] 



 

The new threshold is given by 

ߣ = ஼ி஺ோߣ + ߙ ∗ ஼஽ோߣ) − ஼ி஺ோߣ ), 0 ≤ ߙ ≤ 1.                    (3-15) 

The adaptive parameter (ߙ) is set depending on the condition of communication 
channel. Since the SNR of communication channel is estimated, the system calculates the 
critical sample which is appropriate to the communication channel at the period of time. If 
the number of sample of the system is lower than the number of critical sample, the adaptive 
parameter (ߙ) is set to be 1. On the other hand, if the number of sample of the system is 
greater than the number of critical sample, the adaptive parameter (ߙ) is set to be 0. In 
addition, the value of adaptive parameter (ߙ) can be change between 0 to 1. 

3.1.3 Double constraints adaptive energy detection 

In this section, double constraint adaptive energy detection (DCAED) is explained. 
DCAED exploits an interdependent between P୤ୟ and Pୢ  to generate a new adaptive factor (ߚ). 
However, there is no directly way to set the threshold by fixing P୤ୟ and Pୢ  as the target 
performance metrics. DCAED sets the adaptive factor (ߚ) by using the critical sample ( ௖ܰ ), 
since ܰ ௖  retains the independent between P୤ୟ and Pୢ . Then adaptive factor is used to set the 
threshold in order to achieve target performance metrics. 

The system model is shown in Figure 3-3. The information from SNR estimator is 
gathered by adaptive threshold device. The estimated SNR value is compared to critical SNR 
 means that the commination (௖ߛ) If the estimated value is greater than critical value .(௖ߛ)
channel is in a good condition which conventional ED offers a reliable detection performance. 
Thus, the adaptive factor (ߚ ) is set to make the system remains the new threshold as 
predetermined threshold. On the other hand, if the estimated value is lower than critical 
value, the new threshold is generated by setting the adaptive factor (ߚ) depending on the 
condition of communication channel. 
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Figure 3-3 Model of DCAED. 



 

The threshold is given as 

ே௘௪ߣ = ܜܛ܍ߪߚ 
ଶ ൬ఒిూఽ౎

ఙિమ − 1൰ + ܜܛ܍ߪ
ଶ                                (3-16) 

where  ܜܛ܍ߪ
ଶ is an estimated noise variance . 

௖ܰ  refers to a minimum number of sample that is required by conventional energy 
detection technique to meet the target performance metrics (P୤ୟ and Pୢ ). By using (3-6) and 
(3-12), the interdependent between these parameters can be shown as 

P୤ୟ = ܳ ቆܳିଵ(Pୢ ߛ)( + 1) + ටேߛ
ଶ

ቇ                                   (3-17) 

Pୢ = ܳ ൭ ଵ
(ఊାଵ)

ቆܳିଵ(P୤ୟ) − ටேߛ
ଶ

ቇ൱.                                  (3-18) 

By solving (3-6) and (3-12), the critical sample ( ௖ܰ ) can be expressed as 

௖ܰ = ଶ
ఊమ [ܳିଵ(P୤ୟ) − ܳିଵ(Pୢ ߛ)( + 1)]ଶ.                             (3-19) 

From the definition of critical sample, we can conclude that if we set the new 

threshold by changing the sample ( ܰ ) to critical sample ( ௖ܰ ) in (3-13) or (3-14). The 

performance of ED will meet the target performance metrics. However, it is not feasible to 

change the sample to the desired number in practical. Thus, DCAED meets the target accuracy 

of detection performance metrics as changing critical sample by using the adaptive factor to 

change the system threshold. 

By solving (3-6), (3-17) and (3-19) under condition of the proposed scheme. The 

adaptive factor (ߚ) of the system can be expressed as 

ߚ =  

⎩
⎪
⎨

⎪
⎧

ఒిూఽ౎ିఙܜܛ܍మ

൬
ഊిూఽ౎

഑િమ ିଵ൰ఙܜܛ܍మ
                , ≤ ߛ ௖ߛ 3)    [଴ܥ]       − 20)

ఊටே
ଶൗ

(ொషభ(୔౜౗)ିொషభ(୔ౚ)(ఊାଵ))
   , > ߛ 3)   [ଵܥ]   ௖ߛ − 21)

  

where ܥ଴  is the condition that estimated SNR is greater than critical SNR and ܥଵ  is the 

condition that estimated SNR is lower than critical SNR. 

In addition, the critical SNR (ߛ௖) for the system is given by 

௖ߛ = ொషభ(୔౜౗)ିொషభ(୔ౚ)

ொషభ(௉ౚ)ିටಿ
మ

.                                           (3-22) 

 



 

3.2 Fast Spectrum Sensing with Coordinate System 

In this section, we describe in detail with mathematical models of the fast 
spectrum sensing with coordinate system (FSC) algorithm. The FSC algorithm is a spectrum 
sensing technique that requires prior knowledge of a PU’s signals. The framework for the 
FSC algorithm can be categorized into two phases — coordinate system construction and 
sensing. The coordinate system must be predetermined from the two most significant 
features of WM signals and kept in the knowledge base. The sensing phase determines 
the existence of a PU by comparing the FSC decision statistic ( FܻSC) to the FSC threshold 
 The decision statistic is calculated by projecting the PU’s signal onto the .(FSCߛ)
predetermined coordinate system.  

Following the PCA algorithm, the WM signals are first decomposed into a small set 
of features. The significance of each feature can then be explained by an eigenvector and 
eigenvalue, where the eigenvector represents the direction of the feature and the 
eigenvalue explains the variance of the WM signals in that direction. Therefore, the 
eigenvector corresponding to the highest eigenvalue represents the direction in which 
most of the data within the WM signals are varying. This eigenvector refers to the most 
significant feature of WM signals. 

3.2.1 Coordinate System Construction 
In this section, our coordinate system is introduced. The new coordinate system is 

of a lower dimension than the original data space. The main objectives of this phase are 
to select the two most significant features of WM signals and to construct a coordinate 
system. Our coordinate system construction process (as shown in Figure 3-4) exploits the 
feature extraction and selection process of a PCA algorithm [66-67] to filter out the two 
most significant features of WM signals and then uses them as the axes for a new 
coordinate system. Due to the smaller size of the new coordinate system, the FSC 
algorithm consumes less memory, has less computational burden, and has a short sensing 
time.  

We assume that the WM signals of a PU are known to an SU. These WM signals are 
used as the training signals. Let the vectors  s1, s2,…, sM  represent WM signals. These 
vectors are referred to as training vectors. The training vectors are given by 

s1 = [s1(1) s1(2)… s1(ܰ)]T, 

 s2 = [s2(1) s2(2)… s2(ܰ)]T,                                     (3-23) 

⋮ 

  sM = [sM(1) sM(2)… sM(ܰ)]T. 



 

 

 

Figure 3-4 Coordinate system construction phase of FSC algorithm. 

The procedure for the coordinate system construction phase is described as 
follows. 

A. Feature Extraction 
Firstly, we eliminate the common features of the WM signals by subtracting the average 

WM signals vector (ઽ) from each training vector (s௜). 

઺୧ = s௜ − ઽ,                                                   (3-24) 

where ઺௜ is a vector that contains the significant features of the WM signals. The average WM 

signals vector (ઽ) can be expressed as 

ઽ = ଵ
ெ

∑ s௜
ெ
௜ୀଵ .                                               (3-25) 

Next, we compute the covariance matrix (۱) of ઺௜, which is given by 

۱ = ଵ
ெ

∑ ઺௜઺௜
Tெ

௜ୀଵ .                                           (3-26) 

From the covariance matrix, a matrix of eigenvectors (܄ =  and a vector ([dܞ … 2ܞ 1ܞ]

of corresponding eigenvalues (ૃ =  T) can be obtained by using the[dߣ … 2ߣ  1ߣ]

aforementioned eigen-decomposition algorithm. 

B. Feature Selection 
From the matrix of eigenvectors (܄), we keep only the ݇ best eigenvectors (that is, 

those that correspond to the ݇ largest eigenvalues), and the resulting set is then used to form 

the new coordinate system. The ݇ best eigenvectors are determined by 

∑ ఒ೔
ೖ
೔సభ

∑ ఒ೔
೏
೔సభ

 ≥ 95%,                                                   (3-27) 
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where ݀ is the number of eigenvalues in set λ. 

From our investigation, we found that eigenvectors that had a correspondingly high 
eigenvalue more effectively represented the features of the WM signals than those 
eigenvectors that had correspondingly small eigenvalues. It is clear that 95% of the total 
number of features present in the WM signals is a sufficient amount to be representative 
of all the existing features. Hence, having decided to only select the ݇ best eigenvectors, 
the dimension of the WM signals is reduced. Reducing the dimension of the WM signals 
avoids a huge amount of computational burden. Moreover, the effect of noise from the 
original signal is avoided due to the reduction in dimension of the WM signals Furthermore, 
the FSC algorithm is tolerant to noise.  

3.2.2 Sensing Phase 
In the sensing phase (see Figure 3-5), the weight of correspondence between the 

received WM signal and the new coordinate system is calculated by projecting the 
received signal onto the coordinate system. This weight describes the distribution of the 
received signal in the new coordinate system. The weight, given as a vector (ܠො), can be 
expressed as 

ොܠ = ܠ)T܄ − ઽ).                                                (3-28) 

The magnitude of the weight vector is defined as the FSC decision statistic ( FܻSC). 
The magnitude of the weight vector will rise when a PU is present. Otherwise, the 
magnitude of the weight vector will fall when a PU is not present. The FSC decision 
statistic ( FܻSC) can be expressed as 

FܻSC = ො‖2ܠ‖ = ቆට∑ 2௞(ොܠ)
௜ୀଵ ቇ

2

= ∑ 2௞(ොܠ)
௜ୀଵ .                      (3-29) 

 

 

Figure 3-5 Sensing phase of FSC algorithm. 

A mathematical model for the probability of false alarm of the FSC algorithm is 
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fܲa(FSC) = ܲ[ FܻSC ≥  (30-3)                               .[0ܪ|FSCߛ
Under condition 0ܪ, 

ොܠ િ = િܠ)T܄ − ઽ).                                    (3-31) 

FܻSC = ฮܠො િฮ
2
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௜ୀଵ ,            (3-32) 

H0ߤ = E[ FܻSC] = E ቂ∑ ൫ܠො િ൯
2௞

௜ୀଵ ቃ = ݇ॠ2,ு0
ᇱ ,                (3-33) 
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fܲa(FSC) =  ܳ
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Note that ߤHi is the mean value of ܪ௜ and that ॠ௡

ᇱ  is the ݊th order moment of the 
FSC decision statistic ( FܻSC). 

Similar to the probability of false alarm, the probability of detection for the FSC 
algorithm can be expressed as 

dܲ(FSC) = ܲ[ FܻSC ≥  (36-3)                           .[1ܪ|FSCߛ

Under condition 1ܪ, 
ොsାિܠ = sାિܠ)T܄ − ઽ),                               (3-37) 

FܻSC = ฮܠො sାિฮ
2
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In addition, the probability of misdetection of the FSC algorithm is given by  

ܲm(FSC) = 1 − dܲ(FSC).                                     (3-42) 

 



 

3.3 Two-stage spectrum sensing 
In this section, the proposed two-stage spectrum sensing algorithms are explained. Our 

proposed two-stage spectrum sensing algorithms (as depicted in Figure 3-6) exploit the merits 
of ED CAV and MME technique. 
 

Tst1 ≥ st1ߛ  

 

Tst2 ≥ st2ߛ  

 

First Stage Second Stage PU absents 

PU presents 

 
Figure 3-6 Two-stage spectrum sensing scheme [53]. 

The scheme of the proposed two-stage spectrum sensing techniques can be separated 
into 2 stages including coarse sensing stage and fine sensing stage. Mathematical models of 
overall probability of false alarm and overall probability of detection for two-stage spectrum 
sensing are given by 

P୤ୟ = P୤ୟ,ଵ౩౪ + (1 − P୤ୟ,ଵ౩౪ ) P୤ୟ,ଶ౤ౚ                                 (3-43) 

Pୢ = Pୢ,ଵ౩౪ + (1 − Pୢ,ଵ౩౪) Pୢ,ଶ౤ౚ                                   (3-44) 

where P୤ୟ is P୤ୟ of the system, Pୢ  is Pୢ  of the system, P୤ୟ,ଵ౩౪  is P୤ୟ of the first stage, P୤ୟ,ଶ౤ౚ  is 
P୤ୟ of the second stage, Pୢ,ଵ౩౪  is Pୢ  of the first stage and Pୢ,ଶ౤ౚ  is Pୢ  of the second stage. 

For a given channel, the existence of primary user is firstly determined by the first 
stage. Similar to other two-stage spectrum sensing techniques [52, 73], ED is utilized as the 
first stage. Although ED offers inaccurate detection at low SNR and when uncertainty noise 
power occurs, it performs spectrum sensing within short time. In addition, at high SNR 
environment, ED offers an accurate detection. If an average energy of received signal is greater 
than the threshold (ߛ୉ୈ) then the spectrum band is declared to be presented. If the average 
energy of received signal is lower than ߛ୉ୈ, the second stage is activated. The threshold of 
the first stage can be expressed as 

୉ୈߛ = ቀQିଵ ቀ୔౜౗,ుీ

√୒
ቁ + 1ቁ િߪ

ଶ                                 (3-45) 

In our proposed algorithm, MME and CAV are utilized as a second stage. For ED to CAV 
two-stage spectrum sensing technique, after the second stage is activated, the statistical 
covariance of the signal sample is computed by (2-20). If the statistical covariance of the signal 
sample is lower than the threshold (2-21), the two-stage spectrum sensing technique 
determines that primary user absents. If the statistical covariance of the signal sample is greater 



 

than the threshold, the two-stage spectrum sensing technique determines that primary user 
presents.  

For ED to MME two-stage spectrum sensing technique, after the second stage is 
activated, the maximum and minimum eigenvalue of covariance matrix of signal sample is 
computed by (2-14). If the ratio of maximum to minimum eigenvalue is lower than the 
threshold (2-28), the two-stage spectrum sensing technique determines that primary user 
absents. Otherwise, the two-stage spectrum sensing technique determines that primary user 
presents. 
 
3.4 Modified- fast spectrum sensing with coordinate system (MFSC) 

In this section, we both derive the mathematical model and describe the 
framework of modified- fast spectrum sensing with coordinate system (MFSC), which is 
modified from FSC (section 3.2), under path loss effect and noise uncertainty. The 
framework of MFSC algorithm is separated into two phases including coordinate system 
construction and sensing like FSC. Firstly, the coordinate system must be predetermined 
by keeping the two most significant features of WM signals. The sensing phase determines 
the existence of a PU by comparing the MFSC decision statistic ( MܶFSC), where ܶMFSC is 
calculated by projecting the received signal onto the coordinate system, to the MFSC 
threshold (ߣMFSC).  

3.4.1 Coordinate System Construction 

To construct a coordinate system, the known WM signals are decomposed into a 
set of features. Only the two most significant features are obtained and used as the axes 
of the coordinate system. The significance of each feature is explained by the eigenvector 
which is corresponding to the maximum eigenvalue. 

Lets si is a vector that represents WM signal. This vector is known as training vector. 
The training vectors are given by 

s1 = [s1(1) s1(2)… s1(ܰ)]T, 

 s2 = [s2(1) s2(2)… s2(ܰ)]T,                                     (3-46) 

⋮ 

  sM = [sM(1) sM(2)… sM(ܰ)]T. 

The procedure of the coordinate system construction can be summarized as the 
following 

Firstly, the common features of the WM signals is eliminated by subtracting the average 

WM signals vector (ઽ) from each training vector (s௜). 



 

઺୧ = s௜ − ઽ,                                                  (3-47) 

where ઺௜ is a vector that contains the significant features of the WM signals. The average WM 

signals vector (ઽ) can be expressed as 

 ઽ = ଵ
ெ

∑ s௜
ெ
௜ୀଵ .                                                   (3-48) 

Next, the covariance matrix (۱) of ઺௜ is computed. Therefore, the covariance matrix (۱) 

is given by 

۱ = ଵ
ெ

∑ ઺௜઺௜
Tெ

௜ୀଵ .                                                (3-49) 

Using the eigen-decomposition algorithm, a matrix of eigenvectors (܄ =  ([dܞ … 2ܞ 1ܞ]
and a vector of corresponding eigenvalues (ࢋ = [݁1  ݁2 … ݁d]T) are obtained. Finally, only the 

݇ best eigenvectors corresponding to the ݇ largest eigenvalues are used to form the 

coordinate system. The number of ݇ can be determined by 

∑ ௘೔
ೖ
೔సభ

∑ ௘೔
೏
೔సభ

 ≥ 95%,                                               (3-50) 

where ݀ is the number of eigenvalues in set ݁. 

3.4.2 Sensing Phase 

The weight vector (ܠො) is given as 

ොܠ = ܠ)T܄ − ઽ).                                                  (3-51) 

and ܠ is SU received signal under noise uncertainty. 

Finally, the magnitude of the weight vector is calculated and used as the MFSC 
decision statistic ( MܶFSC). Therefore, the MFSC decision statistic (ܶMFSC) can be expressed 
as 

ܶMFSC = ො‖2ܠ‖ = ቆට∑ 2௞(ොܠ)
௜ୀଵ ቇ

2

= ∑ 2௞(ොܠ)
௜ୀଵ .                           (3-52) 

To determine the existence of PU, the MFSC decision statistic is compared to the 
MFSC threshold (ߣMFSC). 

As mention earlier, the threshold is needed to be vary on the strength of path loss 
effect. From our investigation, we found that the changing in the signal’s amplitude does 
not affect changing in the signal’s feature (eigenvector) but affects changing in the average 
vector (ઽ). Thus, the weight vector under path loss effect when the PU does not exist can 
be expressed as 

ොܠ િ = િܠ)T܄ − ઽො),                                             (3-53) 

where the average vector (ઽ) under path loss effect is given by 



 

ઽො = √PLઽ.                                                  (3-54) 

The probability of false alarm ( fܲa) of the MFSC algorithm is given by 
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where ܠߤොિ  is the mean value of ܠොિ and that ॠ௡
ᇱ  is the ݊th order moment of ܠොિ. 

In general, the system threshold is set by fixing the target fܲa , then the MFSC 
threshold (ߣMFSC) is given by 

MFSCߣ =  ܳିଵ( fܲa)ට݇ ቀॠ4
ᇱ − ൫ॠ2,ு0

ᇱ ൯
2ቁ+ ݇ॠ2

ᇱ ,                        (3-56) 

The probability of detection for the MFSC algorithm can be expressed as 

dܲ =  ܳ
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Chapter 4 

Simulation Results 

In this chapter, we show the simulation results of the proposed techniques that 

compare with the conventional spectrum sensing techniques. For easy to understand, we 

divide our results into four parts following our proposed methods in chapter 3. Four parts of 

our simulation include the simulation results of DCAED, the simulation results of FSC, the 

simulation results of two-stage spectrum sensing, and the simulation results of MFSC.  

4.1 The simulation results of DCAED 

In this section, we firstly give the performance evaluation of two types of conventional 

energy detection techniques (CDR and CFAR) and ATED. Then, we compare the performance 

of these techniques to DCAED. Additive white Gaussian noise (AWGN) channel with SNR 

between -25 to 0 dB is considered as the communication channel of our simulation. The 

primary user signal is considered as i.i.d. process. The performance of spectrum sensing 

techniques are evaluated through 100,000 Monte Carlo simulation. The parameters in the 

simulation are as follows: N= 1000, Pୢ =0.9 and P୤ୟ=0.01. In addition, noise variance is assumed 

to be estimated by the secondary user. All the experiments are performed under Windows 

8.1 and MATLAB running on a PC equipped with an Intel Core i7 CPU at 3.40 GHz and 32 GB 

RAM memory. 

 

Figure 4-1 Probability of detection and probability of false alarm versus SNR of CDR and 
CFAR. 
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Figure 4-1 shows the performance of both P୤ୟ and Pୢ  versus SNR of communication 
channel. The simulation results prove that CDR technique gives high detection performance 
for all range of SNR. As mentioned in section I, there is always be tradeoff on detection 
performance (high Pୢ ) by fixing only a single target performance metric. The threshold based 
on CDR gives high P୤ୟ at low SNR. Although the CFAR technique gives low P୤ୟ for all range of 
SNR, it also gives poor detection performance at low SNR levels. 

 

Figure 4-2 Probability of detection versus SNR of ATED. 

 

Figure 4-3 Probability of false versus SNR of ATED technique. 

Figure 4-2 and Figure 4-3 show the performance of ATED with different in adaptive 

parameter value in terms of Pୢ  and P୤ୟ, respectively. The simulation results show that ATEDα=1 
gives high probability of detection for all range of SNR as the same as CDR technique. In 

perspective of probability of false alarm, ATEDα=1 gives high ܲ ୤ୟ at low SNR. On the contrary, 

ATEDα=0 gives low probability of false alarm for all range of SNR as the same as CFAR 
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technique. However, ATEDα=0 gives low probability of detection at low SNRs. In addition, if we 
set the value of adaptive parameter between 0 to 1, the performance of ATED is between 
CFAR and CDR. 

 

Figure 4-4 Probability of detection of the DCAED as compared to ATED, CDR and CFAR. 

 

Figure 4-5 Probability of false alarm of the DCAED as compared to ATED, CDR and CFAR 

DCAED changes the threshold under different condition of communication channel 
controlled by the adaptive factor. The adaptive factor is derived from the critical sample of 
the system which retains the interdepedent between P୤ୟ and Pୢ . Thus, we can conclude that 
the threshold of DCAED is adapted controlled by P୤ୟ and Pୢ . depending on the condition of 
icommunication channel. Figure 4-4 compares the probability of detection of the DCAED to 

ATEDα=0.75, ATEDα=0.25, CDR and CFAR. The simulation results show that DCAED gives higher Pୢ  

than ATEDα=0.75, ATEDα=0.25 and CFAR. On the other hand, the DCAED technique gives higher 
Pୢ  than CDR techniqe when SNR is higher than-8 dB. As show in Figure 4-5, DCAED gives lower 
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P୤ୟ than ATEDα=0.75 and CDR. DCAED technique meets the spectrum sensing requirement of 
IEEE 802.22 when SNR is higer than -20 dB which the spectrum sensing technique has to 
perform spectrum sensing with probability of false detection less than 0.1. 

 

Figure 4-6 Tradeoff in an accuracy of detection of the DCAED as compared to ATED. 

 

Figure 4-7 Average sensing time of the DCAED as compared to ATED, CDR and CFAR. 

Figure 4-6, shows the tradeoff in an accuracy of detection of the DCAED as compared 
to ATED. The simulation results prove that DCAED overcomes demerits of the tradeoff in the 

accuracy of detection of ATED. Although DCAED gives higher P୤ୟ than ATEDα=0.25, DCAED gives 

much higher Pୢ  than ATEDα=0.25 and ATEDα=0.75. In addition, the estimated noise variance is 
used to select the adaptive factor. The adaptive factor under high SNR condition can be 
computed with less complexity than adaptive factor under low SNR condition. Thus, the 
DCAED consumes less time in performing spectrum sensing under high SNR condition (as 
shown in Figure 4-7). The sensing time of DCAED highly achieves the requirement of the IEEE 
802.22 standard which is less than 2 seconds. Although the DCAED spends more sensing time 
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than the other technique, the DCAED outperform the tradeoff in an accuracy of detection 
which is the main disadvantage of the other techniques. 

4.2 The simulation results of FSC 

4.2.1 Preliminary 

In this section, we evaluate the performance of six conventional spectrum sensing 

techniques — ED, MED, CAV, MME, MFD, and LED — under the assumption that a received 

WM signal has a randomly occurring pattern. Two important factors — dܲ and sensing time of 

each technique — are considered in our performance evaluation. 

With an aim to study spectrum sensing performance under different levels of 
knowledge, the SU is equipped with four different knowledge bases of wireless 
microphone (WM) signal as described in Table 4-1. 

The simulation results of six conventional spectrum sensing techniques — ED, 
MED, CAV, MME, MFD, and LED — are shown in Table 4-2. As four of the six techniques 
— ED, MED, CAV, and MME — are blind techniques, their detection performances will not 
be affected by different knowledge bases. Hence, the individual results of these blind 
techniques are not shown; rather, they are shown collectively due to the fact that they 
have similar detection performances. On the other hand, different knowledge bases 
greatly affect the detection performances of the knowledge-based techniques — MFD 
and LED. Results on four cases are shown in details. 

Table 4-1 Different knowledge bases of PU signal known to an SU. 

Case Description 
1 Silent of WM signal is known by SU   
2 Soft speaker of WM signal is known by SU  
3 Loud speaker of WM signal is known by SU  
4 All three patterns of WM signals are known by SU  

 
Figure 4-8 shows the simulation results of MFD and LED for the four cases outlined in 

Table 4-1. The graph plots ܲ d as a function of SNR. It is clear that the detection performance 

of MFD is greatly affected by the knowledge base of PU’s signal. When SU observes a pattern 

of WM signal that is not in the knowledge base, the detection performance of MFD greatly 

degrades. 



 

 

Figure 4-8 Detection performance of MFD and LED under different received wireless 
microphone signal cases. 

 
Figure 4-9 Performance comparison of conventional spectrum sensing techniques when 

the patterns of the PU signal are known. 

As depicted in the figure, the detection performance of LED in cases 1–4 is shown 
using only a single line. This is because the detection performances were practically 
identical to each other, due to the fact that the leading eigenvectors of the WM signal 
patterns were similar to each other. Thus, the detection performance of LED was not 
affected by a difference in WM signal pattern. However, LED inflicts a high computational 
burden upon the SU when performing spectrum sensing; thus, the associated sensing time 
is often substantial. 

Figure 4-9 shows the performance comparison of conventional spectrum sensing 
techniques when the patterns of WM signals are known. MFD offers the best detection 
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performance among the spectrum sensing techniques. When evaluating the performance 
of MME, the calculated MME threshold (theoretical), ߛMME, offer an implausible 
performance at low SNRs.  

In [54], the authors improve the detection performance of MME by finding new 
thresholds through Monte Carlo simulations. To compare the performance of MME under 
the different types of thresholds (theoretical and Monte Carlo simulations), we present 
the performance of “MME Theory” and “MME Simulation” in Figure 4-9. Note that “MME 
Theory” denotes experimental results where the threshold is calculated from a 
theoretical formula. “MME Simulation” denotes experimental results where the threshold 
is estimated through Monte Carlo simulations. 

Table 4-2 gives a performance comparison of conventional spectrum sensing 
techniques for various cases of prior knowledge. The SNR required of a spectrum sensing 

technique to meet the required accuracy of detection (that is, dܲ ≥ 0.9) [43], is given in 
the “Critical SNR” column of Table 4-2. The lower the “Critical SNR” value, the more 
tolerant to noise the technique is. From Table 4-2, the knowledge-based spectrum sensing 
techniques — MFD and LED— are confirmed to be more tolerant to noise than the blind 
techniques.  

On the other hand, the average sensing time shown for each technique is based 
on the average from the Monte Carlo simulations. As shown in Table 4-2, ED consumes 
the least average sensing time, whereas LED consumes the longest average sensing time. 
These average sensing time values are used as a benchmark when evaluating the average 
sensing time of the FSC algorithm. 

Moreover, the results in Table 4-2 show that ED offers the maximum number of 

channels per sensing period. However, there is no standard or requirement that defines the 

minimum number of channels that should be monitored in a given sensing period. If the 

number of channels per sensing period increases, then the SU will have more opportunities 

to utilize the unused licensed band. 

 

 

 

 

 

 



 

Table 4-2 Performance comparison of conventional spectrum sensing techniques. 

Sensing technique 

Prior knowledge 
Ability to detect wireless microphone 
signal  

Waveform 
pattern 

Noise 
power 

Memory 
(Kbytes) 

Critical SNR 
( dܲ  ≥ 0.9) 

Average 
sensing 
time (ms)  

Channels/Sen
sing period of 

2 seconds 

Blind 
spectrum 
sensing 

ED     0 -16 dB 0.04997 3,602 

MED     0 -16 dB 2.6 69 

CAV     0 -16 dB 2.5 72 

MME     0 -16 dB 2.9 62 

Spectrum 
sensing 
based on 
prior 
knowledg
e 

MFD 
 

Case 1     40 -8 dB 2.5 72 

Case 2     40 -30 dB 2.5 72 

Case 3     40 -30 dB 2.5 72 

Case 4     120 -30 dB 5.4 33 

LED 

Case 1     0.192 -18 dB 78.09 2 

Case 2     0.064 -18 dB 78.09 2 

Case 3     0.064 -18 dB 78.09 2 
Case 4     0.192 -18 dB 80.7 2 

 

4.1.2 Simulation Results 

In this section, we give the simulation results of eight spectrum sensing techniques. 
The transmitted PU signals are assumed to be WM signals, based on IEEE 802.22, whereby 
the patterns of the WM signals are assumed to be in the knowledge base of the SU. The 
parameters of the WM signals are shown in Table 4-1. A single received WM signal is 
assumed to contain one of three randomly occurring patterns. The communication 
channel between the transmitter and the receiver is assumed to be an AWGN channel, 
and the SNR at the receiver is assumed to be between -30 dB and 0 dB. The other 
parameters that were used in the simulations took the following values: ݊= 5,000; 10 =ܮ; 
and fܲa = 0.1. All the experiments are performed under Windows 7 and MATLAB running 
on a PC equipped with an Intel Dual-Core CPU at 2.93 GHz and 4 GB RAM memory.  

As depicted in Figure 4-10, the FSC algorithm gives a better detection performance 
than other conventional spectrum sensing techniques, except MFD, which is known as the 
optimum spectrum sensing technique. The critical SNR of the FSC algorithm is -24 dB (see 
Table 4-3). From the perspective of sensing time, the FSC algorithm consumes less sensing 
time than the other conventional techniques, except ED (see Table 4-3). The reason for 
this is that the FSC algorithm performs spectrum sensing with little computational burden 
due to the small size of the weight vector (ܠො). Calculated from the averaged sensing time 
of FSC, the FSC algorithm can sense 3,370 channels per sensing period. When compared 



 

with the results in Table 4-2, we can see that the FSC algorithm can perform spectrum 
sensing with a number of communication channels that rivals that of ED. 

To validate the performance of the FSC algorithm, graphs of dܲ(FSC), mܲ(FSC), and 

fܲa(FSC) are shown in Figure 4-11(a). In this figure, as SNR increases, dܲ(FSC) increases while 

mܲ(FSC) and fܲa(FSC) decrease. The simulation results are as we expected, and this is 
explained as follows. By projecting the received signal to the proposed coordinate system, 
we obtained the weight vector and weight of correspondence between the received signal 
and the coordinate system. We found that the weight vector effectively represents the 
WM signal especially when SNR is higher than -18 dB. When SNR is lower than -18 dB, 
where noise power is much greater than the WM signal power, the weight vector is 
contaminated with noise. Hence, the magnitude of the weight of correspondence 
between the received signal and the coordinate system is lower than the predetermined 
FSC threshold, which causes misdetection.  

However, dܲ(FSC) is still higher than the dܲs of other conventional techniques, 
including ED, MED, CAV, MME, and LED. This is because the effect of the noise on the 
weight vector is less than that on the WM signal.  

To evaluate the tradeoff between mܲ(FSC) and fܲa(FSC), ܲm(FSC) is plotted as a function 

of fܲa(FSC), as shown in Figure 4-11(b). It should be noted that mܲ(FSC) is greater than 0 when 

the SNR is lower than -18 dB; hence, ܲ m(FSC) at three different SNRs — -20 dB, -26 dB, and -

30 dB — is shown. From Figure 4-11(b), it can be seen that mܲ(FSC) slightly decreases when 

fܲa(FSC) increases, which is similar to what happens in the cases of the other conventional 

techniques. 

 
Figure 4-10 Probability of detection vs. SNRs of ED, MED, CAV, MME, MFD, LED, and FSC. 
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(a)                                (b) 

Figure 4-11 Performance of FSC algorithm. 

Table 4-3 Comparison of critical SNR and average sensing time (case 4). 

Sensing technique Critical SNR 
( dܲ ≥ 0.9) 

Average sensing 
time (ms) 

Blind spectrum sensing 

ED -16 dB 0.0499 
MED -16 dB 2.6 
CAV -16 dB 2.5 
MME -16 dB 2.9 

Spectrum sensing based on prior 
knowledge 

MFD -30 dB 5.4 
LED -18 dB 30.7 
FSC -24 dB 0.0534 

 

To evaluate the overall performances of the spectrum sensing techniques, we 
combine two performance metrics, dܲ and average sensing time of each technique, using 
a standard multi-criteria ranking technique — analytic hierarchy process (AHP) [30]. In the 
first step, we have to determine the importance ratio between dܲ and average sensing 
time, which has never been standardized. Herein, the importance ratios are set as follows: 
1:7, 1:5, 1:3, 1:2, 1:1, 2:1, 3:1, 5:1, and 7:1. It should be noted that the importance ratio of 
1:7 means that the dܲ is 7 times more important than the average sensing time, while 7:1 
means the dܲ is 7 times less important than the average sensing time. As shown in Figure 
4-12, the FSC algorithm gives the highest overall performance at any weight of importance. 
The reason is that the FSC algorithm gives a high rate of detection while utilizing a short 
sensing time. 
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Figure 4-12 Performance comparison using AHP algorithm. 

 

4.3 The simulation of two-stage spectrum sensing 

In our proposed schemes, there are 2 main parameters that have to be considered, 
including P୤ୟ and ܮ. Threshold of the proposed techniques can be found by using (2-21), (2-
28) and (3-45). Since these parameters relate to each other and also affect to the performace 
of the proposed techniques, these parameters need to change simultaneously. Figure 4-13 
and Figure 4-14 show the probability of detection and the average sensing time as a function 
of SNR with difference in smoothing factors when noise power uncertainty occurs (2 = ߚ dB) 
and P୤ୟ=0.1, respectively. As shown in the figures, two-stage spectrum sensing techniques offer 
more reliable detection under noise power uncertainty factor equal to 1 when the smoothing 
factor increaes. However, an increase in the smoothing factor causes these techniques 
consume more time in performing spectrum sensing.  
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Figure 4-13 Probability of detection versus SNR of two-stage spectrum sensing techniques 

with difference in smooting factors (ܮ)  
when the uncertainty of noise power occur (2= ߚ dB) and P୤ୟ=0.1. 

 
Figure 4-14 Average sensing time versus SNR of two-stage spectrum sensing techniques with 

difference in smooting factors (ܮ)  
when the uncertainty of noise power occur (2= ߚ dB) and P୤ୟ=0.1. 

Figure 4-15 and Figure 4-16 show the probability of detection and the average sensing 
time as a function of SNR with difference in smoothing factors when noise power uncertainty 
occurs (2 = ߚ dB) and P୤ୟ=0.2, respectively. As mentioned earlier, an increase in smoothing 
factor makes these techniques more time consuming in performing spectrum sensing. By 
comparing Figure 4-13 and Figure 4-15, two-stage spectrum sensing techniques offer more 
reliable detection when the smoothing factor is eqaul to 10 and P୤ୟ=0.2. Although the 
smoothing factor equal to 10 makes two-stage spectrum sensing techniques more time 
consuming in performing spectrum sensing, the primary user can ensure that it is protected 
from harmful interference caused by the secondary user. 
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Figure 4-15 Probability of detection versus SNR of two-stage spectrum sensing techniques 

with difference in smooting factors (ܮ)  
when the uncertainty of noise power occur (2= ߚ dB) and P୤ୟ=0.2. 

 

 
Figure 4-16 Average sensing time versus SNR of two-stage spectrum sensing techniques with 

difference in smooting factors (ܮ)  
when the uncertainty of noise power occur (2= ߚ dB) and P୤ୟ=0.2. 

 

 Figure 4-17 and Figure 4-18 show the probability as a function of SNR when noise 

power uncertainty factor (ߚ) equal to 1 and 2 dB, respectively. Figure 4-19 and Figure 4-20 

show the average sensing time as a function of SNR when noise power uncertainty factor (ߚ) 

equal to 1 and 2 dB, respectively. Simulation results proved that the proposed of ED to CAV 

two-stage spectrum sensing technique offers detection performance nearly to CAV technique. 

However, at high SNRs environment, the proposed of ED to CAV two-stage spectrum sensing 

technique uses less sensing time than CAV. From the simulation results, the proposed of ED 
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to CAV two-stage spectrum sensing technique offers an accurate performance when 

smoothing factor L=10 and P୤ୟ=0.2. Even though the proposed technique takes the longest 

time in the sensing period, it offers much more reliable detection than the others. It is worth 

using this period of time to protect the primary user from harmful interference caused by the 

secondary user. 

 
Figure 4-17 Probability of detection versus SNR  

when the uncertainty of noise power occur (1= ߚ dB). 

 

Figure 4-18 Average sensing time versus SNR  
when the uncertainty of noise power occur (1= ߚ dB). 
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Figure 4-19 Probability of detection versus SNR  

when the uncertainty of noise power occur (2= ߚ dB). 

 
Figure 4-20 Average sensing time versus SNR  

when the uncertainty of noise power occur (2= ߚ dB). 

 

4.4 The simulation results of MFSC 

In this section, we give the performance comparison of MFD, LED, MFSC algorithm 
for additive white Gaussian noise (AWGN) channel under noise uncertainty and path loss 
effect when a random occurring pattern of WM signal is considered as the PU signal. The 
distance (d) between WM device and the SU is set within the range of 10 to 1000 meters. 
The loss constant (C) is set be 0.00031623, then the received signal power is -95 dBm at 
100 m [43]. The noise uncertainty factor (B) is between 0 to 2 dB [75]. It should be noticed 
that when B is 0 means that the noise uncertainty does not occur. Other parameters are 
setting as follows: ܰ = 5000, ℵ = 2, dܲ = 0.9 and fܲa = 0.01. All the experiments are 
done by using MATLAB and averaged on 10,000 Monte-Carlo realizations. 

-30 -25 -20 -15 -10 -5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR(dB)

P
d

 

 
ED
MED
MME
CAV
ED MED Pfa=0.2

ED MME Pfa=0.2

ED CAV Pfa=0.2

-30 -25 -20 -15 -10 -5 0
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10-3

SNR (dB)

A
ve

ra
ge

 s
en

si
ng

 ti
m

e 
(s

ec
on

ds
)

 

 

ED
MED
MME
CAV
ED MED Pfa=0.2

ED MME Pfa=0.2

ED CAV Pfa=0.2



 

As shown in Figure 4-21, MFD gives the highest dܲ among these techniques. In 
perspective of dܲ, MFD meets the spectrum sensing requirement, which dܲ should greater 

than or equal to 0.9, when d is less than 650 m. However, fܲa of MFD does not meet the 
requirement, which fܲa should less than 0.1, at any distance. This means that the PU is 
greatly protected from interference caused by SU. However, the SU has a high probability 
to lose the opportunities to utilize the available spectrum band. On the other hand, MFSC 
algorithm meets the requirement in perspective of dܲ with shorter distance. Nevertheless, 
MFSC meets the requirement in perspective of fܲa for all distances. For LED, it gives the 
worst detection performance when compared to the others. As shown in Figure. 4-22, 
MFSC algorithm consumes much less sensing time than the others. During the evaluation, 
we also correct the space of database requirement of these techniques. We found that 
LED requires much less space of database when it consumes only 0.197 Kbytes while MFD 
and MFSC require 120 and 80 Kbytes, respectively.  

 
Figure 4-21. Performance comparison of MFD, LED and MFSC when B is 0. 

 
Figure 4-22 Average sensing time of MFD, LED and MFSC when B is 0. 

Figure 4-23 compares the detection performance when B is 1. As a results, MFD 
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still gives the highest dܲ. However, fܲa is now less than 0.1. This is because there is an 
uncertain in noise power which the power may less than the estimated noise power. It 
means that the effect of noise is lower and then it is easy to distinguish between PU signal 
and noise. On the other hand, the performance LED and MFSC algorithm, which perform 
spectrum sensing under framework of PCA algorithm, are nearly the same as when noise 
uncertainty does not occur. In perspective of average sensing time (as shown in Figure. 4-
24), MFSC algorithm still consumes the least average sensing time. 

 
Figure 4-23 Performance comparison of MFD, LED and MFSC when B is 1. 

 
Figure 4-24 Average sensing time of MFD, LED and MFSC when B is 1. 

As shown in Figure 4-25, the detection performance of MFSC algorithm is now 
nearly to MFD because the occurrence of noise uncertainty greatly degrades the detection 
performance of MFD but does not degrade the detection performance of MFSC algorithm. 
MFSC algorithm gives higher dܲ than MFD when the distance is greater than 600 m. This 
means that when the strength of PU signal is attenuated by path loss together with the 
increasing in an effect of noise uncertainty, matched filter lose its ability to measure the 
similarity between received signal and a known PU signal, which is kept in the database, 
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and cannot distinguish them. For LED, it gives the worst detection performance among 
these techniques. However, we can noticed that LED is the most robustness techniques 
to the occurrence of noise uncertainty because it gives the same dܲ even the strength of 
noise uncertainty increases. As shown in Figure 4-26, the average sensing time of these 
techniques are the same as when B is 0 or 1.  

 
Figure 4-25 Performance comparison of MFD, LED and MFSC when B is 2. 

 
Figure 4-26 Average sensing time of MFD, LED and MFSC when B is 2 

From the simulation results, MFD offers the best detection performance in 
perspective of dܲ. However, MFD does not meet the spectrum sensing requirement in 
perspective of fܲa at any distance when noise uncertainty does not occur. Moreover, the 
occurrence of noise uncertainty greatly degrades the detection performance of MFD. On 
the other hand, MFSC algorithm gives better detection performance than LED but worse 
than MFD. MFSC algorithm is more robust to the occurrence of noise uncertainty than 
MFD. In addition, MFSC algorithm gives higher dܲ than MFD when the distance is greater 
than 600 m together with 2 dB of noise uncertainty factor (B). In perspective of average 
sensing time, MFSC algorithm consumes the least average sensing time for all noise 
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uncertainty factors (B) and distances. For LED, it is the most robustness techniques to the 
occurrence of noise uncertainty and requires much less space database than the others. 
  



 

Chapter 5 

Conclusion 

This project proposes the novel spectrum sensing techniques in CR network for SG 

communication. The proposed techniques have a minimum time requirement and give a 

better performance than the conventional spectrum sensing methods. Moreover, we consider 

two channel environments including AWGN channel and the channel that consider the noise 

uncertainty and path loss effect.  

Firstly, we propose “double constraints adaptive energy detection (DCAED)” for 

spectrum sensing in cognitive radio network. DCAED changes the system threshold depending 

on the condition of communication channel. Different from other adaptive ED and 

conventional ED, DCAED exploits the interdependent between probability of detection and 

probability of false alarm through the critical sample to set a new threshold. Thus, we can 

conclude that the decision threshold of DCAED is controlled by 2 target accuracy of detection 

performance metrics. The simulation results show that DCAED gives an accuracy detection 

performance even at low SNR condition while it also highly achieve the requirements of IEEE 

802.22 standard in perspective of sensing time. DCAED can be well implemented when the 

noise variance can be estimated by the secondary user. Moreover, DCAED appropriates to real-

time application in practical cognitive radio network because it does need any prior knowledge 

about signal pattern of primary user and consumes short sensing time. 

Secondly, we propose fast spectrum sensing with coordinate system (FSC). The FSC 

extracts only two significant features of the WM signals to build a new coordinate system as 

the SU’s knowledge base. The FSC algorithm determines the existence of a PU by comparing 

the FSC decision statistic to the FSC threshold. Using our new coordinate system, the FSC 

requires less space for SU’s knowledge base compared to that of other knowledge-based 

techniques. By measuring the magnitude of the weight of correspondence between the 

received signal and the coordinate system, FSC performs spectrum sensing with little 

computational burden and utilizes a short sensing time, while offering a detection accuracy 

close to that of MFD. The FSC can be well implemented by an SU, when the patterns of the 

PU signal are known to the SU, with much less computational complexity and sensing time 

than any of the other knowledge-based spectrum sensing techniques considered in this paper. 

Moreover, FSC is appropriate for real-time application because it uses a sensing time that is as 

short as that of ED. 



 

Thirdly, we propose two novel schemes of two-stage spectrum sensing technique for 

CR. The proposed schemes are ED to CAV two stage spectrum sensing and ED to MME two 

stage spectrum sensing. The received signal is first monitored by the first stage such as ED. 

The first stage gives reliable detection at high SNRs environment. By exploiting CAV and MME 

technique as a second stage, our proposed algorithms give better detection performance than 

the existing two stage spectrum sensing techniques. The proposed schemes offer an accurate 

detection when the uncertainty of noise power occurs and use short sensing time at high SNRs 

environment. Even though the proposed techniques take the longest time in the sensing 

period among two-stage spectrum sensing techniques, they offer much more reliable 

detection than the others. 

Finally, we introduce a modified- fast spectrum sensing with coordinate system 
(MFSC) which is re-derive some parameters form conventional fast spectrum sensing with 
coordinate system (FSC) in order to perform spectrum sensing under noise uncertainty 
together with path loss effect. Then the detection performance of three knowledge-based 
spectrum sensing techniques — MFD, LED and MFSC — are evaluated under these factors. 
From the simulation results, MFD gives the best detection performance among these 
techniques however its detection performance greatly degrades due to the occurrence of 
noise uncertainty. LED is the most robustness to the occurrence of noise uncertainty and 
also consumes the least space of database. MFSC algorithm is the most achievable of 
spectrum sensing requirement when it give high detection performance while consumes 
the least average sensing time under noise uncertainty.   
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