
 

Chapter 4 

Simulation Results 

In this chapter, we show the simulation results of the proposed techniques that 

compare with the conventional spectrum sensing techniques. For easy to understand, we 

divide our results into four parts following our proposed methods in chapter 3. Four parts of 

our simulation include the simulation results of DCAED, the simulation results of FSC, the 

simulation results of two-stage spectrum sensing, and the simulation results of MFSC.  

4.1 The simulation results of DCAED 

In this section, we firstly give the performance evaluation of two types of conventional 

energy detection techniques (CDR and CFAR) and ATED. Then, we compare the performance 

of these techniques to DCAED. Additive white Gaussian noise (AWGN) channel with SNR 

between -25 to 0 dB is considered as the communication channel of our simulation. The 

primary user signal is considered as i.i.d. process. The performance of spectrum sensing 

techniques are evaluated through 100,000 Monte Carlo simulation. The parameters in the 

simulation are as follows: N= 1000, Pୢ =0.9 and P୤ୟ=0.01. In addition, noise variance is assumed 

to be estimated by the secondary user. All the experiments are performed under Windows 

8.1 and MATLAB running on a PC equipped with an Intel Core i7 CPU at 3.40 GHz and 32 GB 

RAM memory. 

 

Figure 4-1 Probability of detection and probability of false alarm versus SNR of CDR and 
CFAR. 
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Figure 4-1 shows the performance of both P୤ୟ and Pୢ  versus SNR of communication 
channel. The simulation results prove that CDR technique gives high detection performance 
for all range of SNR. As mentioned in section I, there is always be tradeoff on detection 
performance (high Pୢ ) by fixing only a single target performance metric. The threshold based 
on CDR gives high P୤ୟ at low SNR. Although the CFAR technique gives low P୤ୟ for all range of 
SNR, it also gives poor detection performance at low SNR levels. 

 

Figure 4-2 Probability of detection versus SNR of ATED. 

 

Figure 4-3 Probability of false versus SNR of ATED technique. 

Figure 4-2 and Figure 4-3 show the performance of ATED with different in adaptive 

parameter value in terms of Pୢ  and P୤ୟ, respectively. The simulation results show that ATEDα=1 
gives high probability of detection for all range of SNR as the same as CDR technique. In 

perspective of probability of false alarm, ATEDα=1 gives high ܲ ୤ୟ at low SNR. On the contrary, 

ATEDα=0 gives low probability of false alarm for all range of SNR as the same as CFAR 
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technique. However, ATEDα=0 gives low probability of detection at low SNRs. In addition, if we 
set the value of adaptive parameter between 0 to 1, the performance of ATED is between 
CFAR and CDR. 

 

Figure 4-4 Probability of detection of the DCAED as compared to ATED, CDR and CFAR. 

 

Figure 4-5 Probability of false alarm of the DCAED as compared to ATED, CDR and CFAR 

DCAED changes the threshold under different condition of communication channel 
controlled by the adaptive factor. The adaptive factor is derived from the critical sample of 
the system which retains the interdepedent between P୤ୟ and Pୢ . Thus, we can conclude that 
the threshold of DCAED is adapted controlled by P୤ୟ and Pୢ . depending on the condition of 
icommunication channel. Figure 4-4 compares the probability of detection of the DCAED to 

ATEDα=0.75, ATEDα=0.25, CDR and CFAR. The simulation results show that DCAED gives higher Pୢ  

than ATEDα=0.75, ATEDα=0.25 and CFAR. On the other hand, the DCAED technique gives higher 
Pୢ  than CDR techniqe when SNR is higher than-8 dB. As show in Figure 4-5, DCAED gives lower 
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P୤ୟ than ATEDα=0.75 and CDR. DCAED technique meets the spectrum sensing requirement of 
IEEE 802.22 when SNR is higer than -20 dB which the spectrum sensing technique has to 
perform spectrum sensing with probability of false detection less than 0.1. 

 

Figure 4-6 Tradeoff in an accuracy of detection of the DCAED as compared to ATED. 

 

Figure 4-7 Average sensing time of the DCAED as compared to ATED, CDR and CFAR. 

Figure 4-6, shows the tradeoff in an accuracy of detection of the DCAED as compared 
to ATED. The simulation results prove that DCAED overcomes demerits of the tradeoff in the 

accuracy of detection of ATED. Although DCAED gives higher P୤ୟ than ATEDα=0.25, DCAED gives 

much higher Pୢ  than ATEDα=0.25 and ATEDα=0.75. In addition, the estimated noise variance is 
used to select the adaptive factor. The adaptive factor under high SNR condition can be 
computed with less complexity than adaptive factor under low SNR condition. Thus, the 
DCAED consumes less time in performing spectrum sensing under high SNR condition (as 
shown in Figure 4-7). The sensing time of DCAED highly achieves the requirement of the IEEE 
802.22 standard which is less than 2 seconds. Although the DCAED spends more sensing time 
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than the other technique, the DCAED outperform the tradeoff in an accuracy of detection 
which is the main disadvantage of the other techniques. 

4.2 The simulation results of FSC 

4.2.1 Preliminary 

In this section, we evaluate the performance of six conventional spectrum sensing 

techniques — ED, MED, CAV, MME, MFD, and LED — under the assumption that a received 

WM signal has a randomly occurring pattern. Two important factors — dܲ and sensing time of 

each technique — are considered in our performance evaluation. 

With an aim to study spectrum sensing performance under different levels of 
knowledge, the SU is equipped with four different knowledge bases of wireless 
microphone (WM) signal as described in Table 4-1. 

The simulation results of six conventional spectrum sensing techniques — ED, 
MED, CAV, MME, MFD, and LED — are shown in Table 4-2. As four of the six techniques 
— ED, MED, CAV, and MME — are blind techniques, their detection performances will not 
be affected by different knowledge bases. Hence, the individual results of these blind 
techniques are not shown; rather, they are shown collectively due to the fact that they 
have similar detection performances. On the other hand, different knowledge bases 
greatly affect the detection performances of the knowledge-based techniques — MFD 
and LED. Results on four cases are shown in details. 

Table 4-1 Different knowledge bases of PU signal known to an SU. 

Case Description 
1 Silent of WM signal is known by SU   
2 Soft speaker of WM signal is known by SU  
3 Loud speaker of WM signal is known by SU  
4 All three patterns of WM signals are known by SU  

 
Figure 4-8 shows the simulation results of MFD and LED for the four cases outlined in 

Table 4-1. The graph plots ܲ d as a function of SNR. It is clear that the detection performance 

of MFD is greatly affected by the knowledge base of PU’s signal. When SU observes a pattern 

of WM signal that is not in the knowledge base, the detection performance of MFD greatly 

degrades. 



 

 

Figure 4-8 Detection performance of MFD and LED under different received wireless 
microphone signal cases. 

 
Figure 4-9 Performance comparison of conventional spectrum sensing techniques when 

the patterns of the PU signal are known. 

As depicted in the figure, the detection performance of LED in cases 1–4 is shown 
using only a single line. This is because the detection performances were practically 
identical to each other, due to the fact that the leading eigenvectors of the WM signal 
patterns were similar to each other. Thus, the detection performance of LED was not 
affected by a difference in WM signal pattern. However, LED inflicts a high computational 
burden upon the SU when performing spectrum sensing; thus, the associated sensing time 
is often substantial. 

Figure 4-9 shows the performance comparison of conventional spectrum sensing 
techniques when the patterns of WM signals are known. MFD offers the best detection 
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performance among the spectrum sensing techniques. When evaluating the performance 
of MME, the calculated MME threshold (theoretical), ߛMME, offer an implausible 
performance at low SNRs.  

In [54], the authors improve the detection performance of MME by finding new 
thresholds through Monte Carlo simulations. To compare the performance of MME under 
the different types of thresholds (theoretical and Monte Carlo simulations), we present 
the performance of “MME Theory” and “MME Simulation” in Figure 4-9. Note that “MME 
Theory” denotes experimental results where the threshold is calculated from a 
theoretical formula. “MME Simulation” denotes experimental results where the threshold 
is estimated through Monte Carlo simulations. 

Table 4-2 gives a performance comparison of conventional spectrum sensing 
techniques for various cases of prior knowledge. The SNR required of a spectrum sensing 

technique to meet the required accuracy of detection (that is, dܲ ≥ 0.9) [43], is given in 
the “Critical SNR” column of Table 4-2. The lower the “Critical SNR” value, the more 
tolerant to noise the technique is. From Table 4-2, the knowledge-based spectrum sensing 
techniques — MFD and LED— are confirmed to be more tolerant to noise than the blind 
techniques.  

On the other hand, the average sensing time shown for each technique is based 
on the average from the Monte Carlo simulations. As shown in Table 4-2, ED consumes 
the least average sensing time, whereas LED consumes the longest average sensing time. 
These average sensing time values are used as a benchmark when evaluating the average 
sensing time of the FSC algorithm. 

Moreover, the results in Table 4-2 show that ED offers the maximum number of 

channels per sensing period. However, there is no standard or requirement that defines the 

minimum number of channels that should be monitored in a given sensing period. If the 

number of channels per sensing period increases, then the SU will have more opportunities 

to utilize the unused licensed band. 

 

 

 

 

 

 



 

Table 4-2 Performance comparison of conventional spectrum sensing techniques. 

Sensing technique 

Prior knowledge 
Ability to detect wireless microphone 
signal  

Waveform 
pattern 

Noise 
power 

Memory 
(Kbytes) 

Critical SNR 
( dܲ  ≥ 0.9) 

Average 
sensing 
time (ms)  

Channels/Sen
sing period of 

2 seconds 

Blind 
spectrum 
sensing 

ED     0 -16 dB 0.04997 3,602 

MED     0 -16 dB 2.6 69 

CAV     0 -16 dB 2.5 72 

MME     0 -16 dB 2.9 62 

Spectrum 
sensing 
based on 
prior 
knowledg
e 

MFD 
 

Case 1     40 -8 dB 2.5 72 

Case 2     40 -30 dB 2.5 72 

Case 3     40 -30 dB 2.5 72 

Case 4     120 -30 dB 5.4 33 

LED 

Case 1     0.192 -18 dB 78.09 2 

Case 2     0.064 -18 dB 78.09 2 

Case 3     0.064 -18 dB 78.09 2 
Case 4     0.192 -18 dB 80.7 2 

 

4.1.2 Simulation Results 

In this section, we give the simulation results of eight spectrum sensing techniques. 
The transmitted PU signals are assumed to be WM signals, based on IEEE 802.22, whereby 
the patterns of the WM signals are assumed to be in the knowledge base of the SU. The 
parameters of the WM signals are shown in Table 4-1. A single received WM signal is 
assumed to contain one of three randomly occurring patterns. The communication 
channel between the transmitter and the receiver is assumed to be an AWGN channel, 
and the SNR at the receiver is assumed to be between -30 dB and 0 dB. The other 
parameters that were used in the simulations took the following values: ݊= 5,000; 10 =ܮ; 
and fܲa = 0.1. All the experiments are performed under Windows 7 and MATLAB running 
on a PC equipped with an Intel Dual-Core CPU at 2.93 GHz and 4 GB RAM memory.  

As depicted in Figure 4-10, the FSC algorithm gives a better detection performance 
than other conventional spectrum sensing techniques, except MFD, which is known as the 
optimum spectrum sensing technique. The critical SNR of the FSC algorithm is -24 dB (see 
Table 4-3). From the perspective of sensing time, the FSC algorithm consumes less sensing 
time than the other conventional techniques, except ED (see Table 4-3). The reason for 
this is that the FSC algorithm performs spectrum sensing with little computational burden 
due to the small size of the weight vector (ܠො). Calculated from the averaged sensing time 
of FSC, the FSC algorithm can sense 3,370 channels per sensing period. When compared 



 

with the results in Table 4-2, we can see that the FSC algorithm can perform spectrum 
sensing with a number of communication channels that rivals that of ED. 

To validate the performance of the FSC algorithm, graphs of dܲ(FSC), mܲ(FSC), and 

fܲa(FSC) are shown in Figure 4-11(a). In this figure, as SNR increases, dܲ(FSC) increases while 

mܲ(FSC) and fܲa(FSC) decrease. The simulation results are as we expected, and this is 
explained as follows. By projecting the received signal to the proposed coordinate system, 
we obtained the weight vector and weight of correspondence between the received signal 
and the coordinate system. We found that the weight vector effectively represents the 
WM signal especially when SNR is higher than -18 dB. When SNR is lower than -18 dB, 
where noise power is much greater than the WM signal power, the weight vector is 
contaminated with noise. Hence, the magnitude of the weight of correspondence 
between the received signal and the coordinate system is lower than the predetermined 
FSC threshold, which causes misdetection.  

However, dܲ(FSC) is still higher than the dܲs of other conventional techniques, 
including ED, MED, CAV, MME, and LED. This is because the effect of the noise on the 
weight vector is less than that on the WM signal.  

To evaluate the tradeoff between mܲ(FSC) and fܲa(FSC), ܲm(FSC) is plotted as a function 

of fܲa(FSC), as shown in Figure 4-11(b). It should be noted that mܲ(FSC) is greater than 0 when 

the SNR is lower than -18 dB; hence, ܲ m(FSC) at three different SNRs — -20 dB, -26 dB, and -

30 dB — is shown. From Figure 4-11(b), it can be seen that mܲ(FSC) slightly decreases when 

fܲa(FSC) increases, which is similar to what happens in the cases of the other conventional 

techniques. 

 
Figure 4-10 Probability of detection vs. SNRs of ED, MED, CAV, MME, MFD, LED, and FSC. 
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(a)                                (b) 

Figure 4-11 Performance of FSC algorithm. 

Table 4-3 Comparison of critical SNR and average sensing time (case 4). 

Sensing technique Critical SNR 
( dܲ ≥ 0.9) 

Average sensing 
time (ms) 

Blind spectrum sensing 

ED -16 dB 0.0499 
MED -16 dB 2.6 
CAV -16 dB 2.5 
MME -16 dB 2.9 

Spectrum sensing based on prior 
knowledge 

MFD -30 dB 5.4 
LED -18 dB 30.7 
FSC -24 dB 0.0534 

 

To evaluate the overall performances of the spectrum sensing techniques, we 
combine two performance metrics, dܲ and average sensing time of each technique, using 
a standard multi-criteria ranking technique — analytic hierarchy process (AHP) [30]. In the 
first step, we have to determine the importance ratio between dܲ and average sensing 
time, which has never been standardized. Herein, the importance ratios are set as follows: 
1:7, 1:5, 1:3, 1:2, 1:1, 2:1, 3:1, 5:1, and 7:1. It should be noted that the importance ratio of 
1:7 means that the dܲ is 7 times more important than the average sensing time, while 7:1 
means the dܲ is 7 times less important than the average sensing time. As shown in Figure 
4-12, the FSC algorithm gives the highest overall performance at any weight of importance. 
The reason is that the FSC algorithm gives a high rate of detection while utilizing a short 
sensing time. 
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Figure 4-12 Performance comparison using AHP algorithm. 

 

4.3 The simulation of two-stage spectrum sensing 

In our proposed schemes, there are 2 main parameters that have to be considered, 
including P୤ୟ and ܮ. Threshold of the proposed techniques can be found by using (2-21), (2-
28) and (3-45). Since these parameters relate to each other and also affect to the performace 
of the proposed techniques, these parameters need to change simultaneously. Figure 4-13 
and Figure 4-14 show the probability of detection and the average sensing time as a function 
of SNR with difference in smoothing factors when noise power uncertainty occurs (2 = ߚ dB) 
and P୤ୟ=0.1, respectively. As shown in the figures, two-stage spectrum sensing techniques offer 
more reliable detection under noise power uncertainty factor equal to 1 when the smoothing 
factor increaes. However, an increase in the smoothing factor causes these techniques 
consume more time in performing spectrum sensing.  
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Figure 4-13 Probability of detection versus SNR of two-stage spectrum sensing techniques 

with difference in smooting factors (ܮ)  
when the uncertainty of noise power occur (2= ߚ dB) and P୤ୟ=0.1. 

 
Figure 4-14 Average sensing time versus SNR of two-stage spectrum sensing techniques with 

difference in smooting factors (ܮ)  
when the uncertainty of noise power occur (2= ߚ dB) and P୤ୟ=0.1. 

Figure 4-15 and Figure 4-16 show the probability of detection and the average sensing 
time as a function of SNR with difference in smoothing factors when noise power uncertainty 
occurs (2 = ߚ dB) and P୤ୟ=0.2, respectively. As mentioned earlier, an increase in smoothing 
factor makes these techniques more time consuming in performing spectrum sensing. By 
comparing Figure 4-13 and Figure 4-15, two-stage spectrum sensing techniques offer more 
reliable detection when the smoothing factor is eqaul to 10 and P୤ୟ=0.2. Although the 
smoothing factor equal to 10 makes two-stage spectrum sensing techniques more time 
consuming in performing spectrum sensing, the primary user can ensure that it is protected 
from harmful interference caused by the secondary user. 

-30 -25 -20 -15 -10 -5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR(dB)

P
d

 

 
ED MED L=4
ED MED L=8
ED MED L=10
ED MME L=4
ED MME L=8
ED MME L=10
ED CAV L=4
ED CAV L=8
ED CAV L=10

-30 -25 -20 -15 -10 -5 0
0

0.5

1

1.5

2

2.5

3

3.5
x 10-3

SNR (dB)

A
ve

ra
ge

 s
en

si
ng

 ti
m

e 
(s

ec
on

ds
)

 

 
ED MED L=4
ED MED L=8
ED MED L=10
ED MME L=4
ED MME L=8
ED MME L=10
ED CAV L=4
ED CAV L=8
ED CAV L=10



 

 
Figure 4-15 Probability of detection versus SNR of two-stage spectrum sensing techniques 

with difference in smooting factors (ܮ)  
when the uncertainty of noise power occur (2= ߚ dB) and P୤ୟ=0.2. 

 

 
Figure 4-16 Average sensing time versus SNR of two-stage spectrum sensing techniques with 

difference in smooting factors (ܮ)  
when the uncertainty of noise power occur (2= ߚ dB) and P୤ୟ=0.2. 

 

 Figure 4-17 and Figure 4-18 show the probability as a function of SNR when noise 

power uncertainty factor (ߚ) equal to 1 and 2 dB, respectively. Figure 4-19 and Figure 4-20 

show the average sensing time as a function of SNR when noise power uncertainty factor (ߚ) 

equal to 1 and 2 dB, respectively. Simulation results proved that the proposed of ED to CAV 

two-stage spectrum sensing technique offers detection performance nearly to CAV technique. 

However, at high SNRs environment, the proposed of ED to CAV two-stage spectrum sensing 

technique uses less sensing time than CAV. From the simulation results, the proposed of ED 
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to CAV two-stage spectrum sensing technique offers an accurate performance when 

smoothing factor L=10 and P୤ୟ=0.2. Even though the proposed technique takes the longest 

time in the sensing period, it offers much more reliable detection than the others. It is worth 

using this period of time to protect the primary user from harmful interference caused by the 

secondary user. 

 
Figure 4-17 Probability of detection versus SNR  

when the uncertainty of noise power occur (1= ߚ dB). 

 

Figure 4-18 Average sensing time versus SNR  
when the uncertainty of noise power occur (1= ߚ dB). 
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Figure 4-19 Probability of detection versus SNR  

when the uncertainty of noise power occur (2= ߚ dB). 

 
Figure 4-20 Average sensing time versus SNR  

when the uncertainty of noise power occur (2= ߚ dB). 

 

4.4 The simulation results of MFSC 

In this section, we give the performance comparison of MFD, LED, MFSC algorithm 
for additive white Gaussian noise (AWGN) channel under noise uncertainty and path loss 
effect when a random occurring pattern of WM signal is considered as the PU signal. The 
distance (d) between WM device and the SU is set within the range of 10 to 1000 meters. 
The loss constant (C) is set be 0.00031623, then the received signal power is -95 dBm at 
100 m [43]. The noise uncertainty factor (B) is between 0 to 2 dB [75]. It should be noticed 
that when B is 0 means that the noise uncertainty does not occur. Other parameters are 
setting as follows: ܰ = 5000, ℵ = 2, dܲ = 0.9 and fܲa = 0.01. All the experiments are 
done by using MATLAB and averaged on 10,000 Monte-Carlo realizations. 
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As shown in Figure 4-21, MFD gives the highest dܲ among these techniques. In 
perspective of dܲ, MFD meets the spectrum sensing requirement, which dܲ should greater 

than or equal to 0.9, when d is less than 650 m. However, fܲa of MFD does not meet the 
requirement, which fܲa should less than 0.1, at any distance. This means that the PU is 
greatly protected from interference caused by SU. However, the SU has a high probability 
to lose the opportunities to utilize the available spectrum band. On the other hand, MFSC 
algorithm meets the requirement in perspective of dܲ with shorter distance. Nevertheless, 
MFSC meets the requirement in perspective of fܲa for all distances. For LED, it gives the 
worst detection performance when compared to the others. As shown in Figure. 4-22, 
MFSC algorithm consumes much less sensing time than the others. During the evaluation, 
we also correct the space of database requirement of these techniques. We found that 
LED requires much less space of database when it consumes only 0.197 Kbytes while MFD 
and MFSC require 120 and 80 Kbytes, respectively.  

 
Figure 4-21. Performance comparison of MFD, LED and MFSC when B is 0. 

 
Figure 4-22 Average sensing time of MFD, LED and MFSC when B is 0. 

Figure 4-23 compares the detection performance when B is 1. As a results, MFD 
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still gives the highest dܲ. However, fܲa is now less than 0.1. This is because there is an 
uncertain in noise power which the power may less than the estimated noise power. It 
means that the effect of noise is lower and then it is easy to distinguish between PU signal 
and noise. On the other hand, the performance LED and MFSC algorithm, which perform 
spectrum sensing under framework of PCA algorithm, are nearly the same as when noise 
uncertainty does not occur. In perspective of average sensing time (as shown in Figure. 4-
24), MFSC algorithm still consumes the least average sensing time. 

 
Figure 4-23 Performance comparison of MFD, LED and MFSC when B is 1. 

 
Figure 4-24 Average sensing time of MFD, LED and MFSC when B is 1. 

As shown in Figure 4-25, the detection performance of MFSC algorithm is now 
nearly to MFD because the occurrence of noise uncertainty greatly degrades the detection 
performance of MFD but does not degrade the detection performance of MFSC algorithm. 
MFSC algorithm gives higher dܲ than MFD when the distance is greater than 600 m. This 
means that when the strength of PU signal is attenuated by path loss together with the 
increasing in an effect of noise uncertainty, matched filter lose its ability to measure the 
similarity between received signal and a known PU signal, which is kept in the database, 
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and cannot distinguish them. For LED, it gives the worst detection performance among 
these techniques. However, we can noticed that LED is the most robustness techniques 
to the occurrence of noise uncertainty because it gives the same dܲ even the strength of 
noise uncertainty increases. As shown in Figure 4-26, the average sensing time of these 
techniques are the same as when B is 0 or 1.  

 
Figure 4-25 Performance comparison of MFD, LED and MFSC when B is 2. 

 
Figure 4-26 Average sensing time of MFD, LED and MFSC when B is 2 

From the simulation results, MFD offers the best detection performance in 
perspective of dܲ. However, MFD does not meet the spectrum sensing requirement in 
perspective of fܲa at any distance when noise uncertainty does not occur. Moreover, the 
occurrence of noise uncertainty greatly degrades the detection performance of MFD. On 
the other hand, MFSC algorithm gives better detection performance than LED but worse 
than MFD. MFSC algorithm is more robust to the occurrence of noise uncertainty than 
MFD. In addition, MFSC algorithm gives higher dܲ than MFD when the distance is greater 
than 600 m together with 2 dB of noise uncertainty factor (B). In perspective of average 
sensing time, MFSC algorithm consumes the least average sensing time for all noise 
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uncertainty factors (B) and distances. For LED, it is the most robustness techniques to the 
occurrence of noise uncertainty and requires much less space database than the others. 
  


