Chapter 4
Simulation Results

In this chapter, we show the simulation results of the proposed techniques that
compare with the conventional spectrum sensing techniques. For easy to understand, we
divide our results into four parts following our proposed methods in chapter 3. Four parts of
our simulation include the simulation results of DCAED, the simulation results of FSC, the

simulation results of two-stage spectrum sensing, and the simulation results of MFSC.

4.1 The simulation results of DCAED

In this section, we firstly give the performance evaluation of two types of conventional
energy detection techniques (CDR and CFAR) and ATED. Then, we compare the performance
of these techniques to DCAED. Additive white Gaussian noise (AWGN) channel with SNR
between -25 to 0 dB is considered as the communication channel of our simulation. The
primary user signal is considered as i.i.d. process. The performance of spectrum sensing
techniques are evaluated through 100,000 Monte Carlo simulation. The parameters in the
simulation are as follows: N= 1000, P4=0.9 and Pg;=0.01. In addition, noise variance is assumed
to be estimated by the secondary user. All the experiments are performed under Windows

8.1 and MATLAB running on a PC equipped with an Intel Core i7 CPU at 3.40 GHz and 32 GB

RAM memory.
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Figure 4-1 Probability of detection and probability of false alarm versus SNR of CDR and
CFAR.



Figure 4-1 shows the performance of both P, and Py versus SNR of communication
channel. The simulation results prove that CDR technique gives high detection performance
for all range of SNR. As mentioned in section |, there is always be tradeoff on detection
performance (high Py) by fixing only a single target performance metric. The threshold based
on CDR gives high Py, at low SNR. Although the CFAR technique gives low Py, for all range of

SNR, it also gives poor detection performance at low SNR levels.
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Figure 4-2 Probability of detection versus SNR of ATED.
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Figure 4-3 Probability of false versus SNR of ATED technique.

Figure 4-2 and Figure 4-3 show the performance of ATED with different in adaptive
parameter value in terms of Py and Py, respectively. The simulation results show that ATEDg-1
gives high probability of detection for all range of SNR as the same as CDR technique. In
perspective of probability of false alarm, ATEDq-1 gives high Pg, at low SNR. On the contrary,
ATEDg-o0 sgives low probability of false alarm for all range of SNR as the same as CFAR



technique. However, ATEDq-o gives low probability of detection at low SNRs. In addition, if we
set the value of adaptive parameter between 0 to 1, the performance of ATED is between
CFAR and CDR.
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Figure 4-4 Probability of detection of the DCAED as compared to ATED, CDR and CFAR.

9
5 PEGag : i [-e—cor
08 : : i .| —B—CcFaR
! | —©—ATEDw =025
07 .| —&— ATED0 =075
-5 DCAED
§ ) SEEESRRRNY S Bl CEERRRE oo .
® \ :
] S s it SUTEEE L EERS CEERT TR i
5
Z 04f b s S, 4
g :
g 03<EE§5'-&&;§'_;;"""§ """""" 3 1
AU S UM SH— S— ]

Signal To Noise Ratio (dB)

Figure 4-5 Probability of false alarm of the DCAED as compared to ATED, CDR and CFAR

DCAED changes the threshold under different condition of communication channel
controlled by the adaptive factor. The adaptive factor is derived from the critical sample of
the system which retains the interdepedent between Py, and P4. Thus, we can conclude that
the threshold of DCAED is adapted controlled by P, and Py. depending on the condition of
icommunication channel. Figure 4-4 compares the probability of detection of the DCAED to
ATEDq=0.75, ATEDqg=0.25, CDR and CFAR. The simulation results show that DCAED gives higher Py
than ATEDg=0.75, ATEDa=0.2s and CFAR. On the other hand, the DCAED technique gives higher
P4 than CDR technige when SNR is higher than-8 dB. As show in Figure 4-5, DCAED gives lower



Pr, than ATEDqg-075 and CDR. DCAED technique meets the spectrum sensing requirement of
IEEE 802.22 when SNR is higer than -20 dB which the spectrum sensing technique has to
perform spectrum sensing with probability of false detection less than 0.1.
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Figure 4-6 Tradeoff in an accuracy of detection of the DCAED as compared to ATED.

x10°
4 —G--CDR
s \ —B--CFAR
RN —&--ATED 0. = 0.25
A4 —A--ATED o = 0.75
4 -=%%- DCAED

WYL RFER TV VVVTY
&%XAAA\A{LA&‘\(A
\

Average sensing time (second)
w

)
& &6
1.5
FBEBHEEEEY
j25 -20 -15 -10 -5 0

Signal To Noise Ratio (dB)

Figure 4-7 Average sensing time of the DCAED as compared to ATED, CDR and CFAR.

Figure 4-6, shows the tradeoff in an accuracy of detection of the DCAED as compared
to ATED. The simulation results prove that DCAED overcomes demerits of the tradeoff in the
accuracy of detection of ATED. Although DCAED gives higher Pr, than ATEDqg-025, DCAED gives
much higher P4 than ATEDg-025s and ATEDg-07s. In addition, the estimated noise variance is
used to select the adaptive factor. The adaptive factor under high SNR condition can be
computed with less complexity than adaptive factor under low SNR condition. Thus, the
DCAED consumes less time in performing spectrum sensing under high SNR condition (as
shown in Figure 4-7). The sensing time of DCAED highly achieves the requirement of the IEEE
802.22 standard which is less than 2 seconds. Although the DCAED spends more sensing time



than the other technique, the DCAED outperform the tradeoff in an accuracy of detection
which is the main disadvantage of the other techniques.

4.2 The simulation results of FSC

4.2.1 Preliminary

In this section, we evaluate the performance of six conventional spectrum sensing
techniques — ED, MED, CAV, MME, MFD, and LED — under the assumption that a received
WM signal has a randomly occurring pattern. Two important factors — P4 and sensing time of

each technique — are considered in our performance evaluation.

With an aim to study spectrum sensing performance under different levels of
knowledge, the SU is equipped with four different knowledge bases of wireless
microphone (WM) signal as described in Table 4-1.

The simulation results of six conventional spectrum sensing techniques — ED,
MED, CAV, MME, MFD, and LED — are shown in Table 4-2. As four of the six techniques
— ED, MED, CAV, and MME — are blind techniques, their detection performances will not
be affected by different knowledge bases. Hence, the individual results of these blind
techniques are not shown; rather, they are shown collectively due to the fact that they
have similar detection performances. On the other hand, different knowledge bases
greatly affect the detection performances of the knowledge-based techniques — MFD
and LED. Results on four cases are shown in details.

Table 4-1 Different knowledge bases of PU signal known to an SU.

Case | Description
1 | Silent of WM signal is known by SU

Soft speaker of WM signal is known by SU

2
3 | Loud speaker of WM signal is known by SU
4 | All three patterns of WM signals are known by SU

Figure 4-8 shows the simulation results of MFD and LED for the four cases outlined in
Table 4-1. The graph plots Py as a function of SNR. It is clear that the detection performance
of MFD is greatly affected by the knowledge base of PU’s signal. When SU observes a pattern
of WM signal that is not in the knowledge base, the detection performance of MFD greatly

degrades.
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Figure 4-8 Detection performance of MFD and LED under different received wireless
microphone signal cases.
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Figure 4-9 Performance comparison of conventional spectrum sensing techniques when
the patterns of the PU signal are known.

As depicted in the figure, the detection performance of LED in cases 1-4 is shown
using only a single line. This is because the detection performances were practically

identical to each other, due to the fact that the leading eigenvectors of the WM signal
patterns were similar to each other. Thus, the detection performance of LED was not
affected by a difference in WM signal pattern. However, LED inflicts a high computational
burden upon the SU when performing spectrum sensing; thus, the associated sensing time

is often substantial.
Figure 4-9 shows the performance comparison of conventional spectrum sensing

techniques when the patterns of WM signals are known. MFD offers the best detection



performance among the spectrum sensing techniques. When evaluating the performance
of MME, the calculated MME threshold (theoretical), ymmEe, offer an implausible
performance at low SNREs.

In [54], the authors improve the detection performance of MME by finding new
thresholds through Monte Carlo simulations. To compare the performance of MME under
the different types of thresholds (theoretical and Monte Carlo simulations), we present
the performance of “MME Theory” and “MME Simulation” in Figure 4-9. Note that “MME
Theory” denotes experimental results where the threshold is calculated from a
theoretical formula. “MME Simulation” denotes experimental results where the threshold
is estimated through Monte Carlo simulations.

Table 4-2 gives a performance comparison of conventional spectrum sensing
techniques for various cases of prior knowledge. The SNR required of a spectrum sensing
technique to meet the required accuracy of detection (that is, P4 > 0.9) [43], is given in
the “Critical SNR” column of Table 4-2. The lower the “Critical SNR” value, the more
tolerant to noise the technique is. From Table 4-2, the knowledge-based spectrum sensing
techniques — MFD and LED— are confirmed to be more tolerant to noise than the blind
techniques.

On the other hand, the average sensing time shown for each technique is based
on the average from the Monte Carlo simulations. As shown in Table 4-2, ED consumes
the least average sensing time, whereas LED consumes the longest average sensing time.
These average sensing time values are used as a benchmark when evaluating the average
sensing time of the FSC algorithm.

Moreover, the results in Table 4-2 show that ED offers the maximum number of
channels per sensing period. However, there is no standard or requirement that defines the
minimum number of channels that should be monitored in a given sensing period. If the
number of channels per sensing period increases, then the SU will have more opportunities

to utilize the unused licensed band.



Table 4-2 Performance comparison of conventional spectrum sensing techniques.

. Ability to detect wireless microphone
Prior knowledge .
signal
Sensing technique ) . Average | Channels/Sen
Waveform Noise Memory Critical SNR . . .
sensing sing period of
pattern power (Kbytes) (P 20.9) )
time (ms) 2 seconds
i ED x v o -16 dB 0.04997 | 3,602
in
MED x v o -16 dB 26 69
spectrum
. CAV x x 0 -16 dB 2.5 72
sensing
MME x x 0 -16 dB 2.9 62
Case 1 v v’ a0 -8 dB 25 72
Spectrum | MFD | Case 2 v v’ |40 -30 dB 2.5 72
sensing Case 3 v v’ a0 -30 dB 2.5 72
based on Case 4 v v’ | 120 -30 dB 5.4 33
prior Case 1 v v 10.192 -18 dB 78.09 2
knowledg Case 2 v v’ | 0.064 -18 dB 78.09 2
LED
e Case 3 4 v’ 10064 | -18dB 78.09 2
Case 4 v v’ 0192 -18 dB 80.7 2

4.1.2 Simulation Results

In this section, we give the simulation results of eight spectrum sensing techniques.
The transmitted PU signals are assumed to be WM signals, based on IEEE 802.22, whereby
the patterns of the WM signals are assumed to be in the knowledge base of the SU. The
parameters of the WM signals are shown in Table 4-1. A single received WM signal is
assumed to contain one of three randomly occurring patterns. The communication
channel between the transmitter and the receiver is assumed to be an AWGN channel,
and the SNR at the receiver is assumed to be between -30 dB and 0 dB. The other
parameters that were used in the simulations took the following values: n= 5,000; L= 10;
and Pg, = 0.1. All the experiments are performed under Windows 7 and MATLAB running
on a PC equipped with an Intel Dual-Core CPU at 2.93 GHz and 4 GB RAM memory.

As depicted in Figure 4-10, the FSC algorithm gives a better detection performance
than other conventional spectrum sensing techniques, except MFD, which is known as the
optimum spectrum sensing technique. The critical SNR of the FSC algorithm is -24 dB (see
Table 4-3). From the perspective of sensing time, the FSC algorithm consumes less sensing
time than the other conventional techniques, except ED (see Table 4-3). The reason for
this is that the FSC algorithm performs spectrum sensing with little computational burden
due to the small size of the weight vector (X). Calculated from the averaged sensing time
of FSC, the FSC algorithm can sense 3,370 channels per sensing period. When compared




with the results in Table 4-2, we can see that the FSC algorithm can perform spectrum
sensing with a number of communication channels that rivals that of ED.

To validate the performance of the FSC algorithm, graphs of Pyrsc), Pmcrsc), and
Pea(pscy are shown in Figure 4-11(a). In this figure, as SNR increases, Pgrscy increases while
Prrscy and Peypscy decrease. The simulation results are as we expected, and this is
explained as follows. By projecting the received signal to the proposed coordinate system,
we obtained the weight vector and weight of correspondence between the received signal
and the coordinate system. We found that the weight vector effectively represents the
WM signal especially when SNR is higher than -18 dB. When SNR is lower than -18 dB,
where noise power is much greater than the WM signal power, the weight vector is
contaminated with noise. Hence, the magnitude of the weight of correspondence

between the received signal and the coordinate system is lower than the predetermined

FSC threshold, which causes misdetection.
However, Pyescy is still higher than the Pygs of other conventional techniques,

including ED, MED, CAV, MME, and LED. This is because the effect of the noise on the

weight vector is less than that on the WM signal.
To evaluate the tradeoff between Ppgscy and Peucrsc), Pmrsc) is plotted as a function

of Peyrscy, as shown in Figure 4-11(b). It should be noted that Py psc) is greater than 0 when
the SNR is lower than -18 dB; hence, Py rsc) at three different SNRs — -20 dB, -26 dB, and -
30 dB — is shown. From Figure 4-11(b), it can be seen that Pppsc) slightly decreases when

Prarscy increases, which is similar to what happens in the cases of the other conventional

techniques.
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Figure 4-10 Probability of detection vs. SNRs of ED, MED, CAV, MME, MFD, LED, and FSC.
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Figure 4-11 Performance of FSC algorithm.
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Table 4-3 Comparison of critical SNR and average sensing time (case 4).

Sensing technique Critical SNR | Average sensing
. (P4 =0.9) time (ms)
ED -16 dB 0.0499
MED -16 dB 2.6
Blind spectrum sensing
CAV -16 dB 2.5
MME -16 dB 2.9
MFD -30 dB 5.4
Spectrum sensing based on prior
LED -18 dB 30.7
knowledge
FSC -24 dB 0.0534

To evaluate the overall performances of the spectrum sensing techniques, we
combine two performance metrics, Py and average sensing time of each technique, using
a standard multi-criteria ranking technique — analytic hierarchy process (AHP) [30]. In the
first step, we have to determine the importance ratio between Py and average sensing
time, which has never been standardized. Herein, the importance ratios are set as follows:
1:7, 1:5, 1:3, 1:2, 1:1, 2:1, 3:1, 5:1, and 7:1. It should be noted that the importance ratio of
1:7 means that the Py is 7 times more important than the average sensing time, while 7:1
means the Py is 7 times less important than the average sensing time. As shown in Figure
4-12, the FSC algorithm gives the highest overall performance at any weight of importance.
The reason is that the FSC algorithm gives a high rate of detection while utilizing a short

sensing time.
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Figure 4-12 Performance comparison using AHP algorithm.

4.3 The simulation of two-stage spectrum sensing

In our proposed schemes, there are 2 main parameters that have to be considered,
including P, and L. Threshold of the proposed techniques can be found by using (2-21), (2-
28) and (3-45). Since these parameters relate to each other and also affect to the performace
of the proposed techniques, these parameters need to change simultaneously. Figure 4-13
and Figure 4-14 show the probability of detection and the average sensing time as a function
of SNR with difference in smoothing factors when noise power uncertainty occurs (8 = 2 dB)
and P,=0.1, respectively. As shown in the figures, two-stage spectrum sensing techniques offer
more reliable detection under noise power uncertainty factor equal to 1 when the smoothing
factor increaes. However, an increase in the smoothing factor causes these techniques

consume more time in performing spectrum sensing.
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Figure 4-13 Probability of detection versus SNR of two-stage spectrum sensing techniques
with difference in smooting factors (L)

when the uncertainty of noise power occur (f =2 dB) and P,=0.1.
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Figure 4-14 Average sensing time versus SNR of two-stage spectrum sensing techniques with
difference in smooting factors (L)
when the uncertainty of noise power occur (f =2 dB) and P,=0.1.

Figure 4-15 and Figure 4-16 show the probability of detection and the average sensing
time as a function of SNR with difference in smoothing factors when noise power uncertainty
occurs (f = 2 dB) and P,=0.2, respectively. As mentioned earlier, an increase in smoothing
factor makes these techniques more time consuming in performing spectrum sensing. By
comparing Figure 4-13 and Figure 4-15, two-stage spectrum sensing techniques offer more
reliable detection when the smoothing factor is eqaul to 10 and Pg,=0.2. Although the
smoothing factor equal to 10 makes two-stage spectrum sensing techniques more time

consuming in performing spectrum sensing, the primary user can ensure that it is protected

from harmful interference caused by the secondary user.
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Figure 4-16 Average sensing time versus SNR of two-stage spectrum sensing techniques with
difference in smooting factors (L)
when the uncertainty of noise power occur (f =2 dB) and P,=0.2.

Figure 4-17 and Figure 4-18 show the probability as a function of SNR when noise
power uncertainty factor (f) equal to 1 and 2 dB, respectively. Figure 4-19 and Figure 4-20
show the average sensing time as a function of SNR when noise power uncertainty factor ()
equal to 1 and 2 dB, respectively. Simulation results proved that the proposed of ED to CAV
two-stage spectrum sensing technique offers detection performance nearly to CAV technique.
However, at high SNRs environment, the proposed of ED to CAV two-stage spectrum sensing

technique uses less sensing time than CAV. From the simulation results, the proposed of ED



to CAV two-stage spectrum sensing technique offers an accurate performance when
smoothing factor L=10 and Pg=0.2. Even though the proposed technique takes the longest
time in the sensing period, it offers much more reliable detection than the others. It is worth
using this period of time to protect the primary user from harmful interference caused by the

secondary user.
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4.4 The simulation results of MFSC

In this section, we give the performance comparison of MFD, LED, MFSC algorithm
for additive white Gaussian noise (AWGN) channel under noise uncertainty and path loss
effect when a random occurring pattern of WM signal is considered as the PU signal. The
distance (d) between WM device and the SU is set within the range of 10 to 1000 meters.
The loss constant (C) is set be 0.00031623, then the received signal power is -95 dBm at
100 m [43]. The noise uncertainty factor (B) is between 0 to 2 dB [75]. It should be noticed
that when Bis 0 means that the noise uncertainty does not occur. Other parameters are
setting as follows: N = 5000, X = 2, Py = 0.9 and P, = 0.01. All the experiments are
done by using MATLAB and averaged on 10,000 Monte-Carlo realizations.



As shown in Figure 4-21, MFD gives the highest Py among these techniques. In
perspective of P4, MFD meets the spectrum sensing requirement, which Py should greater
than or equal to 0.9, when d'is less than 650 m. However, Py, of MFD does not meet the
requirement, which Pg, should less than 0.1, at any distance. This means that the PU is
greatly protected from interference caused by SU. However, the SU has a high probability
to lose the opportunities to utilize the available spectrum band. On the other hand, MFSC
algorithm meets the requirement in perspective of P4 with shorter distance. Nevertheless,
MFSC meets the requirement in perspective of P, for all distances. For LED, it gives the
worst detection performance when compared to the others. As shown in Figure. 4-22,
MFSC algorithm consumes much less sensing time than the others. During the evaluation,
we also correct the space of database requirement of these techniques. We found that
LED requires much less space of database when it consumes only 0.197 Kbytes while MFD
and MFSC require 120 and 80 Kbytes, respectively.
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Figure 4-21. Performance comparison of MFD, LED and MFSC when Bis 0.
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Figure 4-22 Average sensing time of MFD, LED and MFSC when Bis 0.

Figure 4-23 compares the detection performance when Bis 1. As a results, MFD



still gives the highest Py. However, Pf, is now less than 0.1. This is because there is an
uncertain in noise power which the power may less than the estimated noise power. It
means that the effect of noise is lower and then it is easy to distinguish between PU signal
and noise. On the other hand, the performance LED and MFSC algorithm, which perform
spectrum sensing under framework of PCA algorithm, are nearly the same as when noise
uncertainty does not occur. In perspective of average sensing time (as shown in Figure. 4-
24), MFSC algorithm still consumes the least average sensing time.
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Figure 4-23 Performance comparison of MFD, LED and MFSC when B'is 1.

—6— MFD
—B8— LED
—#— MFSC

average sensing time (ms)
N
o

100 200 300 400 500 600 700 800 900 1000
Distance(m)

Figure 4-24 Average sensing time of MFD, LED and MFSC when Bis 1.

As shown in Figure 4-25, the detection performance of MFSC algorithm is now
nearly to MFD because the occurrence of noise uncertainty greatly degrades the detection
performance of MFD but does not degrade the detection performance of MFSC algorithm.
MFSC algorithm gives higher P4 than MFD when the distance is greater than 600 m. This
means that when the strength of PU signal is attenuated by path loss together with the
increasing in an effect of noise uncertainty, matched filter lose its ability to measure the
similarity between received signal and a known PU signal, which is kept in the database,



and cannot distinguish them. For LED, it gives the worst detection performance among
these techniques. However, we can noticed that LED is the most robustness techniques
to the occurrence of noise uncertainty because it gives the same P, even the strength of
noise uncertainty increases. As shown in Figure 4-26, the average sensing time of these

techniques are the same as when Bis 0 or 1.
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Figure 4-25 Performance comparison of MFD, LED and MFSC when B'is 2.
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Figure 4-26 Average sensing time of MFD, LED and MFSC when B'is 2

From the simulation results, MFD offers the best detection performance in
perspective of Pyq. However, MFD does not meet the spectrum sensing requirement in
perspective of Py, at any distance when noise uncertainty does not occur. Moreover, the
occurrence of noise uncertainty greatly degrades the detection performance of MFD. On
the other hand, MFSC algorithm gives better detection performance than LED but worse
than MFD. MFSC algorithm is more robust to the occurrence of noise uncertainty than
MFD. In addition, MFSC algorithm gives higher Py than MFD when the distance is greater
than 600 m together with 2 dB of noise uncertainty factor (B). In perspective of average
sensing time, MFSC algorithm consumes the least average sensing time for all noise



uncertainty factors (B) and distances. For LED, it is the most robustness techniques to the
occurrence of noise uncertainty and requires much less space database than the others.



