Chapter 3

Proposed Techniques

In this chapter, we descript four spectrum sensing techniques that we are proposed.
Two methods are double-constrain adaptive energy detection (DCAED) and fast spectrum
sensing with coordinate system (FSC) for additive white Gaussian noise (AWGN) channel. Two
techniques are two-stage spectrum sensing and modified FSC for noise uncertainty and path

loss environment.

3.1 Double constraints adaptive energy detection

From chapter 2, we known that ED [60-63] is the most widely utilized because it
consumes the shortest sensing time with the least complexity. However, the accuracy of
detection of ED is unreliable under bad condition of communication channel or at low signal
to noise ratio (SNR) condition. In [64, 65], the performance of ED is improved by using an
adaptive threshold. In general, the threshold of ED is set by fixing target performance metrics.
There are 2 ways to set a threshold for ED. The first way is done by fixing target probability of
false alarm which is called “constant false alarm rate (CFAR)”. The other way is done by fixing
target probability of detection which is called “constant detection rate (CDR)”. An adaptive
threshold energy detection (ATED) changes its decision threshold depending on the condition
of communication channel. The system threshold switches between the threshold of CFAR
and CDR. Although the detection performance of ED is improved, the false alarm detection
rate does not achieve the target performance stated by IEEE 802.22 standard which the
spectrum sensing technique has to perform spectrum sensing with probability of false
detection less than 0.1.

3.1.1 Conventional energy detection technique
As shown in Figure3-1, the PU signal is received by SU. The output from bandpass filter
is digitized by analog to digital converter (ADC). The existence of PU is determined by

measuring the energy of the received signal and compares to predetermined threshold.
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Figure 3-1 Model of conventional energy detection technique [64].

The decision statistic of ED is given as
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When the PU absents, the decision statistic can be represented as
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If both of primary signal and noise is an independent and identically distributed (i.i.d.)
random process. The mean (u,) and variance g,2 under hypothesis H, can be derived as
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If Gaussian noise is real-valued, E|n (n)|* = 30;,°. The variance g,* can be expressed

0,2 = \/%an. (3-5)

Thus, the probability of false alarm (Pg;) can be expressed as
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where 4 is decision threshold, an is the variance of noise and g2 is the variance of primary

as

user signal and Q(*) is standard Gauss complementary cumulative distribution function.
When the PU presents (H;), the decision statistic is given as
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Under hypothesis Hy, the mean (1) can be derived as
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where y represents signal-to-noise ratio (SNR). The variance a2 is given as
01> = E|Ygp — m4]? (3-10)

= L |Els )I* + El ()I* — (0,2 — 0y2) + 20,2,



If Gaussian noise is real-valued, E|s(n)|* = 305> and E|ln (n)|* = 30n2. The variance

0,2 can be expressed as
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Thus, the probability of detection (Py) can be represented as

N
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There are 2 ways to set the threshold for ED technique. The first technique is called
CFAR which the threshold is set by fixing Pr,. Thus, the threshold for CFAR can be computed

by

Acrar = <Q_1(Pfa)\/%+ 1> oy’ (3-13)
To set the threshold by fixing Py , which is called CDR, can be done by

Acor = <\/% G+ (P +y + 1> Ty’ (3-14)

However, it should be realized that the predetermined thresholds (A¢pr and A¢par)
are set by fixing only a single target performance metric. Thus, there is always be a tradeoffin
the performance of ED technique by fixing only a single target performance metric. ED with
threshold based on CDR gives poor detection performance in perspective of P,. Conversely,
ED with threshold based on CFAR gives poor detection performance in perspective of Py.

3.1.2 Adaptive threshold energy detection

From [63, 64], the adaptive threshold energy detection (ATED) technique was
proposed. The adaptive parameter (a) was introduced to vary the threshold depending on
the condition of communication channel. As shown is Figure 3-2, the SNR estimator plays as
an important part of the system. The SNR estimator estimates the variance noise from the
received signal and sends it to the threshold setter device. The threshold setter device
generates a new threshold which is appropriate to the communication channel at the period

of time
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Figure 3-2 Model of adaptive threshold energy detection technique [64]




The new threshold is given by
A= 2Acpar + a* (Acpr — Acpar), 0 < @ < 1. (3-15)

The adaptive parameter (a) is set depending on the condition of communication
channel. Since the SNR of communication channel is estimated, the system calculates the
critical sample which is appropriate to the communication channel at the period of time. If
the number of sample of the system is lower than the number of critical sample, the adaptive
parameter (a) is set to be 1. On the other hand, if the number of sample of the system is
greater than the number of critical sample, the adaptive parameter (@) is set to be 0. In

addition, the value of adaptive parameter (a) can be change between 0 to 1.

3.1.3 Double constraints adaptive energy detection

In this section, double constraint adaptive energy detection (DCAED) is explained.
DCAED exploits an interdependent between Pr, and P4 to generate a new adaptive factor (B).
However, there is no directly way to set the threshold by fixing Pr; and P4 as the target
performance metrics. DCAED sets the adaptive factor (f) by using the critical sample (N,),
since N, retains the independent between Pg, and P4. Then adaptive factor is used to set the
threshold in order to achieve target performance metrics.

The system model is shown in Figure 3-3. The information from SNR estimator is
gathered by adaptive threshold device. The estimated SNR value is compared to critical SNR
(Ye). If the estimated value is greater than critical value (y,) means that the commination
channelis in a good condition which conventional ED offers a reliable detection performance.
Thus, the adaptive factor (f) is set to make the system remains the new threshold as
predetermined threshold. On the other hand, if the estimated value is lower than critical
value, the new threshold is generated by setting the adaptive factor () depending on the

condition of communication channel.
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Figure 3-3 Model of DCAED.



The threshold is given as

A
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where 0,42 is an estimated noise variance .

N, refers to a minimum number of sample that is required by conventional energy
detection technique to meet the target performance metrics (P, and Py). By using (3-6) and
(3-12), the interdependent between these parameters can be shown as

P, = Q <Q‘1(Pd)(y +1) + y\/§> (3-17)
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By solving (3-6) and (3-12), the critical sample (N,) can be expressed as

Ne = %107 (P) — Q' (P (r + DI (3-19)

From the definition of critical sample, we can conclude that if we set the new
threshold by changing the sample (N) to critical sample (N.) in (3-13) or (3-14). The
performance of ED will meet the target performance metrics. However, it is not feasible to
change the sample to the desired number in practical. Thus, DCAED meets the target accuracy
of detection performance metrics as changing critical sample by using the adaptive factor to

change the system threshold.

By solving (3-6), (3-17) and (3-19) under condition of the proposed scheme. The

adaptive factor (f) of the system can be expressed as
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where C, is the condition that estimated SNR is greater than critical SNR and C; is the
condition that estimated SNR is lower than critical SNR.
In addition, the critical SNR (y,) for the system is given by
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3.2 Fast Spectrum Sensing with Coordinate System

In this section, we describe in detail with mathematical models of the fast
spectrum sensing with coordinate system (FSC) algorithm. The FSC algorithm is a spectrum
sensing technique that requires prior knowledge of a PU’s signals. The framework for the
FSC algorithm can be categorized into two phases — coordinate system construction and
sensing. The coordinate system must be predetermined from the two most significant
features of WM signals and kept in the knowledge base. The sensing phase determines
the existence of a PU by comparing the FSC decision statistic (Ygsc) to the FSC threshold
(Yrsc)- The decision statistic is calculated by projecting the PU’s signal onto the
predetermined coordinate system.

Following the PCA algorithm, the WM signals are first decomposed into a small set
of features. The significance of each feature can then be explained by an eigenvector and
eigenvalue, where the eigenvector represents the direction of the feature and the
eigenvalue explains the variance of the WM signals in that direction. Therefore, the
eigenvector corresponding to the highest eigenvalue represents the direction in which
most of the data within the WM signals are varying. This eigenvector refers to the most

significant feature of WM signals.

3.2.1 Coordinate System Construction

In this section, our coordinate system is introduced. The new coordinate system is
of a lower dimension than the original data space. The main objectives of this phase are
to select the two most significant features of WM signals and to construct a coordinate
system. Our coordinate system construction process (as shown in Figure 3-4) exploits the
feature extraction and selection process of a PCA algorithm [66-67] to filter out the two
most significant features of WM signals and then uses them as the axes for a new
coordinate system. Due to the smaller size of the new coordinate system, the FSC
algorithm consumes less memory, has less computational burden, and has a short sensing
time.

We assume that the WM signals of a PU are known to an SU. These WM signals are
used as the training signals. Let the vectors sq, Sj,..., Sy represent WM signals. These
vectors are referred to as training vectors. The training vectors are given by

s1 = [51(1) 51(2)... s;(WN)]",

s; = [5,(1) 52(2)... (W], (3-23)

sy = [su(1) sp(2)... su(N)]™.
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Figure 3-4 Coordinate system construction phase of FSC algorithm.

The procedure for the coordinate system construction phase is described as
follows.

A. Feature Extraction
Firstly, we eliminate the common features of the WM signals by subtracting the average

WM signals vector (€) from each training vector (s;).
B; =s; — € (3-24)

where B; is a vector that contains the significant features of the WM signals. The average WM

signals vector (g) can be expressed as
£==—3M s (3-25)
Next, we compute the covariance matrix (C) of B;, which is given by
C= 2 BB (3-26)

From the covariance matrix, a matrix of eigenvectors (V = [v; Vv, ... v4]) and a vector
of corresponding eigenvalues (A =1[A; A5 ..44]") can be obtained by using the

aforementioned eigen-decomposition algorithm.

B. Feature Selection
From the matrix of eigenvectors (V), we keep only the k best eigenvectors (that is,
those that correspond to the k largest eigenvalues), and the resulting set is then used to form

the new coordinate system. The k best eigenvectors are determined by

kK 5.
Smlt > 950, (3-27)
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where d is the number of eigenvalues in set A.

From our investigation, we found that eigenvectors that had a correspondingly high
eigenvalue more effectively represented the features of the WM signals than those
eigenvectors that had correspondingly small eigenvalues. It is clear that 95% of the total
number of features present in the WM signals is a sufficient amount to be representative
of all the existing features. Hence, having decided to only select the k best eigenvectors,
the dimension of the WM signals is reduced. Reducing the dimension of the WM signals
avoids a huge amount of computational burden. Moreover, the effect of noise from the
original signal is avoided due to the reduction in dimension of the WM signals Furthermore,
the FSC algorithm is tolerant to noise.

3.2.2 Sensing Phase

In the sensing phase (see Figure 3-5), the weight of correspondence between the
received WM signal and the new coordinate system is calculated by projecting the
received signal onto the coordinate system. This weight describes the distribution of the
received signal in the new coordinate system. The weight, given as a vector (R), can be
expressed as

2=VT(x—e¢). (3-28)

The magnitude of the weight vector is defined as the FSC decision statistic (Ygsc).
The magnitude of the weight vector will rise when a PU is present. Otherwise, the
magnitude of the weight vector will fall when a PU is not present. The FSC decision
statistic (Ygsc) can be expressed as

2
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Figure 3-5 Sensing phase of FSC algorithm.

A mathematical model for the probability of false alarm of the FSC algorithm is
given by
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Note that uy, is the mean value of H; and that my, is the n'™ order moment of the
FSC decision statistic (Ygsc).

Similar to the probability of false alarm, the probability of detection for the FSC
algorithm can be expressed as

Pacrscy = P[Yrsc = Vrsc|Hil (3-36)
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In addition, the probability of misdetection of the FSC algorithm is given by

Prrscy = 1 — Pycrsey- (3-42)



3.3 Two-stage spectrum sensing

In this section, the proposed two-stage spectrum sensing algorithms are explained. Our
proposed two-stage spectrum sensing algorithms (as depicted in Figure 3-6) exploit the merits
of ED CAV and MME technique.
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Figure 3-6 Two-stage spectrum sensing scheme [53].

The scheme of the proposed two-stage spectrum sensing techniques can be separated
into 2 stages including coarse sensing stage and fine sensing stage. Mathematical models of
overall probability of false alarm and overall probability of detection for two-stage spectrum

sensing are given by
Pry = Py gst + (1 — Py gst) P, ona (3-43)
Pqg = Pgst + (1 — Pgqst) Py yna (3-44)

where P, is Pg, of the system, Py is Py of the system, P, sst is Pg, of the first stage, P, yna is
P, of the second stage, Py sst is Py of the first stage and Py ,na is Py of the second stage.

For a given channel, the existence of primary user is firstly determined by the first
stage. Similar to other two-stage spectrum sensing techniques [52, 73], ED is utilized as the
first stage. Although ED offers inaccurate detection at low SNR and when uncertainty noise
power occurs, it performs spectrum sensing within short time. In addition, at high SNR
environment, ED offers an accurate detection. If an average energy of received signal is greater
than the threshold (ygp) then the spectrum band is declared to be presented. If the average
energy of received signal is lower than ygp, the second stage is activated. The threshold of
the first stage can be expressed as

vep = (Q1 (F222) +1) 07 (3-45)

In our proposed algorithm, MME and CAV are utilized as a second stage. For ED to CAV
two-stage spectrum sensing technique, after the second stage is activated, the statistical
covariance of the signal sample is computed by (2-20). If the statistical covariance of the signal
sample is lower than the threshold (2-21), the two-stage spectrum sensing technique
determines that primary user absents. If the statistical covariance of the signal sample is greater



than the threshold, the two-stage spectrum sensing technique determines that primary user
presents.

For ED to MME two-stage spectrum sensing technique, after the second stage is
activated, the maximum and minimum eigenvalue of covariance matrix of signal sample is
computed by (2-14). If the ratio of maximum to minimum eigenvalue is lower than the
threshold (2-28), the two-stage spectrum sensing technique determines that primary user
absents. Otherwise, the two-stage spectrum sensing technique determines that primary user

presents.

3.4 Modified- fast spectrum sensing with coordinate system (MFSC)

In this section, we both derive the mathematical model and describe the
framework of modified- fast spectrum sensing with coordinate system (MFSC), which is
modified from FSC (section 3.2), under path loss effect and noise uncertainty. The
framework of MFSC algorithm is separated into two phases including coordinate system
construction and sensing like FSC. Firstly, the coordinate system must be predetermined
by keeping the two most significant features of WM signals. The sensing phase determines
the existence of a PU by comparing the MFSC decision statistic (Tygsc), where Tygsc is
calculated by projecting the received signal onto the coordinate system, to the MFSC
threshold (Aypsc)-

3.4.1 Coordinate System Construction

To construct a coordinate system, the known WM signals are decomposed into a
set of features. Only the two most significant features are obtained and used as the axes
of the coordinate system. The significance of each feature is explained by the eigenvector

which is corresponding to the maximum eigenvalue.

Lets s; is a vector that represents WM signal. This vector is known as training vector.
The training vectors are given by

s1 = [51(1) 51(2)... s;(WN)]",

s; = [52(1) 5,(2)... 5,(N)]T, (3-46)

sy = [su(1) sp(2)... su(N)]™.

The procedure of the coordinate system construction can be summarized as the
following

Firstly, the common features of the WM signals is eliminated by subtracting the average

WM signals vector (€) from each training vector (s;).



Bi =8; — E, (3-47)

where B; is a vector that contains the significant features of the WM signals. The average WM

signals vector (€) can be expressed as
1
e=—%Ls (3-48)

Next, the covariance matrix (C) of B; is computed. Therefore, the covariance matrix (C)

is given by
=2l Bifi" (3-49)

Using the eigen-decomposition algorithm, a matrix of eigenvectors (V = [v; v, ... vg])
and a vector of corresponding eigenvalues (e = [e; e, ... e4]") are obtained. Finally, only the
k best eigenvectors corresponding to the k largest eigenvalues are used to form the

coordinate system. The number of k can be determined by

K o,
Zi=1% 5 9504, (3-50)
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where d is the number of eigenvalues in set e.
3.4.2 Sensing Phase
The weight vector (X) is given as
R=VTix—eg). (3-51)
and x is SU received signal under noise uncertainty.

Finally, the magnitude of the weight vector is calculated and used as the MFSC
decision statistic (Typsc). Therefore, the MFSC decision statistic (Tyrsc) can be expressed

2
Tumrsc = lIRI1% = < , ?:1()?)2> =Yk (®)2 (3-52)

To determine the existence of PU, the MFSC decision statistic is compared to the
MFSC threshold (Aypsc)-

as

As mention earlier, the threshold is needed to be vary on the strength of path loss
effect. From our investigation, we found that the changing in the signal’s amplitude does
not affect changing in the signal’s feature (eigenvector) but affects changing in the average
vector (€). Thus, the weight vector under path loss effect when the PU does not exist can
be expressed as

&, = Vi(x, — 8, (3-53)

where the average vector (€) under path loss effect is given by



&€ =+/PLe. (3-54)

The probability of false alarm (Pg,) of the MFSC algorithm is given by

I[/ AMpsc —km ¢ —I
P, = Qik dll . )i (3-55)
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where s, is the mean value of X, and that m,, is the n'" order moment of Xy

In general, the system threshold is set by fixing the target Pg, , then the MFSC
threshold (Ayvpsc) is given by

Amrsc = Q_l(Pfa)\/k (mi} - (mlz,Ho)Z)"‘ kms, (3-56)

The probability of detection for the MFSC algorithm can be expressed as
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