
 

Chapter 3 

Proposed Techniques 

 In this chapter, we descript four spectrum sensing techniques that we are proposed. 

Two methods are double-constrain adaptive energy detection (DCAED) and fast spectrum 

sensing with coordinate system (FSC) for additive white Gaussian noise (AWGN) channel. Two 

techniques are two-stage spectrum sensing and modified FSC for noise uncertainty and path 

loss environment. 

3.1 Double constraints adaptive energy detection 

From chapter 2, we known that ED [60-63] is the most widely utilized because it 
consumes the shortest sensing time with the least complexity. However, the accuracy of 
detection of ED is unreliable under bad condition of communication channel or at low signal 
to noise ratio (SNR) condition. In [64, 65], the performance of ED is improved by using an 
adaptive threshold. In general, the threshold of ED is set by fixing target performance metrics. 
There are 2 ways to set a threshold for ED. The first way is done by fixing target probability of 
false alarm which is called “constant false alarm rate (CFAR)”. The other way is done by fixing 
target probability of detection which is called “constant detection rate (CDR)”. An adaptive 
threshold energy detection (ATED) changes its decision threshold depending on the condition 
of communication channel. The system threshold switches between the threshold of CFAR 
and CDR. Although the detection performance of ED is improved, the false alarm detection 
rate does not achieve the target performance stated by IEEE 802.22 standard which the 
spectrum sensing technique has to perform spectrum sensing with probability of false 
detection less than 0.1. 

3.1.1 Conventional energy detection technique 
As shown in Figure3-1, the PU signal is received by SU. The output from bandpass filter 

is digitized by analog to digital converter (ADC). The existence of PU is determined by 
measuring the energy of the received signal and compares to predetermined threshold.  
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Figure 3-1 Model of conventional energy detection technique [64]. 

The decision statistic of ED is given as  

EܻD =  ଵ
ே

 ∑ 2ே|(݊)ܠ|
௡ୀଵ .                                          (3-1) 



 

When the PU absents, the decision statistic can be represented as 
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If both of primary signal and noise is an independent and identically distributed (i.i.d.) 
random process. The mean (ߤ଴) and variance ߪ଴

ଶ under hypothesis ܪ଴ can be derived as 
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If Gaussian noise is real-valued, ܧ|િ (n)|ସ = િߪ3
ଶ. The variance ߪ଴

ଶ can be expressed 
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Thus, the probability of false alarm (P୤ୟ) can be expressed as 

P୤ୟ = ܳ ൭൬ ఒ
ఙિమ − 1൰ ටே

ଶ
൱                                               (3-6) 

where ߣ is decision threshold, ߪિ
ଶ is the variance of noise and ܛߪ

ଶ is the variance of primary 
user signal and ܳ(∙) is standard Gauss complementary cumulative distribution function. 

When the PU presents (ܪଵ), the decision statistic is given as 
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Under hypothesis ܪଵ, the mean (ߤଵ) can be derived as 
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where ߛ represents signal-to-noise ratio (SNR). The variance  ߪଵ
ଶ is given as 
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If Gaussian noise is real-valued, ܛ|ܧ(n)|ସ = ܛߪ3
ଶ and  ܧ|િ (n)|ସ = િߪ3

ଶ. The variance 
ଵߪ

ଶ can be expressed as 

ଵߪ
ଶ = ටଶ

ே
ߛ) + િߪ(1

ଶ.                                           (3-11) 

Thus, the probability of detection (Pୢ ) can be represented as 
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There are 2 ways to set the threshold for ED technique. The first technique is called 
CFAR which the threshold is set by fixing P୤ୟ. Thus, the threshold for CFAR can be computed 
by 

஼ி஺ோߣ =  ቆܳିଵ(P୤ୟ)ටଶ
ே

+ 1ቇ િߪ
ଶ.                                  (3-13) 

To set the threshold by fixing Pୢ  , which is called CDR, can be done by 

஼஽ோߣ =  ቆටଶ
ே
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ଶ.                           (3-14) 

However, it should be realized that the predetermined thresholds (ߣ஼஽ோ and ߣ஼ி஺ோ) 
are set by fixing only a single target performance metric. Thus, there is always be a tradeoff in 
the performance of ED technique by fixing only a single target performance metric. ED with 
threshold based on CDR gives poor detection performance in perspective of P୤ୟ. Conversely, 
ED with threshold based on CFAR gives poor detection performance in perspective of Pୢ . 

3.1.2 Adaptive threshold energy detection 
From [63, 64], the adaptive threshold energy detection (ATED) technique was 

proposed. The adaptive parameter (ߙ) was introduced to vary the threshold depending on 
the condition of communication channel. As shown is Figure 3-2, the SNR estimator plays as 
an important part of the system. The SNR estimator estimates the variance noise from the 
received signal and sends it to the threshold setter device. The threshold setter device 
generates a new threshold which is appropriate to the communication channel at the period 
of time 
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Figure 3-2 Model of adaptive threshold energy detection technique [64] 



 

The new threshold is given by 

ߣ = ஼ி஺ோߣ + ߙ ∗ ஼஽ோߣ) − ஼ி஺ோߣ ), 0 ≤ ߙ ≤ 1.                    (3-15) 

The adaptive parameter (ߙ) is set depending on the condition of communication 
channel. Since the SNR of communication channel is estimated, the system calculates the 
critical sample which is appropriate to the communication channel at the period of time. If 
the number of sample of the system is lower than the number of critical sample, the adaptive 
parameter (ߙ) is set to be 1. On the other hand, if the number of sample of the system is 
greater than the number of critical sample, the adaptive parameter (ߙ) is set to be 0. In 
addition, the value of adaptive parameter (ߙ) can be change between 0 to 1. 

3.1.3 Double constraints adaptive energy detection 

In this section, double constraint adaptive energy detection (DCAED) is explained. 
DCAED exploits an interdependent between P୤ୟ and Pୢ  to generate a new adaptive factor (ߚ). 
However, there is no directly way to set the threshold by fixing P୤ୟ and Pୢ  as the target 
performance metrics. DCAED sets the adaptive factor (ߚ) by using the critical sample ( ௖ܰ ), 
since ܰ ௖  retains the independent between P୤ୟ and Pୢ . Then adaptive factor is used to set the 
threshold in order to achieve target performance metrics. 

The system model is shown in Figure 3-3. The information from SNR estimator is 
gathered by adaptive threshold device. The estimated SNR value is compared to critical SNR 
 means that the commination (௖ߛ) If the estimated value is greater than critical value .(௖ߛ)
channel is in a good condition which conventional ED offers a reliable detection performance. 
Thus, the adaptive factor (ߚ ) is set to make the system remains the new threshold as 
predetermined threshold. On the other hand, if the estimated value is lower than critical 
value, the new threshold is generated by setting the adaptive factor (ߚ) depending on the 
condition of communication channel. 
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Figure 3-3 Model of DCAED. 



 

The threshold is given as 

ே௘௪ߣ = ܜܛ܍ߪߚ 
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where  ܜܛ܍ߪ
ଶ is an estimated noise variance . 

௖ܰ  refers to a minimum number of sample that is required by conventional energy 
detection technique to meet the target performance metrics (P୤ୟ and Pୢ ). By using (3-6) and 
(3-12), the interdependent between these parameters can be shown as 

P୤ୟ = ܳ ቆܳିଵ(Pୢ ߛ)( + 1) + ටேߛ
ଶ

ቇ                                   (3-17) 
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By solving (3-6) and (3-12), the critical sample ( ௖ܰ ) can be expressed as 

௖ܰ = ଶ
ఊమ [ܳିଵ(P୤ୟ) − ܳିଵ(Pୢ ߛ)( + 1)]ଶ.                             (3-19) 

From the definition of critical sample, we can conclude that if we set the new 

threshold by changing the sample ( ܰ ) to critical sample ( ௖ܰ ) in (3-13) or (3-14). The 

performance of ED will meet the target performance metrics. However, it is not feasible to 

change the sample to the desired number in practical. Thus, DCAED meets the target accuracy 

of detection performance metrics as changing critical sample by using the adaptive factor to 

change the system threshold. 

By solving (3-6), (3-17) and (3-19) under condition of the proposed scheme. The 

adaptive factor (ߚ) of the system can be expressed as 
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where ܥ଴  is the condition that estimated SNR is greater than critical SNR and ܥଵ  is the 

condition that estimated SNR is lower than critical SNR. 

In addition, the critical SNR (ߛ௖) for the system is given by 

௖ߛ = ொషభ(୔౜౗)ିொషభ(୔ౚ)
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మ
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3.2 Fast Spectrum Sensing with Coordinate System 

In this section, we describe in detail with mathematical models of the fast 
spectrum sensing with coordinate system (FSC) algorithm. The FSC algorithm is a spectrum 
sensing technique that requires prior knowledge of a PU’s signals. The framework for the 
FSC algorithm can be categorized into two phases — coordinate system construction and 
sensing. The coordinate system must be predetermined from the two most significant 
features of WM signals and kept in the knowledge base. The sensing phase determines 
the existence of a PU by comparing the FSC decision statistic ( FܻSC) to the FSC threshold 
 The decision statistic is calculated by projecting the PU’s signal onto the .(FSCߛ)
predetermined coordinate system.  

Following the PCA algorithm, the WM signals are first decomposed into a small set 
of features. The significance of each feature can then be explained by an eigenvector and 
eigenvalue, where the eigenvector represents the direction of the feature and the 
eigenvalue explains the variance of the WM signals in that direction. Therefore, the 
eigenvector corresponding to the highest eigenvalue represents the direction in which 
most of the data within the WM signals are varying. This eigenvector refers to the most 
significant feature of WM signals. 

3.2.1 Coordinate System Construction 
In this section, our coordinate system is introduced. The new coordinate system is 

of a lower dimension than the original data space. The main objectives of this phase are 
to select the two most significant features of WM signals and to construct a coordinate 
system. Our coordinate system construction process (as shown in Figure 3-4) exploits the 
feature extraction and selection process of a PCA algorithm [66-67] to filter out the two 
most significant features of WM signals and then uses them as the axes for a new 
coordinate system. Due to the smaller size of the new coordinate system, the FSC 
algorithm consumes less memory, has less computational burden, and has a short sensing 
time.  

We assume that the WM signals of a PU are known to an SU. These WM signals are 
used as the training signals. Let the vectors  s1, s2,…, sM  represent WM signals. These 
vectors are referred to as training vectors. The training vectors are given by 

s1 = [s1(1) s1(2)… s1(ܰ)]T, 

 s2 = [s2(1) s2(2)… s2(ܰ)]T,                                     (3-23) 

⋮ 

  sM = [sM(1) sM(2)… sM(ܰ)]T. 



 

 

 

Figure 3-4 Coordinate system construction phase of FSC algorithm. 

The procedure for the coordinate system construction phase is described as 
follows. 

A. Feature Extraction 
Firstly, we eliminate the common features of the WM signals by subtracting the average 

WM signals vector (ઽ) from each training vector (s௜). 

઺୧ = s௜ − ઽ,                                                   (3-24) 

where ઺௜ is a vector that contains the significant features of the WM signals. The average WM 

signals vector (ઽ) can be expressed as 

ઽ = ଵ
ெ

∑ s௜
ெ
௜ୀଵ .                                               (3-25) 

Next, we compute the covariance matrix (۱) of ઺௜, which is given by 

۱ = ଵ
ெ

∑ ઺௜઺௜
Tெ

௜ୀଵ .                                           (3-26) 

From the covariance matrix, a matrix of eigenvectors (܄ =  and a vector ([dܞ … 2ܞ 1ܞ]

of corresponding eigenvalues (ૃ =  T) can be obtained by using the[dߣ … 2ߣ  1ߣ]

aforementioned eigen-decomposition algorithm. 

B. Feature Selection 
From the matrix of eigenvectors (܄), we keep only the ݇ best eigenvectors (that is, 

those that correspond to the ݇ largest eigenvalues), and the resulting set is then used to form 

the new coordinate system. The ݇ best eigenvectors are determined by 
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where ݀ is the number of eigenvalues in set λ. 

From our investigation, we found that eigenvectors that had a correspondingly high 
eigenvalue more effectively represented the features of the WM signals than those 
eigenvectors that had correspondingly small eigenvalues. It is clear that 95% of the total 
number of features present in the WM signals is a sufficient amount to be representative 
of all the existing features. Hence, having decided to only select the ݇ best eigenvectors, 
the dimension of the WM signals is reduced. Reducing the dimension of the WM signals 
avoids a huge amount of computational burden. Moreover, the effect of noise from the 
original signal is avoided due to the reduction in dimension of the WM signals Furthermore, 
the FSC algorithm is tolerant to noise.  

3.2.2 Sensing Phase 
In the sensing phase (see Figure 3-5), the weight of correspondence between the 

received WM signal and the new coordinate system is calculated by projecting the 
received signal onto the coordinate system. This weight describes the distribution of the 
received signal in the new coordinate system. The weight, given as a vector (ܠො), can be 
expressed as 

ොܠ = ܠ)T܄ − ઽ).                                                (3-28) 

The magnitude of the weight vector is defined as the FSC decision statistic ( FܻSC). 
The magnitude of the weight vector will rise when a PU is present. Otherwise, the 
magnitude of the weight vector will fall when a PU is not present. The FSC decision 
statistic ( FܻSC) can be expressed as 

FܻSC = ො‖2ܠ‖ = ቆට∑ 2௞(ොܠ)
௜ୀଵ ቇ

2

= ∑ 2௞(ොܠ)
௜ୀଵ .                      (3-29) 

 

 

Figure 3-5 Sensing phase of FSC algorithm. 

A mathematical model for the probability of false alarm of the FSC algorithm is 
given by 
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fܲa(FSC) = ܲ[ FܻSC ≥  (30-3)                               .[0ܪ|FSCߛ
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Note that ߤHi is the mean value of ܪ௜ and that ॠ௡

ᇱ  is the ݊th order moment of the 
FSC decision statistic ( FܻSC). 

Similar to the probability of false alarm, the probability of detection for the FSC 
algorithm can be expressed as 

dܲ(FSC) = ܲ[ FܻSC ≥  (36-3)                           .[1ܪ|FSCߛ
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In addition, the probability of misdetection of the FSC algorithm is given by  

ܲm(FSC) = 1 − dܲ(FSC).                                     (3-42) 

 



 

3.3 Two-stage spectrum sensing 
In this section, the proposed two-stage spectrum sensing algorithms are explained. Our 

proposed two-stage spectrum sensing algorithms (as depicted in Figure 3-6) exploit the merits 
of ED CAV and MME technique. 
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Figure 3-6 Two-stage spectrum sensing scheme [53]. 

The scheme of the proposed two-stage spectrum sensing techniques can be separated 
into 2 stages including coarse sensing stage and fine sensing stage. Mathematical models of 
overall probability of false alarm and overall probability of detection for two-stage spectrum 
sensing are given by 

P୤ୟ = P୤ୟ,ଵ౩౪ + (1 − P୤ୟ,ଵ౩౪ ) P୤ୟ,ଶ౤ౚ                                 (3-43) 

Pୢ = Pୢ,ଵ౩౪ + (1 − Pୢ,ଵ౩౪) Pୢ,ଶ౤ౚ                                   (3-44) 

where P୤ୟ is P୤ୟ of the system, Pୢ  is Pୢ  of the system, P୤ୟ,ଵ౩౪  is P୤ୟ of the first stage, P୤ୟ,ଶ౤ౚ  is 
P୤ୟ of the second stage, Pୢ,ଵ౩౪  is Pୢ  of the first stage and Pୢ,ଶ౤ౚ  is Pୢ  of the second stage. 

For a given channel, the existence of primary user is firstly determined by the first 
stage. Similar to other two-stage spectrum sensing techniques [52, 73], ED is utilized as the 
first stage. Although ED offers inaccurate detection at low SNR and when uncertainty noise 
power occurs, it performs spectrum sensing within short time. In addition, at high SNR 
environment, ED offers an accurate detection. If an average energy of received signal is greater 
than the threshold (ߛ୉ୈ) then the spectrum band is declared to be presented. If the average 
energy of received signal is lower than ߛ୉ୈ, the second stage is activated. The threshold of 
the first stage can be expressed as 

୉ୈߛ = ቀQିଵ ቀ୔౜౗,ుీ

√୒
ቁ + 1ቁ િߪ

ଶ                                 (3-45) 

In our proposed algorithm, MME and CAV are utilized as a second stage. For ED to CAV 
two-stage spectrum sensing technique, after the second stage is activated, the statistical 
covariance of the signal sample is computed by (2-20). If the statistical covariance of the signal 
sample is lower than the threshold (2-21), the two-stage spectrum sensing technique 
determines that primary user absents. If the statistical covariance of the signal sample is greater 



 

than the threshold, the two-stage spectrum sensing technique determines that primary user 
presents.  

For ED to MME two-stage spectrum sensing technique, after the second stage is 
activated, the maximum and minimum eigenvalue of covariance matrix of signal sample is 
computed by (2-14). If the ratio of maximum to minimum eigenvalue is lower than the 
threshold (2-28), the two-stage spectrum sensing technique determines that primary user 
absents. Otherwise, the two-stage spectrum sensing technique determines that primary user 
presents. 
 
3.4 Modified- fast spectrum sensing with coordinate system (MFSC) 

In this section, we both derive the mathematical model and describe the 
framework of modified- fast spectrum sensing with coordinate system (MFSC), which is 
modified from FSC (section 3.2), under path loss effect and noise uncertainty. The 
framework of MFSC algorithm is separated into two phases including coordinate system 
construction and sensing like FSC. Firstly, the coordinate system must be predetermined 
by keeping the two most significant features of WM signals. The sensing phase determines 
the existence of a PU by comparing the MFSC decision statistic ( MܶFSC), where ܶMFSC is 
calculated by projecting the received signal onto the coordinate system, to the MFSC 
threshold (ߣMFSC).  

3.4.1 Coordinate System Construction 

To construct a coordinate system, the known WM signals are decomposed into a 
set of features. Only the two most significant features are obtained and used as the axes 
of the coordinate system. The significance of each feature is explained by the eigenvector 
which is corresponding to the maximum eigenvalue. 

Lets si is a vector that represents WM signal. This vector is known as training vector. 
The training vectors are given by 

s1 = [s1(1) s1(2)… s1(ܰ)]T, 

 s2 = [s2(1) s2(2)… s2(ܰ)]T,                                     (3-46) 

⋮ 

  sM = [sM(1) sM(2)… sM(ܰ)]T. 

The procedure of the coordinate system construction can be summarized as the 
following 

Firstly, the common features of the WM signals is eliminated by subtracting the average 

WM signals vector (ઽ) from each training vector (s௜). 



 

઺୧ = s௜ − ઽ,                                                  (3-47) 

where ઺௜ is a vector that contains the significant features of the WM signals. The average WM 

signals vector (ઽ) can be expressed as 

 ઽ = ଵ
ெ

∑ s௜
ெ
௜ୀଵ .                                                   (3-48) 

Next, the covariance matrix (۱) of ઺௜ is computed. Therefore, the covariance matrix (۱) 

is given by 

۱ = ଵ
ெ

∑ ઺௜઺௜
Tெ

௜ୀଵ .                                                (3-49) 

Using the eigen-decomposition algorithm, a matrix of eigenvectors (܄ =  ([dܞ … 2ܞ 1ܞ]
and a vector of corresponding eigenvalues (ࢋ = [݁1  ݁2 … ݁d]T) are obtained. Finally, only the 

݇ best eigenvectors corresponding to the ݇ largest eigenvalues are used to form the 

coordinate system. The number of ݇ can be determined by 

∑ ௘೔
ೖ
೔సభ

∑ ௘೔
೏
೔సభ

 ≥ 95%,                                               (3-50) 

where ݀ is the number of eigenvalues in set ݁. 

3.4.2 Sensing Phase 

The weight vector (ܠො) is given as 

ොܠ = ܠ)T܄ − ઽ).                                                  (3-51) 

and ܠ is SU received signal under noise uncertainty. 

Finally, the magnitude of the weight vector is calculated and used as the MFSC 
decision statistic ( MܶFSC). Therefore, the MFSC decision statistic (ܶMFSC) can be expressed 
as 

ܶMFSC = ො‖2ܠ‖ = ቆට∑ 2௞(ොܠ)
௜ୀଵ ቇ

2

= ∑ 2௞(ොܠ)
௜ୀଵ .                           (3-52) 

To determine the existence of PU, the MFSC decision statistic is compared to the 
MFSC threshold (ߣMFSC). 

As mention earlier, the threshold is needed to be vary on the strength of path loss 
effect. From our investigation, we found that the changing in the signal’s amplitude does 
not affect changing in the signal’s feature (eigenvector) but affects changing in the average 
vector (ઽ). Thus, the weight vector under path loss effect when the PU does not exist can 
be expressed as 

ොܠ િ = િܠ)T܄ − ઽො),                                             (3-53) 

where the average vector (ઽ) under path loss effect is given by 



 

ઽො = √PLઽ.                                                  (3-54) 

The probability of false alarm ( fܲa) of the MFSC algorithm is given by 

 fܲa =  ܳ
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⎤
.                                    (3-55) 

where ܠߤොિ  is the mean value of ܠොિ and that ॠ௡
ᇱ  is the ݊th order moment of ܠොિ. 

In general, the system threshold is set by fixing the target fܲa , then the MFSC 
threshold (ߣMFSC) is given by 

MFSCߣ =  ܳିଵ( fܲa)ට݇ ቀॠ4
ᇱ − ൫ॠ2,ு0

ᇱ ൯
2ቁ+ ݇ॠ2

ᇱ ,                        (3-56) 

The probability of detection for the MFSC algorithm can be expressed as 

dܲ =  ܳ

⎣
⎢
⎢
⎢
⎡

⎝

⎜
⎛ ఒMFSCି௞ॠ2,ܠොsశિ

ᇲ

ඨ௞൬ॠ4,ܠොsశિ
ᇲ ିቀॠ2,ܠොsశિ

ᇲ ቁ
2

൰
⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎤
.                                   (3-57) 

  


