
 

Chapter 2 
Basic Concept 

This chapter gives a brief introduction to wireless microphone signals based on the 
IEEE 802.22 standard and conventional spectrum sensing techniques. After that, two factors 
that degrade the performance of spectrum sensing techniques, i.e., noise uncertainty and path 
loss, are briefly reviewed. 

2.1 Wireless microphone signals 
In this research, a wireless microphone (WM) signal is considered as a PU signal. To 

evaluate the performance of spectrum sensing techniques for WM signal, the WM signal is 
modeled by IEEE 802.22 [59]. Therefore, the WM signal is categorized into 3 models — silent, 
soft speaker and loud speaker. Silent means that the PU transmits only the frequency 
modulation (FM) carrier and tone key. Soft speaker means that the PU transmits the FM carrier 
with some moderate amount of deviation. Loud speaker means that the PU transmits the FM 
carrier with near the maximum amount of deviation. 

The WM signal can be expressed as 

(ݐ)ݏ = ccos (2πܣ c݂ݐ + 2π݇f ∫ ݉(߬)d߬௧
଴ ),                            (2-1) 

݉(߬) = sin ( m݂(2-2)                                              ,(ݐ 

where ܣc  is amplitude of carrier signal, ݉(߬)  is the modulating signal, m݂  is message 
frequency, c݂ is carrier frequency and ݇f is frequency modulation (FM) deviation factor. 

Based on IEEE 802.22, the parameter of silent, soft speaker and loud speaker of the 
WM signal are set as shown in Table 2-1. 

Table 2-1. Model of wireless microphone signal [59]. 

 Silent Soft speaker Loud speaker 
݉(߬) frequency (kHz) 32 3.9 13.4 

FM deviation factor (kHz) (݇f) ±5 ±15 ±32.6 

Figure 2-1 modulation of wireless microphone signals at silent situation, soft speaker 
situation and loud speaker situation, respectively. 



 

 

Figure 2-1 Three models of wireless microphone signal  

2.2 Spectrum Sensing Techniques 

Spectrum sensing is a critical function of CR that periodically detects the existence of 

a PU during its sensing period. Generally, spectrum sensing techniques can be broadly 

classified into two types: 1) detection techniques based on prior knowledge about signal, 2) 

blind detection techniques which do not require any prior knowledge. The detection 

technique based on prior knowledge requires for the information of primary signal’s pattern. 

This sensing technique normally offers better sensing performance than blind detection 

technique. Nevertheless, when the secondary user does not have the information about the 

pattern of PU, the sensing performance of this technique is also drop. The solution of this 

problem is that the secondary user has to keep various signals’ pattern of PU in the database 

which makes the system requires large size of memory. In addition, the increasing of the 

information also makes the increasing in the computational burden which effect to the 

increasing in the complexity and also sensing time. On the contrary, blind detection technique 

does not require any prior knowledge about primary signal which make it is more flexible. The 

advantages of blind detection technique are less computational complexity, less time to 

perform sensing and can be applied to any pattern of primary signal. The disadvantage is the 

performance of detection, which degrade greatly at low Signal-to-Nosie Ratio (SNR). 

Accuracy of detection can be evaluated through statistical models, including 
probability of detection (Pୢ ), probability of false alarm (P୤ୟ) and probability of misdetection 
(P୫). The probability of detection refers to correct declaration of a secondary user when a 
primary user actually presents or absents. The probability of false alarm refers to the 
declaration that a primary user presents when it actually absents. Conversely, the probability 
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of misdetection refers to the declaration that a primary user absents when it actually presents. 
Target performance in perspective of an accuracy of detection is to maximize the probability 
of detection while the probability of false alarm and probability of misdetection should be 
minimized. The other performance metric is sensing time which is the duration that a 
secondary user performs spectrum sensing. IEEE 802.22 standard states that the duration to 
perform spectrum sensing is 2 seconds [43]. However, there is a tradeoff between duration to 
perform spectrum sensing and an accuracy of detection. In general, the secondary user should 
delicately perform spectrum sensing to achieve high accuracy of detection. This will make the 
system consumes more sensing time, more complexity and the system throughput also 
decreases. 

To detect the existence of a PU, there are two hypothesis models of a received signal 
that are expressed as follows: 

 

ܠ = ൜ િ               when a PU is absent  [0ܪ], 
s + િ         when a PU is present  [1ܪ],                            (3-2) 

 

where ܠ is the signal an SU receives, િ is additive white Gaussian noise, and s is the signal 
transmitted by a PU.  

In this section, we conclude the well-known spectrum sensing techniques including 
its own operational requirement and merits/demerits. Individual requirements and 
merits/demerits are briefly reviewed as follows:  

A. Energy Detection 
Energy detection (ED) is one of the most widely used techniques because it is easy to 

implement and does not require any prior knowledge about signal’s pattern. However, the 
performance of detection degrade greatly at low SNRs. The average energy of received signal 
is define as a decision statistic which can be expressed as 

Y୉ୈ =  ଵ
ே

 ∑ |x(t)|ଶே
௧ୀଵ                                              (2-4) 

where Y୉ୈ and ܰ  denote test statistic and the sample interval, respectively. The threshold is 
determined by using probability of false alarm (P୤ୟ). In addition, probability of detection (Pୢ ) 

can also be used. Mathematical models of probability of false alarm and probability of 
detection are given by 

P୤ୟ = ܲ[Y୉ୈ ≥  [଴ܪ|୉ୈߛ

=  Q ቂቀఊుీ
ఙ౤మ − 1ቁ √ܰቃ                                          (2-5) 

Pୢ = ܲ[Y୉ୈ ≥  [ଵܪ|୉ୈߛ



 

=  Q ቂ √ே
ఈାଵ

ቀఊుీ
ఙ౤మ − ߙ − 1ቁቃ                                    (2-6) 

ߙ =
ୱߪ

ଶ

୬ߪ
ଶ 

where ߛ୉ୈdenotes decision threshold, Q(. ) is standard Gauss complementary cumulative 
distribution function, ߪ୬

ଶ is the variance of noise, ߪୱ
ଶ is the variance of desired signal. To 

determine the existence of primary user, the test statistic is compared to the threshold. The 
spectrum band is vacant if test statistic is less than the threshold 

B. Matched Filter Detection 
Matched filter detection (MFD) uses the correlation between the received and 

known signals. The output from MFD is compared to a threshold to determine the 
existence of a PU. The test statistic of MFD, MܻFD, is given by  

MܻFD =   ∑ ேିଵ(݊)ݔ
௡ୀ଴ s*(݊),                                 (2-7) 

where s*(݊) is the conjugate of the known signal. The decision threshold, ߛMFD, is 
determined from the probability of false alarm, fܲa(MFD). Alternatively, the probability of 
detection, dܲ(MFD), can also be used as the decision threshold. Mathematical models for 

fܲa(MFD) and dܲ(MFD) are given as 
 

fܲa(MFD)   = ܲ[ MܻFD ≥  (8-2)                                 [0ܪ|MFDߛ

     =  ܳ ൤൬ఊMFD
ఙિ√ா

൰൨, 

 
              dܲ(MFD)  = ܲ[ MܻFD ≥  (9-2)                                  [1ܪ|MFDߛ

         =  ܳ ൤൬ఊMFD ିா
ఙિ√ா

൰൨, 

 
where ܧ is the energy of desired signal. 

C. Maximum Eigenvalue Detection 
Maximum eigenvalue detection (MED) is the sensing technique based on statistical 

covariance of the signal. Since the covariance matrix contains the correlation between 
signal samples, thus this detector calculate the maximum eigenvalue of covariance matrix 
and used as test statistic in order to determine the existence of primary user. A received 
signal comprising ܮ consecutive samples is given by 

ܠ = ݊)ݔ (݊)ݔ] − ݊)ݔ …(1 − ܮ − 1)]T,                             (2-10) 

s = [s(݊)  s(݊ − 1)… s(݊ − ܮ − 1)]T,                             (2-11) 



 

િ = ݊)ߟ (݊)ߟ] − ݊)ߟ …(1 − ܮ − 1)]T,                            (2-12) 

where ܮ is a smoothing factor. Since the statistical covariance matrix cannot be directly 

calculated, the sample covariance matrix of the received signal is computed by the following 

procedure: 

1. The sample auto-correlations of the received signal are firstly expressed as 
 

߮(݈) = ଵ
ே

∑ ݉)ݔ(݉)ݔ − ݈)ேିଵ
௠ୀ଴ ,     ݈ = ܮ ,…,2 ,1 ,0 − 1.                  (2-13) 

2. Secondly, the sample covariance matrix of the received signal is calculated as 
 

(ܰ)ܠ܀ = ൦

߮(0)
߮(1)

߮(1)
߮(0) ⋯ ߮(݈ − 1)

߮(݈ − 2)
⋮ ⋱ ⋮

߮(݈ − 1) ⋯ ߮(0))

൪.                                         (2-14) 

 
Note that the sample covariance matrix is a Toeplitz and symmetric matrix. 
 

3. Thirdly, the eigenvalues of (2-14) are calculated using an eigen-decomposition 
algorithm. Note that only the maximum eigenvalue of the received signal, ߣmax, is used 
in step 4 to determine the existence of a PU. 
 

4. Finally, the existence of a PU can now be determined from the value of ߣmax.  
 

(ܰ)maxߣ > િߪMEDߛ
2  when a PU is present,                       (2-15) 

(ܰ)maxߣ ≤ િߪMEDߛ
2  when a PU is absent,                        (2-16) 

where ߛMED denotes a predetermined decision threshold. 

Since the sample covariance matrix of the noise is nearly a Wishart random matrix, 
MED is analyzed using the probability distribution of the normalized largest eigenvalue — 
referred to as “Tracy–Widom distribution”. Thereby, fܲa(MED) can be expressed as 

fܲa(MED) = ((ܰ)િ܀)maxߣൣܲ > િߪMEDߛ
2 ൧                     (2-17) 

             ≈  1 − ܨ ቂቀఊMEDேିఘ
௩

ቁቃ, 

ߩ  = ൫√ܰ − 1 + ൯ܮ√
2
,                                      (2-18) 

ݒ  = ൫√ܰ − 1 + ൯ܮ√ ቀ ଵ
√ேିଵ

+ ଵ
√௅

ቁ
1

3ൗ
.                         (2-19) 

 



 

D. Covariance Absolute Value Detection 

With covariance absolute value detection (CAV), an SU determines the existence 
of a PU from the received signal. This is done by comparing the auto-correlation of the 
received signal to the CAV threshold. However, CAV will perform poorly when the auto-
correlation of the received signal is low. The test statistic of CAV, CܻAV , is given by 

 

CܻAV =  ቀ߮(0) + ଶ
௅

∑ ܮ) − ݈)|߮(݈)|௅ିଵ
௟ୀଵ ቁ ൫߮(0)൯

-1
.                      (2-20) 

 
The threshold for CAV detection, ߛCAV, can be expressed as 

 

CAVߛ =  ቆ1 + ܮ) − 1)ට ଶ
ேπ

ቇ ቆ1 − ܳ-1( fܲa)ටଶ
ே

ቇ
-1

.                       (2-21) 

 
A PU is present if  CܻAV ≥ .CAVߛ  Mathematical models for fܲa(CAV) and dܲ(CAV) are 

given as 
 

fܲa(CAV) = 1 −  ܳ ቎
భ

ംCAV
ቆଵା(௅ିଵ)ට మ

ಿπቇିଵ

ට మ
ಿ

቏,                           (2-22) 

 

dܲ(CAV) = 1 −  ܳ ቎
భ

ംCAV
ା൬

ംL SNR
ംCAV (SNRశభ)൰ିଵ

ට మ
ಿ

቏,                           (2-23) 

 
where ߛL is given by 
 

Lߛ ≜ ଶ
௅

∑ ܮ) − ௟|௅ିଵߙ|(1
௟ୀଵ                                       (2-24) 

 
and ߙ௟ is given by 
 

௟ߙ = ݊)s(݊)s]ܧ  − ݈)]
sߪ

2൘ .                              (2-25) 

 

E. Maximum to Minimum Eigenvalue Detection 

The procedure of maximum to minimum eigenvalue detection (MME) is similar to 
MED. However, the MME method determines the existence of a PU by comparing the ratio 
of the maximum and minimum eigenvalues with the threshold ߛMME. MME detection can 
be calculated using (2-14). The test statistic for the MME detection method is given by 



 

MܻME = maxߣ 
minߣ

ൗ .                                         (2-26) 

 
The probability of false alarm for MME detection is given by 

 

fܲa(MME)  ≈  1 − ܨ ቈఊMME൫√ேା√௅൯
2

 ିఘ
௩

቉.                            (2-27) 

The threshold of the first stage can be expressed as 

୑୑୉ߛ = ிషభ(ଵି୔౜౗)௩ାఓ

൫√୒ା√௅൯
మ                                                (2-28) 

F. Leading Eigenvector Detection 

Leading eigenvector detection (LED) calculates the correlation between the leading 
eigenvector of the received signal and the leading eigenvector of the known signal. Similar 
to MFD, the output is compared to a threshold to determine the existence of a PU. Since 
LED keeps only the most significant feature of the received signal, the technique requires 
less memory than MFD. However, since the LED technique needs to calculate the leading 
eigenvector of the received signal, the sensing time and complexity of computation is 
increased. 

Let us define the following PU signals, ܠ௜, ݅ =  ݀ each of which has ,ܯ , … ,2 ,1

dimensions, as 

ଵܠ = ݊)ݔ (݊)ݔ] + 1) … ݊)ݔ  + ݀ − 1)]T, 

ଶܠ = ݊)ݔ] + ݊)ݔ (1 + 2) … ݊)ݔ  + ݀)]T,                                (2-29) 

                                                                  ⋮              

ெܠ   = ܰ)ݔ] + ݊ − ݀) … ܰ)ݔ  + ݊ − 1)]T. 

The LED procedure can then be summarized as follows: 

1. The sample covariance matrix of a received signal ܠ௜ is given by 
 

x܀ = ଵ
ெ

∑ ௜ܠ௜ܠ
T.ெ

௜ୀଵ                                          (2-30) 

 
Note that we assume the sample mean to be zero. 
2. The eigenvalues and eigenvectors of the received signal can be calculated using 

(2-30). Only an eigenvector corresponding to the largest eigenvalue, 1ܞ, is considered. 
The test statistic for LED is given by 
 



 

LܻED =  max
௟ୀ଴, ଵ, ଶ, … , ௗ

ห∑ ݆]ො1ܞ[݆]1ܞ + ݈]ௗ
௝ୀଵ ห.                             (2-31) 

 

3. The existence of a PU can now be determined from the value of LܻED. 
 

LܻED >  LED when a PU is present,                            (2-32)ߛ

LܻED ≤  LED when a PU is absent,                            (2-33)ߛ

where ܞො1 is the leading eigenvector of the received signal, 1ܞ is the leading 
eigenvector of the known signal, and ߛLED is a predetermined threshold. 

2.3 Noise uncertainty  
In practical communication system, noise may occurs from more than one sources. 

Then the variance of noise is difficult to be exactly estimated. Once noise occurs from various 
sources, the disturbance of noise is undesirable that is referred to an “uncertain behavior” or 
“noise uncertainty” [75]. The noise uncertainty may occur from the time-varying of thermal 
noise in a receiver and the non-linearity of the receiver. In addition, the transmission of other 
users also causes the noise uncertainty. When the uncertainty of noise occurs, the variance of 
noise distributes within range of ቂߪߙિ

ଶ, ଵ
ఈ

િߪ
ଶቃ . Then, an estimated noise power can be 

expressed as  

ොિߪ
ଶ = િߪߙ

ଶ                                                     (2-34) 

where ߙ is a noise uncertainty interval and ߪિ
ଶ is a noise variance. Then, noise uncertainty 

factor (in dB) distributes within range [−B, B] when noise uncertainty factor (in dB) is given 
as 

B = ݔܽ݉ {10log10  (2-35)                                             .{ߙ

2.4 Path loss  
In practical communication networks, the received signal power of the transmitted 

signal may be lower than its transmitted power due to an attenuation of signal strength 
(power) due to the propagation distance between PU and SU. This is referred to path loss [76-
77]. The mathematical model of path loss is derived as 

PL ≡ Cdିℵ                                                     (2-36) 

where PL is path loss, d is distance between PU and SU, C is loss constant and ℵ is path loss 
exponent.  
 Then, the received SNR due to path loss effect can be expressed as  



 

෤PLߛ = PL∙ఙs
2

ఙિమ                                                      (2-37) 

where ߪs
2 is a signal variance. 

2.5 Principal Component Analysis  

Principal component analysis is a main trend in classical feature extraction and data 
compression method which data is represented in lower dimensionality (subspace) through 
linear transformation technique. PCA algorithm commonly used in the field of pattern 
recognition, such as face recognition and vehicle license plate recognition. The main objective 
of PCA algorithm is to reduce original data dimensionality by performing a covariance analysis 
between factors and eliminating the extrinsic features (or later principal components). In other 
words, PCA algorithm attempts to find significant features (or principal components) of the 
distribution of data. Through the computation of linear transformation, a new coordinate 
system is chosen for the data set comes to lie on the axis. Mathematical theory that used in 
PCA algorithm including standard deviation, covariance, eigenvectors, eigenvalues and also 
linear transformation. 

PCA algorithm reduced the dimension of data while the variance in the original-
dimensional space is preserved as much as possible. In addition, PCA algorithm perform this 
reduction with minimum mean square error compared to the desired data. In term of 
computation, the principal component can be found by performing computed the eigenvector 
and eigenvalue of covariance matrix of the data. Eigenvector corresponding to the largest 
eigenvalue represented the most significant feature of the data (principal component). In other 
words, the principal component is the direction (or axis on a new coordinate) of greatest 
variation which data can relied on. The second component is the orthogonal direction with 
the next highest variation (or eigenvalue) and so on.  

Referring to face recognition, eigenface is a vital element that effectively represent face 
image using PCA algorithm. The main concept of eigenface is to reconstruct any collected face 
images using the weight combination of significant features of images which obtained from the 
collection. Thus, eigenfaces can be defined as the principal directions of all possible face 
images in a new coordinate systems. Referring to face recognition, eigenface is a vital element 
that effectively represent face image using PCA algorithm. The main concept of eigenface is 
to reconstruct any collected face images using the weight combination of significant features 
of images which obtained from the collection. Thus, eigenfaces can be defined as the principal 
directions of all possible face images in a new coordinate systems. Training operations of face 
recognition can be summarized as the following: 

The PCA algorithm can be summarized as follow. 
1. Obtain images ଵܷ , ଶܷ, … , ܷே  



 

2. Represent every image ௜ܷ as vector ܫ௜ 

3. Compute the average of image vector (ߤ):  
 

ߤ  = ଵ
ே

∑ ௜ܫ
ே
௜ୀଵ                                                (2-38) 

 
4. Subtract the mean image (ߛ௜):  

 
௜ߛ  = ௜ܫ −  (2-39)                                                ߤ

 
5. Compute the covariance matrix (ܥ) :  

 
ܥ  = ଵ

ே
∑ ௜ߛ௜ߛ

்ே
௜ୀଵ                                             (2-40) 

 
6. Compute the eigenvectors (ܸ = ,ଵݒ] ,ଶݒ … , ݑ) ௄]) and eigenvaluesݒ ) of ܥ  . 

Where eigenvectors (ܸ) known as eigenfaces or eigenspace. 
7. Keep only ܭ best eigenvectors corresponding to the ܭ largest eigenvalues. 
8. Each image (subtract the mean image:  ߛ௜) in the training set can be represented 

as a linear combination of the ܭ best eigenvectors: 
 

௜ߛ  − ߤ = ∑ ෤௝ݔ
௄
௝ୀଵ  ௜                                                   (2-41)ݒ

or 
෤௝ݔ             = ௜ݒ

 ௜                                                         (2-42)ߛ்
 

9. Represent   ߛ௜ as       ݔ෤ =

⎣
⎢
⎢
⎢
෤ଵݔ⎡

௜

෤ଶݔ
௜

⋮
෤௄ݔ

௜⎦
⎥
⎥
⎥
⎤
                                                          (2-43) 

It is clear that 95% of the total number of features present in the images is a sufficient 
amount to be representative of all the existing features. Hence, having decided to only select 
the ݇  best eigenvectors, the dimension of the images is reduced. Reducing the dimension of 
the WM signals avoids a huge amount of computational burden. Moreover, the effect of noise 
from the original signal is avoided due to the reduction in dimension of the images.  

For given an unknown image (ܫ௧௘௦௧ ) follows these procedure. 

1. Normalize I: ߛ௧௘௦௧ = ௧௘௦௧ܫ −  (2-44)                                                            ߤ

2. Project on the eigenspace: ߛ௧௘௦௧ − ߤ = ∑ ෤௝ݔ
௄
௝ୀଵ  ௜                                (2-45)ݒ

 



 

3. Represent ߛ௧௘௦௧ as  ݔ෤௧௘௦௧ = ൦

෤ଵ,௧௘௦௧ݔ
෤ଶ,௧௘௦௧ݔ

⋮
෤௄,௧௦௘௧ݔ

൪. 

  


