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Abstract 

Internet has become one of the main communication modes in our society. Various types 

of internet applications and usage are available. Increasing usage of the internet also 

increases threats in the internet. To prevent unwanted or dangerous threats, we have to be 

able to detect them first. Therefore, designing an effective intrusion detection system is a 

challenge because the threats have different characteristics and they evolve every day. 

The intrusion detection at present must be robust for new or unknown attacks. In this 

thesis, a real-time network-based intrusion detection approach using fuzzy genetic 

algorithm is proposed to detect DoS attacks and Probe attacks. The detection accuracy of 

the fuzzy genetic algorithm with KDD99 dataset and current online dataset is 

demonstrated. The experimental results show that the fuzzy genetic technique gives high 

detection rates and is robust for both known and unknown attacks. Then, the fuzzy genetic 

algorithm technique for real-time and online intrusion detection, i.e., the data is detected 

right after it arrived to the detection system, is developed.  In an actual network 

environment, the network traffic is preprocessed into 12 features by counting connections 

in each source-destination IP-pair within 2 second time interval. The IDS is evaluated in 

terms of the detection speed, CPU consumption, memory consumption, the false alarm 

rate and the detection rate. 
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CHAPTER 1 INTRODUCTION 

 
1.1 Motivation 
Internet has rapidly become one of the main communication methods in our society. More 

and more types of internet applications and usage are available. The more usage of 

network applications, the more security risks the internet users may face.  

 

To prevent unwanted or dangerous threats, we have to detect them first. Therefore, 

developing an intrusion detection method is a challenging research issue. There are four 

challenging issues about designing IDS. The first is the high accuracy and low false alarm 

rates, especially, the false positive rate (which should be less than 1%) and the false 

negative rate. Second, the IDS should be able to detect new/unknown attacks because 

new threats evolve every day. In addition, the performance of classification algorithm in 

the IDS should be good enough for real-time detection, such as computation speed, 

memory consumption, etc., because there are a lot of data packets over the real network. 

A bad performance can cause the system clash. Finally, the IDS should provide more 

information about the attacks in order to prevent the malicious activities such as attack 

type, target computer, etc.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Network Environments and Intrusion Detection System 

 

 

 

1.2 Objective and Research Scope 
In this thesis, we focus on real-time and unknown detection. The algorithm is able to 

handle the attack and send an alarm message with useful information within three seconds 

after the packet arrives to the system. There are two output classes from the system 

including the normal class and the attack class. We are interested in designing an IDS 

algorithm using fuzzy genetic algorithm. The fuzzy rule is a supervised learning technique 

and a genetic algorithm which help the system find the best rule from a training dataset. 

This technique has a high detection rate, a low false alarm rate, fast processing and is 

robust for unknown data. Therefore, we develop the fuzzy genetic algorithm approach to 

implement our real-time intrusion detection system where the input network data is 

captured in the online network, and it will respond to the attack within 2-3 seconds. We 

evaluate our IDS in terms of the detection speed, CPU consumption, memory 

consumption, false alarm rate and overall detection rate. 
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1.3 General Approach 
KDD99 dataset is a benchmark dataset that is used in various research studies. However, 

there were some research groups which generated their own datasets because the KDD99 

dataset was now too old.  Moreover, it did not contain the present network activities and 

present attack.  

 

In general, IDS can be classified into two types which are host-based (HIDS) and 

network-based (NIDS). The HIDS analyzes information that is available on individual 

computers, such as system calls and log file while the NIDS monitors information in 

network traffic. The IDS can be further classified into misuse-based and anomaly-based. 

The misuse-based is a pattern matching. When the packets are matched with the patterns, 

they will be classified as the attacks. This technique has high accuracy and a low false 

alarm rate; however, it is not robust for new attacks. The anomaly-based IDS is designed 

to detect new/unknown attacks. However, it has a low detection rate when comparing 

with the misuse-based IDS. The general techniques for the unknown detection are as 

follows: 

 Clustering is the algorithm that clusters input data into groups without training data 

(unsupervised-learning) such as k-means, k-nearest neighbors. However, these 

techniques have low accuracy.  

 Neural network is a group of nodes which are associated with each other. The 

algorithm will create a neural network structure to recognize the given information. 

The neural network can work well with noisy data and incomplete data. However, it 

uses high computation time. 

 Fuzzy set is used to create a rule (s). The behavior which agrees with the rule will be 

considered as an attack. There are many researchers using the fuzzy method because 

of its robustness and efficiency in detecting unknown data. 

 Artificial immune system is a concept of simulating immunology which is inspired 

by a biological immune system. The intrusion detection system can be considered as 

an immune system and the attack packet is pathogens. The algorithm only creates a 

model of normal behavior. When the matching behavior is not found, it will be labeled 

as an attack. 

 

1.4 Research Contribution 
In summary, we make the following contribution: 

1. We develop a real-time ID that detects both known and unknown attacks. 

 

2. We improve performance of unknown detection with our proposed approach and 

compare the results with those from the existing methods. 

 

3. We demonstrate the real time in a real-time network environment. 

 

1.5 Report Overview 
This research proposal is organized as follows: in chapter two, there are background study 

and literature review. Then, chapter three describes the detection approach. The 

experimental designs and results will be presented in chapter four, and chapter five is the 

conclusion.  
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CHAPTER 2 LITERATURE SURVEY AND BACKGROUND 

STUDY 
 

2.1 Literature Survey 
In this chapter, we present literature review consisting of two parts which are offline IDS 

and online IDS (real-time). The offline data uses KDD99 dataset which is a benchmark 

dataset. In this section, we focus on comparing various techniques for intrusion detection. 

Besides, we compare the performances of each technique, such as a detection rate, a false 

alarm rate and limitation. For the online IDS, we focus on a new technique to preprocess 

data in an actual network environment and testing environment.  

 

2.1.1 IDS for Offline Data 
Gómez and León [1] proposed a Fuzzy Genetic Algorithm to classify behavior of 

intrusion into two classes (normal class and attack class). This algorithm could be trained 

by one class (normal class). The behavior different from the training class would be 

classified as an attack. They used KDDC99 dataset which had four attack types including 

DoS, Probe, R2L and U2R. In the KDD99 dataset, they found that there were some 

features that had the same value for each record, so they reduced the number of the 

features into 33 features. The dataset was divided into two sets including the training set 

and the testing set. The training set had only the normal data containing 2,000 records. 

The highest obtained detection rate was 98.28% with 5% of the false alarm rate.  

 

Banković et al. [2] proposed an interesting Fuzzy Genetic Algorithm Approach to reduce 

the number of the features in the dataset and maintain the high detection rate. From the 

experiment, they found that there were three features that were relevant. There were two 

experiments: the first experiment had two output classes (normal class and attack class). 

The accuracy of the detecting attack (TN) was 94.87% with 1.62% of the false positive. 

The second experiment had four classes (the fuzzy rule could identify each type of the 

attacks including the normal class, the portsweep class, the smurf class and the neptune 

class). From this experiment, the maximum detection rate was 87.6% because there was 

only 30% of the detection rate of the portsweep. These two experiments used the KDD99 

dataset. However, the training dataset had 976 records (137 of attack records and 839 of 

normal records) and the testing dataset had 977 records (234 of attack records and 743 of 

normal records). Moreover, they considered only three types of the attacks which were 

the portsweep, smurf and neptune.  

 
Tsang et al. [3] proposed Multi-Objective Genetic Fuzzy Intrusion Detection System 

(MOGFIDS) for detecting anomaly attack. There were three objectives for MOGFIDS: 

having the high classification rate, reducing the number of fuzzy rules and reducing 

complexity of fuzzy rules. This experiment used 10% version of KDD99 dataset for 

training including four attack types (DoS, Probe, R2L and U2R). However, they found 

that the dataset was biased against DoS (Neptune attack and Smurf attack). In order to 

make the training set more realistic, they sampled 1,000 records for each type of the DoS, 

10,000 records of the normal and the remaining intact number of the records of other 

attacks (the number of the training set was 20,752 records). The testing set used 311,029 

records with additional 14 unseen attack types.  The result showed that this algorithm 

with 27 features gave 92.77% of the detection rate and 1.6 of the false positive rate. 
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Ensafi et al. [4] proposed optimizing fuzzy K-means for network anomaly detection using 

particle swarm optimization (PSO). Two versions of the KDD99 dataset were used (full 

version and 10% version). The training dataset had only the normal class from the 10% 

version. The testing dataset consisted of 60,592 records of the normal class and 250,436 

of the attack class. Figure 2.1 presents the diagram of the proposed work. Particles swarm 

and K-means clustering was used together to cluster the dataset in each generation. A 

genetic algorithm was used to find the best solution. The output classes were Normal, 

DoS, R2L, U2R and Probe, and the detection rate was 95 % with 2.12% of the false alarm 

rate.  

 

 

 
 

 

Figure 2.1 Optimizing fuzzy K-means for network anomaly framework [4] 

 
Fries [5] proposed a Fuzzy Genetic Algorithm Approach. This work had two phases: 

preprocessing phase and detection phase. In the preprocessing phase, they used clustering 

and genetic algorithm to find the significant features. The result showed that there were 

8 relevant features. In the detection phase, they evaluated the algorithm by using the 10% 

version of the KDD99 dataset as the training set (about 500,000 records) and the full 

version of the KDD99 dataset as the testing set (about 5 million records). In the testing 

set, there were 14 types of new attacks that were not presented in the training set. The 

detection rate was 99.6% with 0.2 of the false positive rate. They found that this algorithm 

had the high detection rate and was robust for an untrained attack. 

 

Abadeh et al. [6] proposed a genetic fuzzy algorithm. They used three different kinds of 

genetic fuzzy systems based on Michigan, Pittsburgh and iterative rule learning. The 

algorithm could be classified into five classes (Normal, U2R, R2L, DoS, and Probe). The 

distribution of the training dataset and the testing dataset is shown in Table 2.1. The result 

showed that the Pittsburgh method had the highest detection rate of 99.53% with 1.94% 

of the false alarm rate.  
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Table 2.1 Distribution of different classes in training and testing datasets [6] 

 

Attack Type Train Test 

Normal 100 1,000 

U2R 50 59 

R2L 100 1,000 

DoS 300 6,500 

PORBE 100 1,000 

Total 650 9,559 

 

Ngamwitthayanon and Wattanapongsakorn [7] proposed a Fuzzy-Adaptive Resonance 

Theory (ART) in network anomaly detection with feature-reduction dataset. The 

Adaptive Resonance was a type of the neural network algorithm. The main algorithm was 

the ART algorithm while the Fuzzy was used to simplify a network structure of the ART. 

Moreover, they applied a feature reduction method with the KDD99 dataset. This 

approach increased the detection rate to 98.96% and used only14 features. However, this 

algorithm indicating the similar problem as the previous algorithm was impractical in the 

real network. Also, it did not provide enough information for a protection system. 

 

Table 2.2 Detection rate with different numbers of KDD99 features [7] 

 

Dataset 
Number of 

Features 
Detection Rate (%) 

1 7 98.87 

2 9 99.44 

3 12 98.98 

4 14 98.93 

5 22 99.12 

6 24 99.20 

7 41 97.96 

 

Muda et al. [8] proposed a detection solution by combining of the K-means algorithm and 

the Naïve Bayes algorithm. The first step of the algorithm was using the K-means 

algorithm to categorize data into two classes; normal class and attack class. Then, the 

Naïve Bayes algorithm was used to classify the previous results into attack types. They 

sampled 49,402 records of the training set from the 10% version of the KDD99 dataset 

and another 49,402 records from the full version of the KDD99 which had more 14 types 

of new attacks. The detection rate was 99.6%. However, this solution was impractical for 

a real network environment because the K-Means algorithm required time to process. It 

could cause the bottleneck problem in network traffic or system clash. 

 

Seungmin et al. [9] proposed a self-organizing map (SOM) combined with the K-means 

algorithm to classify untrained attacks. The system was able to learn from the new data. 

There were three phases consisting of an adjusting SOM network, updating centroid (K-

means algorithm) and splitting normal cluster. The cluster system could divide the output 

into two classes (normal class and attack class). They sampled the dataset from the 

KDD99 dataset. The size of the sampling dataset was 20,000 records which consisted of 

1% of the attack and 99% of the normal class. They reduced the number of features into 



 6 

eight features (2, 3, 4, 10, 12, 23, 33 and 35). The average detection rate in this work was 

89.7% with 2.43 of the false positive rate. 

 

Chandrasekhar and Raghuveer [10] proposed an intrusion detection technique using the 

K-means, fuzzy neural network and the SVM algorithm. They found that a rule based 

system was worse when encountering with a large scale of the data, so they introduced 

the artificial neural network (ANN) for this system [Figure 2.2]. First, they used the K-

mean algorithm to cluster the dataset into n clusters (each cluster was the type of 

intrusion). In each cluster, there was a neuro-fuzzy to learn the pattern. The neuro-fuzzy 

in each cluster was used to generate the SVM vector to classify attacks (the neuro-fuzzy 

algorithm helped to decrease a number of attributes in SVM). They sampled the training 

dataset and testing dataset from a 10% version file of the KDD99 dataset which consisted 

of 26,114 records for the training dataset and 27,112 records for the testing dataset (Table 

2.3). The accuracy of each attack was 98% for DoS attack, 97.31% for Probe, 97.51 for 

R2L and 97.52 for U2R. Total detection rate was 98.48% with 2.41 % of the false positive 

rate. 

 

 

 

 
 

 

Figure2.2 Block diagram of proposed IDS from using K-means, fuzzy neural network  

  and SVM algorithm [10] 

 

 

 

Table 2.3 Data record taken for training and testing in [10] 

 

  Normal DoS PROBE R2L U2R TOTAL 

Training 12,500 12,500 1,054 39 21 26,114 

Testing 12,500 12,500 2,053 38 21 27,112 
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Table 2.4 Summary of Offline IDS  

 
Year Author Algorithm DR(%) FP(%) Feature Output 

2006 

[1] 
Gómez and León Genetic Fuzzy  98.28 N/A 33 Normal, Attack 

2007 

[2] 
Banković et al Genetic Fuzzy 

94.87 0-1.62 

3 

Normal, Attack 

87.6 0 

Normal, 

Portsweep, 

Smurf and 

Neptune 

2007 

[3] 
Tsang et al.  Genetic Fuzzy 92.77 1.6 27 

Normal, Probe, 

DoS, U2R, R2L 

2008 

[4] 
Ensafi et al 

Fuzzy K-means 

and PSO 
95.9 2.12 33 

Normal, Probe, 

DoS, U2R, R2L 

20010 

[5] 
Fries Genetic Fuzzy 99.6 0.2 8  Normal, attack 

2010 

[6] 
Abadeh et al. Genetic Fuzzy 99.53 1.94 21 

Normal, Probe, 

DoS, U2R, R2L 

2011 

[7] 

Ngamwitthayanon 

and  

Wattanapongsakorn  

Fuzzy and 

ART 
 98.96 N/A 14  Normal, Attack 

2011 

[8] 
Muda et al. 

K-means+ 

naïve bayes 

technique 

99.8 0.09 41 
Normal, Probe, 

DoS, U2R, R2L 

2011 

[9] 
Seungmin et al. 

SOM and  

K-means 
89.7 2.43 8 Normal, attack 

2013 

[10] 
Chandrasekhar et al. 

K-means, 

fuzzy neural 

network and 

SVM  

98.48 2.41  N/A 
Normal, Probe, 

DoS, U2R, R2L 

** DR = Detection Rate  

** FA = False Alarm 

** N/A not available 
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2.1.2 IDS for Online Data 
Labib and Vemuri [11] proposed a real-time intrusion detection system by considering 

10 features of header packets. Each record was the statistic data which was collected in 

every 50 packets. Then, they used SOM as an algorithm to classify attacks. The outputs 

were normal and DoS attacks. On the other hand, it needed a human expert to visualize 

the output data. 

 

Amini et al. [12] proposed a real-time intrusion detection system using neural network 

algorithms (Adaptive Resonance Theory (ART) and Self-Organizing Map (SOM)) to 

classify normal packets and attack packets (two classes) as shown in Figure 2.3. They 

generated the attacks and collected the attack data by using attack tools as shown in Table 

2.5 (left). They collected normal traffic in a real traffic network within 4 days. So, they 

created their own dataset which consisted of training data (5,000 packets) and testing 

dataset (3,000 packets). They preprocessed the packets into 27 features as shown in Table 

2.5 (right). The result showed that the ART had the higher detection of 97.42%. The result 

is shown in Table 2.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 RT-UNNID systems [12] 

 

 

 

Table 2.5 Real-time detection rate of RT-UNNID using SOM ART-1 and ART-2 [12] 

 

  ETTR TR FPR FNR 

ART-1 71.71 97.42 1.99 0.59 

ART-2 73.18 97.19 2.3 0.51 

SOM 83.44 95.74 3.5 0.77 

 

**ETTR is exact true types detection rate 

        TR is true detection rate 

       FPR is false positive detection rate 

       NFR is false negative detection rate 
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Table 2.6 Attack name (left) and feature name in proposed approach (right) [12] 

 

# Attack name 
Attack 

generation tools 

Train 

dataset 

Test  

dataset 

  

Category Feature 

1 Bonk targa2.c √ √ - protocol 

2 Jolt targa2.c √ √ 
IP diff-time 

stamp 

3 Land targa2.c √ √ ip id 

4 Saihyousen targa2.c √ √ IP tos 

5 TearDrop targa2.c √ √ ipttl 

6 Newtear targa2.c √ √ ipheaderlen 

7 1234 targa2.c √ √ iplen 

8 Winnuke targa2.c √ √ is home srcip 

9 Oshare targa2.c √ √ is home dstip 

10 Nestea targa2.c √ √ is land 

11 SynDrop targa2.c √ √ ip frag flag 

12 Octopus Octopus.c √ √ TCP tcpsrc port 

13 KillWin KillWin.c √ √ tcpdst port 

14 Twinge Twinge.c √ √ tcp fin 

15 TcpWindowScan Nmap √ √ tcpsyn 

16 SynScan Nmap √ √ tcprst 

17 Neptune FireHack √ √ tcp push 

18 Dosnuke FireHack √ √ tcpack 

19 Smbdie Smbdie.exe √ √ tcpurg 

20 XmassTree-Scan Namp √ √ tcp offset 

21 LinuxICMP linux-icmp.c - √ tcp win size 

22 Moyari13 Moyari13.c - √ UDP udpsrc port 

23 Sesquipedalian.c Sesquipedalian - √ udpdst port 

24 Smurf smurf4.c - √ ICMP icmp type 

25 OverDrop overdrop.c - √ icmp code 

26 OpenTear opentear.c - √ icmp id 

27 ExhoChargen FireHack - √ icmp sequence 
 

 

Pukkawanna et al. [13] proposed the Lightweight Detection system (LD2) to detect Denial 

of Service Attack (DoS). The target attacks included SYN Flood, ICMP flood, Port scan 

Host scan, UDP flood and smurf. The system preprocessed the network into five features 

(srcIP, protocol, dstIP, srcPort, and dstPort). The background traffic environment had two 

types: controlled environment and real traffic environment. In the controlled network 

environment, they used Iperf to generate the UDP traffic in various rates. In the real 

network environment, they replied traces by using tcpreplay. The trace was sampled from 

WIDE Backbone (100-150 Mbps). In each experiment, they generated a DoS attack on 

the top of a single background trace. Figure 2.4 showed the graph pattern that the system 

used for detecting each type of the attacks. For example, SYN flood had the same (srcIP, 

prot, dstIP, dstPort) but various srcPort. Thus, the detection system needed the training 

process in order to find a threshold for each attack type (Table 2.7). They generated 

multiple attacks at once (12 instances). The experiment result showed that the LD2 
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performed well with the 100% detection rate (except a host scan that could not detect 

some activities) with no false positive. They also evaluated a system performance in term 

of CPU consumption and memory consumption by using a systat tool. It showed that the 

increasing packet rate of a background also increased the CPU usage [Figure 2.5]. The 

maximum CPU utilization of the LD2 was 16% at 7,000 pps and the memory consumption 

was 20 MB. The behavior of the memory consumption is shown in [Figure 2.6].  

 

 
 

 

Figure 2.4 DoS attack graphlets [13] 

 

 
 

 

Figure 2.5 CPU initialized for LD2 (left) and Snort (right) [13] 

 

 
 

 

Figure 2.6 Memory usage for LD2 (left) and Snort (right) [13] 
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Table 2.7 Threshold for attack graphlets [13] 

 
Dos Type Threshold Parameters  (per minute) Upper Bound Suggest Value 

SYN flood Source ports 1,998 1,598 

UDP flood Number of UDP packets 1,918 1,534 

ICMP flood 

Number of ICMP packets to broadcast 

address 2,151 1,721 

Smurf 

Number of ICMP packets to broadcast 

address 2,151 1,721 

Port scan Destination ports 394 313 

Host scan Destination IP adresses 5 4 

 

 

Su [14] proposed the real-time IDS for large-scale attacks by using fuzzy association 

rules. The technique derived features from a packet header from the open network within 

every 2 seconds (one record per two seconds). There were 16 features used in this 

technique as shown in Table 2.8. The system architecture is shown in Figure 2.7. The 

computer A preprocessed data from a real network and sent a record to the computer B 

to create a fuzzy rule. The computer D compared the rules between the computer B and 

C to find the attacks. This experiment was tested on 30 DoS attacks. A network topology 

is shown in Figure 2.8. IP traffic (a sender) was a computer used to generate the 

background traffic, such as TCP packets, UDP packets, ICMP packets and ARP packets. 

It connected to the internet. There was the IP traffic (a receiver) located in the local 

network. An attack generator was used to generate attacks (DoS) where the victim was 

found in the local network. The system was also located in the local network. It monitored 

the traffic in the local network. The traffic rate during the experiment was 0-80 Mbps. 

The result is shown in Figure 2.9. We can see that the system responded to the attack five 

time units (10 seconds) after the system was attacked. This system could only give an 

alarm signal when the network was under attack. However, it could not provide any useful 

information to prevent the network from malicious network activities. 

 

 

 
 

 

Figure 2.7 Architecture of NIDS [14] 
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Figure 2.8 Network topology for simulation [14] 

 

 
 

 

Figure 2.9 Similarity degradation during flooding for DoS.Win32.IIS [14] 

 

 

Table 2.8 Feature list of real-time network IDS for large-scale attacks based on            

an incremental mining approach [14] 

 

# Protocol Feature 

1 TCP source IP+SYN count 

2 TCP source IP+URG_Flag+URG_data count 

3 TCP Source IP+ACK-Flag+ACK count 

4 ARP Source IP+ARP count 

5 IP Destination IP slots hit 

6 IP Header length 1=20 count 

7 IP MF_Flag count 

8 IP (total length > 1400||<40)&&TTL=64 count 

9 IP Checksum_error count 

10 TCP ACK_Flag+ACK count 

11 TCP Checksum_error count 

12 UDP Same_length_interval count 

13 ICMP Type error count 

14 ICMP Checksum_error count 

15 ICMP Checksum_error count 

16 ICMP Length>1000count 
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Komviriyavut et al. [15] proposed a real-time detection. They used a packet sniffer to 

sniff the packets in the network every 2 seconds and preprocessed it into 13 features by 

counting the number of connections between two IP addresses every 2 seconds [Table 

2.9]. They also used the decision tree algorithm to classify the data. In order to evaluate 

the performance, they collected the normal data from the network traffic in the 

Department of CPE from KMUTT. They simulated the attacks in a closed environment 

by using attack tools which consisted of 18 types of attacks [Table 2.10]. The dataset 

could be categorized into 3 types; DoS, Probe and normal data. The result showed that 

this algorithm had 97.5 percent of the detection rate. This technique was efficient to be 

used in an actual network environment in terms of speed, memory consumption and CPU 

consumption.  

 

Examples of the record of the normal network data from the preprocessing phase are 

shown below. 

2138,33,33,4,4,644,2136,0,0,0,0,0,0,Normal 

12,2,2,0,0,1,12,0,0,0,0,0,0, Normal 

 

 

Table 2.9 Features in online dataset [15] 

 
No. Feature Description Data Type 

1 Number of TCP packets Integer 

2 Number of TCP source ports Integer 

3 Number of TCP destination ports Integer 

4 Number of TCP fin flags Integer 

5 Number of TCP syn flags Integer 

6 Number of TCP reset flags Integer 

7 Number of TCP push flags Integer 

8 Number of TCP ack flags Integer 

9 Number of TCP urgent flags Integer 

10 Number of UDP packets Integer 

11 Number of UDP source ports Integer 

12 Number of UDP destination ports Integer 

13 Number of ICMP packets Integer 

 

 

Kachurka and Golovko [16] proposed a neural network approach for real-time network 

intrusion detection. This algorithm could detect the attacks without the training dataset. 

This experiment considered three different types of the attacks: tcp scan, sysn flood and 

udp flood (500 records of each attack). The feature names of each record were timestamp, 

duration of connection in seconds, source’s and destination’s IP-addresses, name of the 

service used, port number, the number of bytes transferred and the result flag of the 

connection. They used both KDD99 dataset and real-time dataset to evaluate the 

algorithm. This technique was able to detect unknown attacks at least 97% of the detection 

rate for each type of the attacks (use the KDD99 dataset to evaluate).  

 

Casas et al. [17] proposed Unsupervised Network Intrusion Detection (NIDSs) using Sub-

Space Clustering Algorithm and Multiple Evidence Accumulation Algorithm. The NIDSs 

was able to detect attacks without the training dataset. The system was tested in an offline 

environment (with the KDD99 dataset) and an online environment. In the online 

environment, they used the traffic trace from the MAWI repository of the WIDE project 

and the METROSEC project. These two network traces were generated over the past ten 
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years. They preprocessed the data network into 9 features [Table 2.11]. The algorithm 

could be classified into two classes which were a positive class (attack) and a negative 

class. The result showed that 90% of the attacks were correctly detected. 

 

 

Table 2.10 Attack names in the dataset [15] 

 
No. Data Tools (to Generate) Category 

1 Smurf Smurf.c DoS 

2 UDP Flood Net Tools 5 DoS 

3 HTTP Flood Net Tools 5 DoS 

4 Jping Jping.c DoS 

5 Port Scan Net Tools 5 Probe 

6 Advance Port Scan Net Tools 5 Probe 

7 Host Scan Host Scan 1.6 Probe 

8 Connect NMapWin 1.3.1 Probe 

9 SYN Stealth NmapWin 1.3.1 Probe 

10 FIN Stealth NmapWin 1.3.1 Probe 

11 UDP Scan NmapWin 1.3.1 Probe 

12 Null Scan NmapWin 1.3.1 Probe 

13 Xmas Tree NmapWin 1.3.1 Probe 

14 IP Scan NmapWin 1.3.1 Probe 

15 ACK Scan NmapWin 1.3.1 Probe 

16 Window Scan NmapWin 1.3.1 Probe 

17 RCP Scan NmapWin 1.3.1 Probe 

18 Normal Actual Environment Normal 

 

 

 

Table 2.11 Features used in NIDSs [17] 

 

No. Feature Description Abbreviation 

1 Number of source IP nSrcs 

2 Number of destination IP NDsts 

3 Number of TCP source ports nSrcPorts 

4 Number of TCP destination ports nDstPorts 

5 Ratio of number of sources to number of destination nSrcPorts/nDstPorts 

6 packet rate nPkts/sec 

7 fraction of ICMP packets nICMP/nPkts 

8 number of SYN packets nSYN/nPkts 

9 average packets size avgPktsSize 
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Table 2.12 Summary of Online IDS  

 

Year Author Algorithm DR(%) FP(%) 
Number of 

Features 
Output 

2002 

[11] 

Labib and 

Vemuri 
NSOM -  10 Normal, DoS 

2005 

[12] 
Amini et al. 

Neural 

Network (ART 

and SOM)  

97.427 1.99 27 
Normal, 

Attack 

2007 

[13] 

Pukkawanna et 

al. 

BLINd 

classification 

100 
(accept host 

scan) 

0 

 (accept host 

scan) 
5 

SYN Flood, 

ICMP flood, 

Port scan Host 

scan, UDP 

flood and 

smurf 

2009 

[14] 
Su et al. 

Fuzzy 

association 

rules 

N/A N/A 16 Normal, DoS 

2009 

[15] 

Komviriyavut et 

al. 

Decision Tree 

and Rule Based 
97.5 0.6 13 

Normal, DoS, 

Probe 

2011 

[16] 

Kachurka and 

Golovko[14] 

Neural 

Network 

 

N/A N/A 16 
Normal, 

Attack 

2012 

[17] 
Casas et al. Clustering N/A N/A 9 

Normal, 

Attack 

 

 

 

 

2.2 Background Study 

 
2.2.1 Artificial Intelligence (AI) [18]. Major AI researchers and textbooks define the 

field as “The study and design of intelligent agents” where an intelligent agent is a system 

that learns from giving knowledge and takes action that maximizes its chances to achieve 

its goal. 

John McCarthy : "the science and engineering of making intelligent machines" 

 

 

2.2.2 Machine Learning [19], a branch of artificial intelligence, is about the construction 

and study of systems that can automatically learn  from experiences and get more accurate 

results. The definition of the machine learning is described as follows: 

 
 

Arthur Samuel : "Field of study that gives computers the ability to learn without being 

explicitly programmed" 
 

 
 

Tom M. Mitchell  : "A computer program is said to learn from experience E with respect 

to some class of tasks T and performance measure P, if its performance at tasks in T, as 

measured by P, improves with experience E" 
 

 

 

http://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)
http://en.wikipedia.org/wiki/Learning
http://en.wikipedia.org/wiki/Arthur_Samuel
http://en.wikipedia.org/wiki/Tom_M._Mitchell


 16 

The learning process of the machine learning can be categorized into four types of the 

machine learning described as follows: [20] 

 

1. Supervised learning: during the learning process, the system will be told by the 

training dataset what is correct and what is not correct.  

 

2. Unsupervised learning: during the learning process, the correct answers are not 

provided; the algorithm will identify similarity of the input data and categorize 

the similar input together instead. 

 

3. Reinforcement learning: during the learning process, the algorithm will be told 

what is wrong but not be told what is correct. It has to explore and try out different 

possibilities until it works out how to get the right answer. 

 

4. Evolutionary learning: biological evaluation can be considered as a learning 

process such as the process that living things adapt their generation to survive in 

an environment.  

 

There are many ideas proposed to make the algorithm learn. In this work, we are 

interested in combining fuzzy logic and genetic algorithms together which is a supervised 

learning approach. 

 

 

2.2.3 Fuzzy Logic can help in decision making or reasoning in an uncertain situation. 

From Figure 2.10, the fuzzy value is in a range of completely true and completely false 

but Boolean logic has only true or false.  

 

 
 

 

Figure 2.10 Boolean logic and fuzzy logic 

 

Fuzzy logic uses a membership function to find a solution in an uncertain situation. There 

are many types of fuzzy functions such as a triangular membership function and a 

trapezoidal membership function. 

 

For example:  

 

The trapezoidal membership function has three parameters {a, b, c, d} and x is an 

input value. The fuzzy value (from the input x) will be calculated using the 

conditions from Figure 2.11. 
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Figure 2.11 Trapezoidal membership function [22] 

 

 

 

2.2.4 Fuzzy Rule contains many fuzzy logics by using an if-then condition. Figure 2.12 

presents a fuzzy rule by using many fuzzy logics where xi is a fuzzy value that is 

calculated from the fuzzy logic i, Ai is a threshold value from the fuzzy logic i. All input 

values will be calculated using the fuzzy logic. When all fuzzy values match to rule 1 

then the rule will classify it in to Class A. 

 

 

 
 

 

Figure 2.12 Fuzzy rule 

 

2.2.5 Genetic Algorithm (GA) Genetic algorithms are the evolutionary technique that 

uses the crossover and mutation operators to solve the optimization problems including 

NP-hard (non-polynomial) problems. It uses a natural evolution concept of only a 

“strongest or best solution” will survive among evolution of various populations. The 

technique does not guarantee an optimal solution. However, it can give a well-enough 

solution in the given time period. The genetic main algorithm process consists of the 

following approaches: 

 Encoding: each gene is a parameter that a genetic algorithm uses for 

solving problems. The sequence of the genes is called a chromosome. A 

chromosome is one solution of that problem. 

 

 
 

 

Figure 2.13 Example of chromosome 
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 Crossover: the approach to create a new chromosome from an existing 

chromosome by exchanging parts of the chromosomes (genes) between 

two chromosomes. In Figure 2.10, parent 1 and parent 2 exchange the 

chromosomes in a single point and multiple points. 

 
 

Figure 2.14 Genetic algorithm crossover multi values 

 

 Mutation: the approach to create a new chromosome from an existing 

chromosome by randomly choosing the chromosome and randomly 

changing the gene. 

 Evaluation: the function plays an important role in genetic algorithms. It 

is used to define the value of the chromosome.  
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2.2.6 KDD99 Dataset  

KDD99 dataset is a benchmark dataset for an intrusion detection system. It was 

established in 1999 from MIT Lincoln labs in order to evaluate research results in 

intrusion detection. The Lincoln labs used the TCP dump to capture the local-area 

network in the Air Force environment. It was also used with multiple attacks. There were 

two file versions of the KDD99 dataset: 10% version file (about 500,000 records) and full 

version file (about 5 million records). Table 2.13 shows a number of the records and a 

number of the distinct records of each attack type in the 10% version file. Table 2.14 

shows 41 features of the dataset. 

 

Table 2.13 Number of each attack in 10% version file of KDD99 dataset [21] 

 

Attack #Original Records #Distinct    Records Class 

normal 97,277 87,831 Normal 

back 2,203 994 DoS 

land 21 19 DoS 

neptune 107,201 51,820 DoS 

pod 264 206 DoS 

smurf 280,790 641 DoS 

teardrop 979 918 DoS 

satan 1,589 908 Probe 

ipsweep 1,247 651 Probe 

nmap 231 158 Probe 

portsweep 1,040 416 Probe 

guess_passwd 53 53 R2L 

ftp_write 8 8 R2L 

imap 12 12 R2L 

phf 4 4 R2L 

multihop 7 7 R2L 

warezmaster 20 20 R2L 

warezclient 1,020 1,020 R2L 

spy 2 2 R2L 

buffer_overflow 30 30 U2R 

loadmodule 9 9 U2R 

perl 3 3 U2R 

rootkit 10 10 U2R 

Total 494,020 145,740   

 

 

 

Examples of the data records in the KDD99 dataset:  

 
0,tcp,http,SF,241,261,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,34,16

9,1.00,0.00,0.03,0.04,0.00,0.00,0.00,0.00,normal. 

0,tcp,other,REJ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,511,1,0.14,0.00,0.86,1.00,0.00,1.00,0.00,255,

1,0.00,1.00,0.00,0.00,0.13,0.00,0.87,1.00,satan. 

0,icmp,ecr_i,SF,1032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,510,510,0.00,0.00,0.00,0.00,1.00,0.00,0.0

0,255,255,1.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,smurf. 

0,tcp,private,REJ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,132,8,0.00,0.00,1.00,1.00,0.06,0.07,0.00,25

5,8,0.03,0.06,0.00,0.00,0.00,0.00,1.00,1.00,neptune. 

0,udp,private,SF,28,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,34,34,0.00,0.00,0.00,0.00,1.00,0.00,0.00,25

5,1,0.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,teardrop. 
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Network attacks fall into four main categories. 

 Denial of Service (DoS) is a network attack that causes computer resources to be 

unavailable. DoS can happen from a person or multiple people. The target of the 

DoS attack is to serve a host on a high-profile web server such as banks, credit 

card payment gate way. Attackers attempt to force victims to either reset or 

consume network resources in order to destroy services. There are many methods 

used for this attack such as SYN flood, Tear drop attack and Peer to per attack. 

 Port Scan (Probe). Port scanner is a tool designed to probe a server for an open 

port. Attackers can use this application to monitor behavior of the target and 

exploit vulnerability of that target. 

 Remote to Local Attack (R2L). Attackers send packets to a machine and exploit 

machine’s vulnerability to gain the local access as an authenticated user, such as 

a password guessing attack. 

 User to Root (U2R). Attackers will start normal access to a user account and 

exploit vulnerability in order to gain unauthorized access to the root. In common, 

this kind of the attack can cause the buffer overflow. 

 

 

Table 2.14 Forty one features of KDD99 dataset [21] 

 

# Feature Description Type 

1 Duration duration of the connection. Cont. 

2 protocol type connection protocol (e.g. tcp, udp) Disc 

3 Service destination service (e.g. telnet, ftp) Disc. 

4 Dlag status flag of the connection Disc. 

5 source bytes bytes sent from source to destination Cont. 

6 destination bytes bytes sent from destination to source Cont. 

7  Land 

1 if connection is from/to the same host/port; 0 

otherwise Disc. 

8 wrong fragment number of wrong fragments Cont. 

9 Urgent number of urgent packets Cont. 

10 Hot number of “hot” indicators Cont. 

11  failed logins number of failed logins Cont. 

12 logged in 1 if successfully logged in; 0 otherwise Disc. 

13 # compromised number of “compromised’’ conditions Cont. 

14 root shell 1 if root shell is obtained; 0 otherwise Cont. 

15 su attempted 1 if “su root’’ command attempted; 0 otherwise Cont. 

16 # root number of “root’’ accesses Cont. 

17 # file creations number of file creation operations Cont. 

18 # shells number of shell prompts Cont 

19 # access files number of operations on access control files Cont. 

20 # outbound cmds number of outbound commands in an ftp session Cont. 

21 is hot login 1 if the login belongs to the “hot’’ list; 0 otherwise Disc. 

22 is guest login 1 if the login is a “guest’’ login; 0 otherwise Disc. 
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Table 2.14 Forty one features of KDD99 dataset [21] (Continued) 

 

# Feature Description Type 

23 Count 

number of connections to the same host as the current 

connection in the past two seconds Cont. 

24 srv count 

number of connections to the same service as the current 

connection in the past two seconds Cont. 

25 serror rate % of connections that have “SYN’’ errors Cont. 

26 srvserror rate % of connections that have “SYN’’ errors Cont. 

27 rerror rate % of connections that have “REJ’’ error Cont. 

28 srvrerror rate % of connections that have “REJ’’ error Cont. 

29 same srv rate % of connections to the same service Cont. 

30 diff srv rate % of connections to different services Cont. 

31 srv diff host rate % of connections to different hosts Cont. 

32 dst host count count of connections having the same destination host Cont. 

33 dst host srv count 

count of connections having the same destination host 

and using the same service Cont. 

34 dst host same srv rate 

% of connections having the same destination host and 

using the same service Cont. 

35 dst host diff srv rate % of different services on the current host Cont. 

36 

dst host same src port 

rate 

% of connections to the current host having the same src 

port Cont. 

37 dst host srv diff host rate 

% of connections to the same service coming from 

different hosts Cont. 

38 dst host serror rate 

% of connections to the current host that have an S0 

error Cont. 

39 dst host srvserror rate 

% of connections to the current host and specified 

service that have an S0 error Cont. 

40 dst host rerror rate 

% of connections to the current host that have an RST 

error Cont. 

41 dst host srvrerror rate 

% of connections to the current host and specified 

service that have an RST error Cont. 
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CHAPTER 3 RESEARCH MOTHODOLOGY 

 
From the literature review presented in chapter 2, the Fuzzy Logic was often chosen as 

an approach for network intrusion detection with low research consumption. It was also 

robust for unknown attack detection. Thus, we are interested in the Fuzzy Logic and the 

Genetic Algorithm. The Genetic Algorithm can help the fuzzy logic to learn a new 

data/solution in changing an environment. Therefore, the fuzzy genetic algorithm is 

chosen for our network-based intrusion detection. Moreover, we test the performances of 

our intrusion detection approach with both known and unknown network data.   

 

Chapter three is organized as follows: the overview of our IDS system is described at the 

beginning of the chapter. Then, section 3.1 explains how our IDS preprocesses the online 

data and shows examples of the online dataset. Section 3.2 shows an IDS algorithm (fuzzy 

genetic algorithm), section 3.3 explains the testing method and evaluation criteria of our 

IDS system and section 3.4 displays simulation tools. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Real-time detection model 
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Our Real-time IDS, shown in Figure 5, consists of three phases: the pre-processing phase, 

the training phase and the testing phase. First, we create a network dataset by capturing 

the network data in CPE department of King Mongkut’s University of Technology 

Thonburi in different time in a day for 1 month. The data packets are pre-processed using 

a packet header. The essential features which represent the network activity are extracted 

from this data. The extracted features are considered as the key-signature features, 

representing the main characteristics of the data. Then, the pre-processed data with the 

key signature extraction is sent to the training phase so that we can obtain fuzzy rules. In 

the training phase, the fuzzy rules are evolved by a genetic evolution concept. We can 

evaluate the performances of the fuzzy rules in the testing phase. Moreover, we can use 

the fuzzy rules to detect network attacks in an actual network environment. 

 

 

3.1 Preprocessing Phase 
In the pre-processing phase, we use a packet sniffer to extract network packet information 

as described in Komviriyavut et al [15]. This is shown in Figure 5. Each record consists 

of 12 data features. The features along with the data types are shown in Table 1.  

 

Table 3.1 Twelve essential features in pre-processed data [15] 

 

No. Feature Description Data Type 

1 number of tcp packets integer 

2 number of tcp source ports integer 

3 number of tcp destination ports integer 

4 number of tcp fin flags integer 

5 number of tcpsyn flags integer 

6 number of tcp push flags integer 

7 number of tcpack flags integer 

8 number of tcp urgent flags integer 

9 number of udp packets integer 

10 number of udp source ports integer 

11 number of udp destination ports integer 

12 number of icmp packets integer 

 

  

The packet will be captured using Jpcap library [ref] for information extraction, the 

program will consider a connection between any two IP addresses (source IP and 

destination IP) and form a record for every 2 seconds. Then, the record will be sent to the 

detection phase in order to classify the attacks. 
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Examples of the data records where each record has 12 feature values and is labeled with 

its type (i.e. a normal data or an attack) can be shown as follows: 
  

21,21,15,0,21,0,0,0,0,0,0,0, attack 

169,2,90,169,0,0,0,0,0,0,0,0, attack 

0,0,0,0,0,0,0,0,0,0,0,12683, attack 

6,2,2,2,0,2,6,0,0,0,0,0, normal 

111,2,2,0,0,2,111,0,0,0,0,0, normal 

102,2,2,0,0,1,102,0,0,0,0,0, normal 

 

 

3.2 Training Phase 
In the detection phase, we use the fuzzy genetic algorithm as described in Fries [2]. The 

algorithm uses the data from a log file with the fuzzy genetic algorithm to train the rule. 

In this section, we will describe an idea of the fuzzy algorithm in section 3.2.1, an idea of 

the genetic algorithm in section 3.2.2, a methodology to encode the fuzzy rules in section 

3.2.3 and the Fuzzy Genetic Algorithm in section 3.2.4. 

 

 

3.2.1 Fuzzy Logic Algorithm 

The fuzzy parameter is in between a range of 0-7 and the fuzzy value is between 0-1. The 

fuzzy rule is applied to each feature by using this set of the parameters {a, b, c, d}. 

 

 
 

Figure 3.2 Trapezoidal fuzzy set {a=2, b=3, c=4, d=5} 

 

From Figure 6, we can calculate the fuzzy value using these four equations:  

1. if the data records between b and c, probe =1; 

2. if the data records between a and b,  

 

3. if the data records between c and d,  

4. otherwise, probe = 0; 
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3.2.2 Genetic Algorithm 

Procedure GA:  

 

        Initialize: 

  Initialize population P(t) 

 

 while (not (termination condition)) 

  {   

  Create offspring F(t) 

  Evaluate offspring F(t) 

  Insert offspring in the population F(t)→ P(t) 

  } 

 

A Genetic Algorithm uses an evolutionary method to find the best solution. Each solution 

is encoded into a string called “chromosome”. At the beginning, the chromosomes are 

randomly initiated. A group of the chromosomes is called “population-P(t)” and 

“offspring-F(t)”. In creating an offspring step, the algorithm creates a new set of the 

chromosome using a reproduction method as described in next paragraph. Then, it 

evaluates values of the offspring, and inserts the offspring F(t) to the population P(t). The 

new generation of the chromosomes will be created and replaced the old generation until 

it reaches stopping criteria. The stopping criterion in this experiment is set to a certain 

number, such as 5,000 generations.  

There are five ways of reproduction as follows: 

I. Crossover: the approach to create a new chromosome from an existing 

chromosome by exchanging parts of the chromosomes (genes) between two 

chromosomes. We use one-point crossover, i.e. 

 

Parent  p1:  A-B-C-D-|E-F-G-H-I-J 

  p2:  D-E-H-A-|B-J-G-F-I-C 

 

Child  c1: A-B-C-D- B-J-G-F-I-C 

   

II. Mutation: the approach to create a new chromosome from an existing 

chromosome by randomly choosing the chromosome to mutate and randomly 

changing its gene(s). This approach is applied to avoid the GA trapping in a local 

optimum. In our approach, we randomly choose two genes for mutation. 

Parent   p1:  D-E-H-A-B-J-G-F-I-C 

 

Child  c1: D-E-F-A-B-A-G-F-I-C 

 

- At point 3rd gene H mutate to F 

- At point 6th gene J mutate to A 
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III. Alien: the program creates a new chromosome by randomly choosing every gene 

in the chromosome. 

IV. Elitism best chromosome: the program keeps the best chromosome from the 

current population. The strongest chromosome will exist in the next generation.  

 

3.2.2 String Encoding 

 

a. Each feature will be encoded into the string as follows: 

 

 
 

Figure 3.3 Fuzzy encoding for each feature {a=2, b=3, c=4, d=5} 

 

b. Each chromosome refers to each feature. The records will be encoded as 

the chromosomes below which are series of fuzzy parameters for 12 

features and the class at the end of the string.  

 

 

 

 

 

 

 

Figure 3.4 Encoding string 

 

 

 

3.2.4 Fuzzy Genetic Algorithm 

A Fuzzy Rule was developed by the genetic algorithm in order to find best fuzzy rules. 

The step of the algorithm is described below. 

 

1. Initial population: Each generation has 20-50 chromosomes.  

2. Finding probability: we calculate probabilities of beginning an attack for each 

feature, and then summarize all features in that record. 

3. Classify Attack: we set the threshold = 0.5. When the total probabilities are less 

than 0.5, the record will be classified as normal.  
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Figure 3.5 Fuzzy genetic algorithm pseudo code 

 

4. Finding A, B , and , where 

o A is a number of attack records in the dataset. 

o B is a number of normal records in the dataset. 

o i is a number of correctly identified attacks (αi) for each chromosome  

o i is a number of normal connections incorrectly characterized as attacks 

(false positive, βi) for each chromosome 

o Summarize α for this generation and summarize β for this generation 





n

i

ia
1


  where n is a number of records in the dataset 





n

i

i

1


 

5. Calculate a fitness value: 

The program will calculate a fitness value for each rule by using equation below. 

BA
functionfitness


 [3] 

6. Evolutionary process: 

The program will generate next generation. The next generation includes 

 20% of population from the current rule that has the highest value of 

fitness 

 30% of population from the crossover method 

 20% of population from the mutation method 

 30% of population from the alien method 

 

 

Initial rules (); 

while{ 

for each record { 

 for each rule{ 

 for each attribute{ 

   prob = fuzzy(); 

   totalprob = totalprob + prob; 

} 

If (totalprob> threshold) 

class is attack; 

else 

class is normal; 

                 } 

compare the predicted result with actual result  

find  A, B, , and , 

        } 

Calculate fitness 

       // create next generation 

       Evolutionary process(); 
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3.3 Detecting Phase 
The testing phase is a process to evaluate performances of our algorithm. In this phase, a 

user can select the dataset from a log-file in order to evaluate accuracy of the fuzzy rule 

or connect to a real network environment in order to evaluate other performances of the 

IDS such as resource consumption and computation time. There are three steps in the 

testing phase as described below.  

 

3.3.1 Data Normalization: The system will normalize each testing record to range 0-7, 

the maximum and minimum bounds are imported from the training phase. If the value of 

a testing record is greater than the maximum, the normalized value will be 7; 

3.3.2 Data Classification: We use the rules from the training phase to classify the attack 

class and the normal class. There are 2 types of classification processes. 

 a. One rule classification: the program uses one rule to classify.  

b. Two-rule classification: the program uses two rules together to classify network 

attacks. Then, the program will compare probability of being attacked from each rule with 

the threshold below. 

  

 

 

 

 

 
 

3.3.3 Evaluation Criteria: There are four parameters that are used to evaluate accuracy 

of this algorithm and are described below.  

 Detection rate (DR) is the percentage of the normal and attack classes correctly 

classified from the total number of the data records. 

 True-positive rate (TP) is the percentage of the normal class correctly classified 

from the total number of the data records. 

 True-negative (TN) is the percentage of the attack class correctly classified from 

the total number of the data records. 

 False-positive (FP) is the percentage that the normal data records are classified as 

attacks from the total number of the normal data records.  

 False-negative rate (FN) is the percentage that the attacks are misclassified from 

the total number of the attack records. 

 

 

 

 

 

If probabilityrule1>threshold or probabilityesrule2>threshold)  

then classify as attack. 

  else 

classify as normal 
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3.4 Simulation Tools 
In this work, we use simulation tools to generate attacks in close environments in order 

to create training datasets and also use simulation tools to test our intrusion detection 

system. There are 17 types of the attacks that are interesting for real-time datasets 

including 4 types of DoS attack type and 13 types of Probe attack type. Table 3.2 shows 

each name of the attacks and the simulation tools. 

 

Table 3.2 Attack type and simulation tools [15] 

No. Data Tools Category 

1 Smurf Smurf.c DoS 

2 UDP Flood Net Tools 5 DoS 

3 HTTP Flood Net Tools 5 DoS 

4 Jping Jping.c DoS 

5 Port Scan Net Tools 5 Probe 

6 Advance Port Scan Net Tools 5 Probe 

7 Host Scan Host Scan 1.6 Probe 

8 Connect Nmap Win 1.3.1 Probe 

9 SYN Stealth Nmap Win 1.3.1 Probe 

10 FIN Stealth Nmap Win 1.3.1 Probe 

11 UDP Scan Nmap Win 1.3.1 Probe 

12 Null Scan Nmap Win 1.3.1 Probe 

13 Xmas Tree Nmap Win 1.3.1 Probe 

14 IP Scan Nmap Win 1.3.1 Probe 

15 ACK Scan Nmap Win 1.3.1 Probe 

16 Window Scan Nmap Win 1.3.1 Probe 

17 RCP Scan Nmap Win 1.3.1 Probe 

18 Normal Actual Environment Normal 

 

 

 

 

 

 

 

 

 

 



 30 

CHAPTER 4 EXPERIMENTAL RESULTS 

 
From chapter 3, our proposed algorithm is the fuzzy genetic algorithm. In this chapter, 

we will demonstrate our proposed approach (fuzzy genetic algorithm) with various views. 

We perform two types of experiments to evaluate our IDS including Offline IDS (section 

4.1) and Online IDS (section 4.2). In the offline IDS, we implement and test our system 

using an operating system: Ubuntu ver.12.04. We use two datasets including the KDD99 

dataset (discussed in section 4.1.1) and the real-time dataset (discussed in section 4.1.2). 

Moreover, we test our IDS with unknown attacks, shown in section 4.1.3 and compare it 

with various algorithms in section 4.1.4. In the online IDS, the operating system is 

Windows 7. We demonstrate the efficient IDS in terms of the detection rate and resource 

consumption by using an actual network environment from the Computer Engineering 

Department of KMUTT.   

 
4.1 Offline Detection 
 

4.1.1 Fuzzy GA with KDD99 dataset 
In this experiment, we use the Fuzzy Genetic Algorithm with the KDD99 dataset. The 

table shows a number of each attack in the KDD99 dataset from two different versions. 

We can see that the number of records in the KDD99 dataset have different ratios for each 

attack type. For example, there are many Smurf and Neptune data records and few 

numbers of Land and Pod. The different numbers of the records are shown in Table 4.1. 

In this experiment, we reduce the original 41 features in the KDD99 dataset into 8 features 

including duration, src_bytes, num_failed_logins, root_shell, num_access_files, 

serror_rate, same_srv_rate and srv_count [5]. 

Table 4.1 Number of records of each attack in KDD99 dataset (A-full version and      

B-10% version contain approximately 5,000,000 records and 200,000 records 

respectively) 

 
Normal Attack Type #of records A #of record B 

Normal Normal  97,278 

Smurf Dos 2,807,886 280,790 

Neptune Dos 1,072,017 107201 

Teardrop Dos 979 979 

Back Dos 2,203 2,203 

Land Dos 21 21 

Pod Dos 264 264 

Ipsweep Probe 12,481 1,247 

Nmap Probe 2,316 231 

Portsweep Probe 10,413 1,040 

Satan Probe 15,892 1,589 

Total 3,924,472 494,021 
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4.1.1.1 One-rule  

First, we train our fuzzy genetic algorithm with a training dataset. Table 2 shows a result 

of the fuzzy genetic algorithm in a training process. The dataset from this experiment was 

randomly collected from 10% file version for training including 160,147 records of attack 

data and 39,387 records of normal network data. The dataset was reduced to 8 features as 

obtained [ref] and its value was normalized to be in the range of 0-7. The rule was 

established and evaluated by the training dataset. There were two output classes, normal 

class and attack class. From Table 2, the detection rate is 98.72% with the low false 

positive of 0.13%. Table 3 shows the fuzzy rule of this experiment. There are four 

parameters (a, b, c and d) for each feature. Information of the fuzzy rules is described in 

section 3.2.3. 

 

Table 4.2 Experimental result from Fuzzy Genetic Algorithm with KDD99 dataset 

 

Name #Attack #Normal TP(%) TN(%) FN(%) FP(%) DR(%) 

KDD99 dataset 160147 39,387 99.87 98.45 1.55 0.13 98.72 

 

 

 

Table 4.3 Detection rule of KDD99 dataset obtained from training process 

 

Fuzzy 

parameter 

Features 

0 1 2 3 4 5 6 7 

A 5 2 1 1 4 5 4 0 

B 5 5 1 4 4 5 4 0 

C 7 7 1 6 4 7 7 1 

D 7 6 3 6 6 6 7 1 

 

 

Next, we investigate in detail for each attack name used in the training dataset. In Table 

4.2-1, we extract each attack from the first experiment. This experiment uses the same 

dataset as shown in Table 2 (160,147 of attack records and 39,387 of normal records). 

From the table, we can see that most attack types have the high detection rate except Back 

and Land with the detection rate of only 16.56% and 15.58% respectively. There is the 

low false negative rate of most types of the attacks except Nmap having 16.13% of the 

false negative rate. However, there are a lot of attacks that have the high false positive 

rate including Back (FP: 85.33%), Pod (FP: 84.66%), Ipsweep (FP: 6.64%), Nmap (FP: 

6.3%) and Portsweep (FP: 6.4%). In summary, in the KDD99 dataset, there are some 

attacks that the fuzzy rule cannot distinguish them from the normal network behavior 

including Back, Pod, Ipsweep, Nmap and Portsweep. 

 

These two experiments show that the KDD99 dataset have the high detection rate. 

However, when investigating in detail, there is misclassification in the Back attacks and 

the Pod attacks. The proportion of the attacks in the KDD99 testing dataset is affected by 

the detection rate. In this case, the detection rate is biased by Smurf and Neptune which 

are the main part of the whole dataset and have the high detection rate. Therefore, we 

cannot use only the detection rate to evaluate the IDS. 
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Table 4.4-1 Experimental results of Fuzzy Genetic Algorithm with KDD99 dataset 

 

Name Class # Attack 
Evaluation Criteria  

DR(%) 
Data input 

TP(%) TN(%) FN(%) FP(%) 

Back DoS 893 
14.67 100.00 0.00 85.33 16.56 

back + 

normal 

Land DoS 4 99.61 100.00 0.00 0.39 99.61 land + normal 

Pod DoS 112 15.34 100.00 0.00 84.66 15.58 :      : 

Smurf DoS 113,842 99.24 99.90 0.10 0.76 99.73 :      : 

Teardrop DoS 371 98.81 100.00 0.00 1.19 98.83 :      : 

Neptune DoS 43,375 99.85 99.66 0.34 0.15 99.75 :      : 

Ipsweep Probe 479 93.36 100.00 0.00 6.64 93.44 :      : 

Nmap Probe 93 93.70 83.87 16.13 6.30 93.67 nmap+normal 

Portsweep Probe 392 93.60 100.00 0.00 6.40 93.66 :      : 

Satan Probe 586 99.26 96.25 3.75 0.74 99.22 :      : 

Total 160,147       

 

From Table 4.4-2, we investigated the reason that the Back attack and the Pod attack have 

low detection rates. We found that the 8 features that we selected from the original 41 

features were affected by the detection rate as shown in Table 4.4-2. The result showed 

that when using the original 41 features with the fuzzy genetic algorithm, the detection 

increased in both back attack (96.07%) and pod attack (85.05%). While using the 8 

features, the detection rate decreased for the back attack (15.47%) and the pod attack 

(12.19%). 

 

Table 4.4-2 Experimental results comparing different numbers of features used for                 

 Back attack and Pod attack 

 

#Feature TP (%) TN (%) FN (%) FP (%) DR (%) 

41 95.99 99.68 0.32 4.01 96.07 

8 13.56 100.00 0.00 86.44 15.47 

a. Back attack 

 

#Feature TP (%) TN (%) FN (%) FP (%) DR (%) 

41 85.01 100.00 0.00 14.99 85.05 

8 11.94 100.00 0.00 88.06 12.19 

b. Pod attack 

 

 

Note: 

Pod attack is Ping of Death attack. The attacker sends a large size of a ping packet to a 

victim. The victim cannot handle the ping packet that is larger than the maximum IPv4 

packet size causing a system clash. 

Back attack [24] is Denial of Service against Apache web server where a client requests 

a URL containing many backslashes. The server will try to respond to these requests until 

it clashes. The features that are relevant to the back attack are the following [23]: 
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 Feature 5 (bytes sent from source to destination) 

 Feature 6 (bytes sent from destination to source) 

 Feature 10 (number of “hot” indicators) 

 Feature 13 (number of “compromised’’ conditions) 

 Feature 32 (count connections having the same destination host) 

 

 

4.1.1.2 Two-rule  

In this experiment, we use the fuzzy genetic algorithm to classify the KDD99 dataset in 

a different way in order to find a new approach to increase the detection rate. We use two 

different datasets that are sampled from 10-percent file version of the KDD99 dataset 

including 199,534 records of the training dataset and 199,514 records of the testing set.  

 The training dataset contains 158,597 of DoS records, 1,550 of Probe records and 

39,387 of normal records. 

 The testing dataset contains 158,503 of DoS records, 1,674 of Probe records and 

39,337 of normal records. 

There are three steps in this experiment. 

 DoS Training Process: we use the training dataset to train the DoS rule by 

focusing on only the DoS attack in the dataset (Class A). So, we group Probe 

and Normal into the same class (Class B) in order to find the DoS rule. The rule 

is shown in Table 4.6. 

 Probe Training Process: we use the training dataset to train the Probe rule by 

focusing on only the Probe attack (Class A). So, we group DoS and Normal into 

the same class (Class B) in order to find the Probe rule. The rule is shown in 

Table 4.7. 

 Testing Process:  In the testing dataset, we use both DoS and Probe rules 

obtained previously to classify the testing dataset. The testing using these two 

rules is described in section 3.3.2. 

 

 

Table 4.5 Experimental results of Fuzzy Genetic Algorithm with KDD99 dataset 

 
Dataset Name #Class A 

(records) 

#Class B 

(records) 

DR(%) FN(%) FP(%) 

DoS Training process 158,597 40,937 91.93 0.21 3.91 

Probe Training process 1,550 197,984 95.31 98.18 0.00 

Testing process 160,177 39,337 95.88 20.45 22.85 

 

 

Table 4.6 DoS rule with KDD99 dataset obtained from DoS training process 

 

Fuzzy 

parameter 

Features 

0 1 2 3 4 5 6 7 

A 4 0 2 1 4 4 4 0 

B 4 1 2 5 4 6 5 1 

C 4 2 2 2 4 7 7 2 

D 4 3 2 6 6 6 6 2 
 

 



 34 

Table 4.7 Probe rule with KDD99 dataset obtained from Probe training process 
 

 

 

 

 

 

 

 

 

 

4.1.2 Fuzzy GA with Real-time Dataset 
In this experiment, we use the Fuzzy Genetic Algorithm with the real-time dataset. The 

output has two classes which are attack and normal. We collect the real-time dataset in 

the actual network environment in our research laboratory. It is the online network data 

from the Computer Engineering Department at King Mongkut’s University of 

Technology Thonburi (KMUTT). There are 17 types of attacks (4 types are DoS and 13 

types are Probe). There are two sets of the data including: 

Training dataset with 14,300 records including 

 6,300 records of the attacks, consisting of 300 records of each Probe name 

and 600 of each DoS record) 

 8,000 records of the normal data 

Testing set with 26,500 records including  

 10,500 records of the attacks (500 records of each Probe name, 1000 of 

each DoS record) 

 16,000 records of the normal data 

 

4.1.2.1 One-rule  

We use the Fuzzy Genetic Algorithm with the real-time dataset (Training dataset) to find 

a rule for classifying the normal class and the attack class, as shown in Table 4.8. Then, 

we use the Testing dataset to evaluate performances of a rule.  It shows that the Fuzzy 

Genetic Algorithm can classify the real-time dataset with the high detection rate (97.97%) 

and the low false alarm rate (the false negative rate is 3.39% and the false positive rate is 

1.14%). Table 4.9 presents parameters of the rule obtained from the training process. 

There are 4 parameters (a, b, c and d) for each feature, and we have twelve features of the 

network data. 

 

Table 4.8 Experimental results of Fuzzy Genetic Algorithm with real-time dataset 

 

Name #Attack #Normal 
Evaluation Criteria   

DR(%) TP(%) TN(%) FN(%) FP(%) 

Real-time dataset 10500 16000 98.86 96.61 3.39 1.14 97.97 

 

 

Next, we investigate in detail each attack name used in the training dataset. In Table 4.8, 

we extract each attack from the first experiment. This experiment uses the same dataset 

as shown in Table 4.8 (10,500 of the attack records and 16,000 of the normal records). 

From the table, we can see that most of the attack types have the high detection rate but 

UDP-flood and IPscan have the low detection rates of 89.59% and 86.89% respectively. 

There are three types of the attacks that have the high false negative rate including 

Advances Port Scan (FN: 10.20%), Connectscan (FN: 16:20%) and IPscan (FN: 16.40%). 

Fuzzy 

parameter 

Features 

0 1 2 3 4 5 6 7 

A 1 2 1 2 1 0 5 3 

B 2 3 2 3 1 0 5 6 

C 5 5 4 3 2 0 6 1 

D 6 5 6 5 7 1 6 7 
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Moreover, there are two types of the attacks that have the high false positive rates which 

are UDP-flooded (FP: 11.06%) and IPscan (FP: 13.01%). 
 

Table 4.9 Detection rule of real-time dataset obtained from training process 

 
Fuzzy 

parameter 

Features 

0 1 2 3 4 5 6 7 8 9 10 11 

A 4 0 0 0 0 4 3 0 0 6 0 1 

B 4 1 1 1 1 4 3 1 6 6 2 1 

C 6 4 2 4 3 5 3 1 7 7 7 0 

D 6 7 3 6 7 7 4 2 7 7 7 7 

 

 

Table 4.10 Experimental results of Fuzzy Genetic Algorithm with real-time dataset 

 

Dataset name Type 
# 

attack 

Evaluation Criteria  DR 

(%) 
Data input 

TP(%) TN(%) FN(%) FP(%) 

HTTPflooded DoS 1,000 99.64 96.50 3.50 0.36 99.46 httpflooded+normal 

Jping DoS 1,000 99.98 100.00 0.00 0.02 99.98 jping+normal 

Smurf DoS 1,000 99.98 100.00 0.00 0.02 99.98 :                   : 

UDPflood DoS 1,000 88.94 100.00 0.00 11.06 89.59 :                   : 

Ackscan Probe 500 99.97 100.00 0.00 0.03 99.97 ackscan+normal 

AdvancePortscan Probe 500 100.00 89.80 10.20 0.00 99.69 :                   : 

Connectscan Probe 500 99.86 83.80 16.20 0.14 99.38 :                   : 

Finscan Probe 500 97.42 100.00 0.00 2.58 97.5 :                   : 

Hostscan Probe 500 100.00 97.00 3.00 0.00 99.91 :                   : 

IPscan Probe 500 86.99 83.60 16.40 13.01 86.89 :                   : 

Nullscan Probe 500 99.01 96.00 4.00 0.99 98.92 :                   : 

Portscan Probe 500 99.98 100.00 0.00 0.02 99.98 :                   : 

RCPscan Probe 500 98.63 99.00 1.00 1.38 98.64 :                   : 

Synscan Probe 500 99.35 95.80 4.20 0.65 99.24 :                   : 

UDPscan Probe 500 97.52 100.00 0.00 2.48 97.59 :                   : 

Winscan Probe 500 99.98 100.00 0.00 0.02 99.98 :                   : 

XmasTree Probe 500 99.11 99.40 0.60 0.89 99.12 :                   : 

 

 

4.1.2.2 Two-rule  

In Table 4.11, we use two rules to classify the network dataset as we perform in section 

4.1.1 but change the dataset to the real-time dataset. In this experiment, we use the training 

dataset to create rules and use the testing dataset to test in a testing process. The result is 

shown in Table 4.11. We can increase detection rate to 95.88% with low false positive 

rate. In Tables4.12 and 4.13 present Probe rule and DoS rule obtained from the training 

process, respectively.  
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Table 4.11 Detection rate of real-time dataset from using two rules of Fuzzy Genetic 

Algorithm  

 

Dataset name #C-Attack #C-Normal DR(%) FN(%) FP(%) 

Training DoS process 2,400 11,900 91.93 30.69 1.48 

Training Probe process 3,900 10,400 95.31 10.53 2.34 

Testing process 10,500 16,000 95.88 6.28 2.70 

#C-Attack (considered as attack) is number of records that is trained as attack. 

#C-Normal (considered as normal) is number of record that is trained as normal. 

 

 

Table 4.12 Probe rule of real-time dataset from training process 

 

Fuzzy 

parameter 

Features 

0 1 2 3 4 5 6 7 8 9 10 11 

A 5 5 0 0 3 3 2 0 3 1 0 4 

B 6 5 1 2 3 5 4 1 3 2 1 5 

C 6 6 6 3 4 6 7 2 3 2 4 5 

D 7 6 6 7 6 7 7 6 3 4 7 5 

 

 

Table 4.13 DoS rule of real-time dataset from training process 

 

Fuzzy 

parameter 

Features 

0 1 2 3 4 5 6 7 8 9 10 11 

A 6 0 4 2 0 4 5 2 1 4 2 0 

B 6 1 4 2 1 4 5 2 6 4 2 1 

C 6 1 4 2 1 4 5 2 7 5 2 7 

D 6 2 4 2 1 3 5 2 7 6 2 7 

 

 

4.1.3 Fuzzy GA with Unknown Detection 
In this experiment, we consider detecting unknown attacks with three different algorithms 

(Decision Tree Algorithm, Naïve Bayes Algorithm and Fuzzy Genetic Algorithm2 rules). 

We use 26,500 data records from the real-time dataset including 16,000 records of the 

normal dataset and 10,500 records of the attack dataset. The number of the records in 

each attack type is shown in Table 14. In Table 14, seven test cases are used in this 

experiment which are T1, T2, ..., T7. For each test case, 13 attack types as well as the 

normal network data are provided in the training dataset, while the other 3 attack types 

are used as an unknown testing dataset for our Fuzzy Genetic Algorithm. For example, in 

the first test case, we use the training set which does not have Advances Port Scan, Ack 

Scan and Xmas Tree. Then we use these three types of the attacks for the testing dataset. 

Moreover, we test each type. The output classes are attack and normal. 
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Table 4.14 Seven test cases with unknown data types 

 

No. Data Type Category #Record T1 T2 T3 T4 T5 T6 T7 
1 Normal Activity Normal 10,500        

2 Smurf DoS 1,000        

3 UDP Flood DoS 1,000        

4 HTTP Flood DoS 1,000        

5 Jping DoS 1,000        

6 Port Scan Probe 500        

7 Host Scan Probe 500        

8 Connect Probe 500        

9 SYN Stealt Probe 500        

10 FIN Stealt Probe 500        

11 UDP Scan Probe 500        

12 Null Scan Probe 500        

13 IP Scan Probe 500        

14 Window Scan Probe 500        

15 RCP Scan Probe 500        

16 Adv Port Scan Probe 500        

17 Xmas Tree Probe 500        

18 ACK Scan Probe 500        

 

Table 4.16 shows that Decision Tree Algorithm has the low detection (9.59%-26.17%). 

It has less than 1% of the false negative rate in the test cases 4, 5, 6 and 7, but has the high 

false positive rate in every test case (about 90%). With Naïve Bayes Algorithm, the high 

detection rates are obtained in the test cases 1, 2, 3, 5 and 7, with the detection rates of 

91.11%, 90.35%, 93.11%, 90.90% and 93.17% respectively.  However, this algorithm 

still has the high false alarm rate in every test case. Fuzzy Genetic Algorithm has the 

high detection rate. Its lowest detection rate is the test case 4 with 92.17%. It also has the 

low false positive rate of 0.25%-3.24% and the low false negative rate of 2.40%-61.15%. 

From this experiment, we can see that the Fuzzy Genetic Algorithm is the most robust 

algorithm for the unknown detection comparing with the Decision Tree algorithm and the 

Naïve Bayes algorithm. 

 

4.1.4 Intrusion Detection with various Approaches 
In this experiment, we compare various algorithms for intrusion detection with the 

KDD99 dataset and the real-time dataset. The algorithms include Decision Tree 

Algorithm, Naïve Bayes Algorithm and Fuzzy Genetic Algorithm2 rules. There are two 

output classes which are normal and attack. 

There are four datasets used in this experiment, where the two datasets from the KDD99* 

and the two datasets are collected on-line recently from an actual network environment. 

 KDD99* Training dataset with 20,000 data records sampling from 10% file 

version.  

 KDD99* Testing dataset with 50,000 data records sampling from 10% file 

version. 

 Real-time Training dataset with 14,300 data records 

 Real-time Testing dataset with 26,500 data records. 

(*The KDD99 dataset was reduced into 8 features as shown in section 4.1.1) 
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Table 4.15 Experimental results with unknown attack type with real-time dataset 

 

 
 

 

 

Table 4.16 Number of KDD99 data records in training dataset and testing dataset 

 

KDD99 Dataset  Real-time Dataset 

Attack Name Training Testing   Attack Name Training Testing  

Normal 3,919 9,851  Normal  8,000 16,000 

Back 84 241  Smurf 600 1,000 

IPsweep 45 134  UDP Flood 600 1,000 

Land 5 3  HTTP Flood 600 1,000 

Neptune 4,419 11,062  Jping 600 1,000 

Nmap 12 22  Port Scan 300 500 

Pod 13 29  Host Scan 300 500 

Portsweep 32 88  Connect 300 500 

Satan 67 137  SYN Stealt 300 500 

Smurf 11,359 28,348  FIN Stealt 300 500 

Teardrop 45 85  UDP Scan 300 500 

Total 20,000 50,000  Null Scan 300 500 

    Adv Port Scan 300 500 

    Xmas Tree 300 500 

    ACK Scan 300 500 

    Total 14,300 26,500 

 

 

 

 

 

Advance Port Scan 6.67 96.25 0.00 90.95 9.09 8.00 99.44 0.26 10.20

Ack Scan 6.67 96.25 0.00 91.19 9.09 0.00 99.75 0.26 0.00

Xmas Tree 4.12 96.25 84.20 90.81 9.09 12.40 99.74 0.26 0.40

HTTP Flood (DoS) 22.30 82.56 0.00 93.12 7.22 1.50 98.15 1.81 2.50

IP Scan 19.47 82.56 15.60 93.00 7.22 0.00 97.15 1.81 36.20

Null Scan 19.93 82.56 0.40 92.59 7.22 13.60 98.08 1.81 5.40

Smurf (DoS) 9.44 96.22 0.00 93.21 7.21 0.00 98.48 0.54 17.30

Port Scan 6.70 96.22 0.00 93.01 7.21 0.00 99.48 0.54 0.00

Connect Scan 6.35 96.22 11.40 92.47 7.21 17.60 98.97 0.54 16.80

UDP Flood 9.44 96.23 0.00 35.99 61.96 96.80 93.10 1.16 98.70

Host Scan 6.62 96.23 2.20 39.82 61.96 3.00 98.79 1.16 2.80

UDP Scan 6.69 96.23 0.00 37.16 61.96 91.00 97.53 1.16 44.40

Jping (DoS), 9.43 96.23 0.00 90.83 7.21 40.50 96.91 3.24 0.70

Syn Scan, 6.67 96.23 0.60 92.90 7.21 3.40 96.54 3.24 10.60

Fin Scan 6.68 96.23 0.00 92.62 7.21 12.60 96.86 3.24 0.00

UDP Flood, 9.44 96.23 0.00 55.07 43.06 74.90 93.59 0.64 98.70

RCP Scan, 6.69 96.23 0.00 58.24 43.06 0.40 99.08 0.64 10.00

Fin Scan 6.69 96.23 0.00 57.87 43.06 12.60 99.21 0.64 5.80

Http Flood, 9.44 96.23 0.00 93.15 7.21 1.10 97.16 2.96 1.00

RCP Scan, 6.69 96.23 0.00 92.99 7.21 0.40 96.90 2.96 7.60

Fin Scan 6.69 96.23 0.00 92.62 7.21 12.60 97.13 2.96 0.00

Fuzzy GeneticNaïve BayesDecision Tree[7]

DR (%)

97.10

98.09

92.17

96.79

93.51

91.11

90.35

93.11

36.94

90.90

57.21

93.17

96.23

96.23

96.25

82.56

0.0014.47

9.59

26.17

14.16

14.41

14.44

14.47

FP(%) FN(%) FP(%) FN(%)DR (%) FN(%) DR (%)

0.26

1.81

0.54

1.16

3.24

0.64

2.96

61.96

7.21

43.05

7.21

99.46

97.11 2.40

3.53

11.65

12.90

61.15

3.00

53.30

6.80

29.15

4.40

71.90

24.25

40.70

3.80

9.08

7.21

6

7

28.07

4.00

2.85

0.55

0.15

0.00

1

2

3

4

5

96.22

96.23

96.23

7.21

Test 

Case

Unknown 

Attacks FP(%)
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Table 4.17 Results from various detection algorithms 

 
Dataset Decision Tree Naïve Bay Fuzzy GA 

 2 rules 1 rule 

KDD99 dataset 83.19 95.94 79.77 99.77 

Real-time dataset 99.71 99.17 97.3 98.86 

(a) True Positive rate  

 

Dataset Decision 

Tree 

Naïve Bay Fuzzy GA 

 2 rules 1 rule 

KDD99 dataset 98.84 98.64 98.77 98.28 

Real-time dataset 98.75 88.31 93.72 96.61 

(b) True Negative rate 

 
Dataset Decision 

Tree 

Naïve Bay Fuzzy GA 

 2 rules 1 rule 

KDD99 dataset 1.16 1.36 1.23 1.72 

Real-time dataset 1.25 11.69 6.28 3.39 

(c) False Negative rate  

 
Dataset Decision 

Tree 

Naïve Bay Fuzzy GA 

 2 rules 1 rule 

KDD99 dataset 16.81 4.06 98.52 0.23 

Real-time dataset 0.29 0.83 2.71 1.14 

(d) False Positive  

 

 

In Table 17, the highest true positive rate in the KDD99 dataset is the Fuzzy Genetic 

Algorithm with 1 rule (99.77%) and the Naïve Bayes Algorithm (95.94%). Moreover, 

every algorithm has high values of the true negative rate with the low false negative rate. 

In addition, the false positive rates from the different algorithms are different. The false 

positive rate in the Fuzzy Genetic Algorithm with 1 rule is as low as 0.23% while the 

Decision Tree Algorithm gives 16.81%. 

 

From the table, we can see that the Decision Tree can classify the real-time dataset better 

than other algorithms (highest values of true positive (99.71%) and true negative 

(98.75%); lowest values of false negative (1.25%) and false positive (0.29%)). However, 

the Fuzzy Genetic Algorithm with 2 rules has the same rate of true positive as the 

Decision Tree Algorithm but has the lower false negative rate which is 93.72%. 
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4.2 Online Detection 
In online IDS, we would like to test performances of IDS in term of CPU Consumption, 

Memory Consumption and Network Consumption.  

 

4.2.1 Experimental Setting: 
 

 
 

 

Figure 4.1 Real-time network environments 

 

In this experiment, we monitor every packet in the CPE Department of KMUTT in both 

in and out of the network gate way. (The speed of the traffic is between 5-100 Mbit/sec). 

We connect our IDS to a gateway router using a mirror port during 12.30 pm. - 17.30 pm. 

on April 24, 2013. The IDS computer used Intel® Core™ i7-3770k CPU@ 3.5GHz 3.90 

GHz RAM 8 GB Windows 7 Ultimate 67-bit with Network Interface card: Atheros 

AR8151 PCI-E Gigabit Ethernet Controller (NIDS 6.20). 

 

In Table 4.18, there are 52,564,018 packets during the experimental time. It consists of 

47,822,054 packets of TCP, 4,634,052 packets of UDP and 107912 of ICMP. In our real-

time IDS, the system preprocessed these network data into 1,201,208 records. Moreover, 

our IDS classifies 1,519 records into the attack class. The CPU Consumption is between 

7-14% while using only 2-2.5 GB of memory. 

 

4.2.2 Experimental Result 

 

Table 4.18 Experimental result from CPE network environment 

 

TCP  UDP  ICMP  Total  Attack Normal CPU  Memory  

47,822,054 4,634,052 107,912 1,201,208 1,519 1,199,689 7-14% 2-2.5 GB 

Total: 52,564,018 packets 

 

Note:  
 

TCP: Number of TCP packets 

UDP: Number of UPD packets 

ICMP: Number of ICMP packets 

Total: Total number of records after preprocessing 

Attack: Number of records that was detected as 

attack 

Normal: Number of records that was detected as 

Normal 

CPU: CPU Consumption 

Memory: Memory Consumpt 
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CHAPTER 5 CONCLUSION 

 
In this thesis, we proposed the fuzzy genetic algorithm to detect DoS and Probe attacks 

in both offline and online network environments. Our IDS can detect the attack in the 

real-time network environment. We began by evaluating accuracy of the fuzzy genetic 

algorithm in an offline dataset. The offline dataset includes a benchmark dataset (KDD99 

dataset which was reduced to 8 features), and our real-time dataset. The result showed 

that the fuzzy genetic algorithm offered the high detection rate with the low false alarm 

rate on both datasets.  

 

In addition, we explored in detail for each attack name in the dataset. We found that there 

were two attacks in the KDD99 dataset, namely Back and Pod, that were misclassified 

with the fuzzy genetic algorithm, while the algorithm could detect all attack types in our 

real-time dataset. From previous study, we have learned that the detection rate could be 

biased by the dataset. Therefore, we had to consider the false alarm rate and the proportion 

of the dataset. Next, we evaluated our fuzzy genetic algorithm by comparing with other 

algorithms considering both datasets. The accuracy of the fuzzy genetic algorithm is close 

to the results obtained from the decision tree algorithm.  

 

We also compared our fuzzy genetic algorithm with other algorithms for detecting 

unknown attacks. We used only the real-time dataset to evaluate with seven test cases. 

Each of the training sets contained 13 attack types while the other 3 attack types were 

used as an unknown testing dataset. The results showed that the fuzzy genetic algorithm 

was the most robust algorithm for the unknown attack detection.  

 

In the online network environment, we used our IDS to monitor the real-time traffic in 

the CPE Department of KMUTT (IDS PC spec: Intel® Core™ i7-3770k CPU@ 3.5GHz 

3.90 GHz RAM 8 GB Windows 7 Ultimate 67-bit and Network Interface Card is Atheros 

AR8151 PCI-E Gigabit Ethernet Controller) in order to demonstrate performances of our 

IDS. The speed of the traffic was between 5-100 Mbit/sec. Our IDS consumed less than 

14% of CPU resources while using only 2.5 GB of memory. In the real-time detection, 

our IDS could raise an alarm message within 2-3 seconds. This did not affect the PC 

performance when other applications were running. 
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