
 i

Thesis Title Fuzzy Genetic Algorithm for Real-Time Intrusion Detection System

Thesis Credits 12

Candidate Miss Pawita Jongsuebsuk

Thesis Advisor Assoc. Prof. Dr. Naruemon Wattanapongsakorn

Program Master of Engineering

Field of Study Computer Engineering

Department Computer Engineering

Faculty Engineering

B.E. 2555

Abstract

Internet has become one of the main communication modes in our society. Various types

of internet applications and usage are available. Increasing usage of the internet also

increases threats in the internet. To prevent unwanted or dangerous threats, we have to be

able to detect them first. Therefore, designing an effective intrusion detection system is a

challenge because the threats have different characteristics and they evolve every day.

The intrusion detection at present must be robust for new or unknown attacks. In this

thesis, a real-time network-based intrusion detection approach using fuzzy genetic

algorithm is proposed to detect DoS attacks and Probe attacks. The detection accuracy of

the fuzzy genetic algorithm with KDD99 dataset and current online dataset is

demonstrated. The experimental results show that the fuzzy genetic technique gives high

detection rates and is robust for both known and unknown attacks. Then, the fuzzy genetic

algorithm technique for real-time and online intrusion detection, i.e., the data is detected

right after it arrived to the detection system, is developed. In an actual network

environment, the network traffic is preprocessed into 12 features by counting connections

in each source-destination IP-pair within 2 second time interval. The IDS is evaluated in

terms of the detection speed, CPU consumption, memory consumption, the false alarm

rate and the detection rate.

Keywords: Fuzzy Genetic Algorithm/ Intrusion Detection System/ Dos Detection/

Probe Detection

 ii

หวัขอ้วทิยานิพนธ์ ฟัซซ่ีจีนีติกอลักอริทึมส าหรับระบบการตรวจจบัการบุกรุกในเครือข่าย

แบบทนัที

หน่วยกิต 12

ผูเ้ขียน นางสาวภาวติา จงสืบสุข

อาจารยท่ี์ปรึกษา รศ. ดร. นฤมล วฒันพงศกร

หลกัสูตร วศิวกรรมศาสตรมหาบณัฑิต

สาขาวชิา วศิวกรรมคอมพิวเตอร์

ภาควชิา วศิวกรรมคอมพิวเตอร์

คณะ วศิวกรรมศาสตร์

พ.ศ. 2555

บทคดัยอ่

อินเตอร์เน็ตเป็นศูนยก์ลางการส่ือสารในสังคมปัจจุบนั โดยมีการใชง้านในหลายรูปแบบ ปริมาณการ
ใช้งานในเครือข่ายท่ีสูงข้ึนท าให้ปริมาณการโจมตีสูงข้ึนดว้ย หากตอ้งการป้องกนัการโจมตีท่ีไม่พึง
ประสงค์ระบบตอ้งสามารถตรวจจบัการโจมตีเหล่านั้นได้ก่อน ดงันั้นจึงจ าเป็นตอ้งออกแบบระบบ
การตรวจจบัการบุกรุกในเครือข่ายแบบทนัที ระบบการตรวจจบัการบุกรุกในเครือข่ายเป็นส่ิงท่ีทา้ทาย
เน่ืองจากการบุกรุกและการโจมตีในเครือข่ายมีหลากหลายรูปแบบ หลากหลายพฤติกรรมและพฒันา
ตวัเองอยูทุ่กวนั ดงันั้นระบบการตรวจจบัการบุกรุกในเครือข่ายในปัจจุบนัจึงตอ้งสามารถตรวจจบัการ
บุกรุกรูปแบบใหม่ท่ีไม่รู้จกัได้ ในวิทยานิพนธ์เล่มน้ีสามารถตรวจจบัการบุกรุกแบบ DOS และ
PROBE ได ้โดยใชฟั้ซซ่ีจีนีติกอลักอริทึมและทดสอบความแม่นย าของระบบดว้ยขอ้มูลจาก KDD99
และขอ้มูลการระบบจริง ผลการตรวจสอบพบวา่ฟัซซ่ีจีนีติกอลักอริทึมมีความแม่นย าในการตรวจจบั
และสามารถตรวจจบัไดท้ั้งการบุกรุกท่ีรู้จกัและการบุกรุกท่ีไม่รู้จกั นอกจากน้ียงัไดพ้ฒันาฟัซซ่ีจีนีติก
อลักอริทึมส าหรับการตรวจจบัแบบทนัทีในระบบเครือข่ายจริง โดยประมวลผลขอ้มูลในเครือข่ายเป็น
12 รูปแบบ โดยการนับจ านวนการติดต่อระหว่างสองคู่ไอพีภายในเวลา 2 วินาที ทั้ งน้ีท าการ
ตรวจสอบระบบการตรวจจบัการบุกรุกน้ีดว้ยความเร็วในการตรวจจบั ปริมาณการใช้งานของ CPU
ปริมาณการใช้งานหน่วยความจ า อตัราความผิดพลาดในการตรวจจบัและอตัราความถูกตอ้งในการ
ตรวจจบั

ค าส าคญั: ฟัซซ่ีจีนีติกอลักอริทึม/ การตรวจจบัการบุกรุก/ การตรวจจบัแบบดอส/
การตรวจจบัแบบโพรพ

 iii

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to a few people for their contribution to this

thesis. The first one is Assoc. Prof. Dr. Naruemon Wattanapongsakorn, my research

supervisor, for her patience, guidance, enthusiastic encouragement, useful critiques of

this research work to keep my progress on schedule. I would also like to thank Dr.

Chalermpol Charnsripinyo for his advice and his valuable and constructive suggestions.

I have to thank all thesis committees for their useful suggestions and comments. My

grateful thanks are also extended to Mr. Phurivit Sangkatsanee for his help in offering me

the resources in preprocessing the network data, to Mr. Ekgapark Wonghirunsombat and

his project team who helped me in data collecting process. I also would like to extend my

thanks to all officers who have always offered me their help. Finally, I wish to thank my

parents for their support and encouragement throughout my study.

 iv

CONTENTS
 PAGE

ENGLISH ABSTRACT i

THAI ABSTRACT ii

ACKNOWLEDGEMENTS iii

CONTENTS iv

LIST OF TABLES vi

LIST OF FIGURES viii

LIST OF ABBREVIATIONS ix

CHAPTER

1. INTRODUCTION 1

1.1 Motivation

1.2 Objective and Research Scope 1

1.3 General Approach 2

1.4 Research Contribution 2

1.5 Report Overview 2

2. LITERATURE SURVEY AND BACKGROUND STUDY 3

2.1 Literature Survey 3

2.1.1 IDS for Offline Data 3

2.1.2 IDS for Online Data 8

2.2 Background Study 15

2.2.1 Artificial Intelligence 15

2.2.2 Machine Learning 15

2.2.3 Fuzzy Logic 16

2.2.4 Fuzzy Rule 17

2.2.5 Genetic Algorithm (GA) 17

2.2.6 KDD99 Dataset 19

3. RESEARCH METHODOLOGY 22

3.1 Preprocessing Phase 23

3.2 Training Phase 24

3.2.1 Fuzzy Logic Algorithm 24

3.2.2 Genetic Algorithm 25

3.2.3 String Encoding 26

3.2.4 Fuzzy Genetic Algorithm 26

3.3 Detecting Phase 28

3.3.1 Data Normalization 28

3.3.2 Data Classification 28

3.3.3 Evaluation Criteria 28

3.4 Simulation Tools 29

4. EXPERIMENTAL RESULTS AND DISCUSSION 30

4.1 Offline Detection 30

4.1.1 Fuzzy GA with KDD99 Dataset 30

 4.1.1.1 One-Rule 31

 4.1.1.2 Two-Rule 33

 v

CONTENTS (Cont.)
 PAGE

4.1.2 Fuzzy GA with Real-time Dataset 34

 4.1.2.1 One-Rule 34

 4.1.2.2 Two-Rule 35

4.1.3 Fuzzy GA with Unknown Detection 36

4.1.4 Intrusion Detection with Various Approaches 37

4.2 Online Detection 40

4.2.1 Experimental Setting 40

4.2.2 Experimental Result 40

5. CONCLUSION 41

REFERENCES 42

CURRICULUM VITAE 45

 vi

LIST OF TABLES

TABLE PAGE

2.1 Distribution of different classes in training and testing datasets 5

2.2 Detection rate with different numbers of KDD99 features 5

2.3 Data record taken for training and testing in 6

2.4 Summary of offline IDS 7

2.5 Real-time detection rate of RT-UNNID using SOM ART-1 and ART-2 8

2.6 Attack name (left) and feature name in proposed approach (right) 9

2.7 Threshold for attacking graphlets 11

2.8 Feature list of real-time network IDS for large-scale attacks based

 on incremental mining approach 12

2.9 Features in online dataset 13

2.10 Attack names in the dataset 14

2.11 Features used in NIDSs 14

2.12 Summary of online IDS 15

2.13 Number of each attack in 10% version file of KDD99 dataset 19

2.14 Forty one features of KDD99 dataset 20

3.1 Twelve essential features in pre-processed data 23

3.2 Attack type and simulation tools 29

4.1 Number of records of each attack in KDD99 dataset (A-full version and

 B-10% version containing approximately 5,000,000 records and

 200,000 records respectively) 30

4.2 Experimental result from Fuzzy Genetic Algorithm with KDD99 dataset 31

4.3 Detection rule of KDD99 dataset obtained from training process 31

4.4-1 Experimental results of Fuzzy Genetic Algorithm with KDD99 dataset 32

4.4-2 Experimental results comparing different numbers of features used for 32

Back attack and Pod attack

 vii

LIST OF TABLES (Cont.)

TABLE PAGE

4.5 Experimental results of Fuzzy Genetic Algorithm with KDD99 dataset 33

4.6 DoS rule with KDD99 dataset obtained from Dos training process 33

4.7 Probe rule with KDD99 dataset obtained from Probe training process 34

4.8 Experimental results of Fuzzy Genetic Algorithm with real-time dataset 34

4.9 Detection rule of real-time dataset obtained from training process 34

4.10 Experimental results of Fuzzy Genetic Algorithm with real-time dataset 35

4.11 Detection rate of real-time dataset from using two rules of Fuzzy 36

 Genetic Algorithm

4.12 Probe rule of real-time dataset from training process 36

4.13 DoS rule of real-time dataset from training process 36

4.14 Seven test cases with unknown data types 37

4.15 Experimental results with unknown attack type with real-time dataset 38

4.16 Number of KDD99 data records in training dataset and testing dataset 38

4.17 Results from various detection algorithms 39

4.18 Experimental result from CPE network environment 40

 viii

LIST OF FIGURES

FIGURE PAGE

1.1 Network environments and intrusion detection system 1

2.1 Optimizing fuzzy K-means for network anomaly framework 4

2.2 Block diagram of proposed IDS from using K-means, fuzzy neural network

and SVM algorithm 6

2.3 RT-UNNID systems 8

2.4 DoS attack graphlets 10

2.5 CPU initialized for LD2 (left) and snort (right) 10

2.6 Memory usage for LD2 (left) and snort (right) 10

2.7 Architecture of NIDS 11

2.8 Network topology for simulation 12

2.9 Similarity degradation during flooding for DoS.Win32.IIS 12

2.10 Boolean logic and fuzzy logic 16

2.11 Trapezoidal membership function 17

2.12 Fuzzy rule 17

2.13 Example of chromosome 17

2.14 Genetic algorithm crossover multi values 18

3.1 Real-time detection model 22

3.2 Trapezoidal fuzzy set {a=2, b=3, c=4, d=5} 24

3.3 Fuzzy encoding for each feature {a=2, b=3, c=4, d=5} 26

3.4 Encoding string 26

3.5 Fuzzy genetic algorithm pseudo code 27

4.1 Real-time network environments 40

 ix

LIST OF ABBREVIATIONS

AI Artificial Intelligent

ANN Artificial Neural Network

ART Adaptive Resonance Theory

DoS Denial of Service

DR Detection Rate

FA False Alarm

HIDS Host-Based Intrusion Detection System

IDPS Intrusion Detection and Prevention System

IDS Intrusion Detection System

KDD99 International Conference on Knowledge Discovery

and Data Mining 1999

LD2 Lightweight Detection System

MAWI Measurement and Analysis on WIDE Internet

METROSEC Metrology for Security and Quality of Service

MOGFIDS Multi-Objective Genetic Fuzzy Intrusion Detection System

N/A Not Available

NIDS Network-Based Intrusion Detection System

Probe Port Scan

PSO Particle Swarm Optimization

R2L Remote to Local Attack

RT-UNNID Real-Time Unsupervised Neural-Net-Based Intrusion Detector

SOM Self Organizing Maps

SVM Support Vector Machine

TN True Negative Rate

U2R User to Root

 x

LIST OF ABBREVIATIONS (Cont.)

UI User Interface

UNN-Engine Unsupervised Neural-Net-Based Engine

WIDE Widely Integrated Distributed Environment

UDP User Datagram Protocol

TCP Transmission Control Protocol

ICMP Internet Control Message Protocol

ARP Address Resolution Protocol

IP Internet Protocol

 1

CHAPTER 1 INTRODUCTION

1.1 Motivation
Internet has rapidly become one of the main communication methods in our society. More

and more types of internet applications and usage are available. The more usage of

network applications, the more security risks the internet users may face.

To prevent unwanted or dangerous threats, we have to detect them first. Therefore,

developing an intrusion detection method is a challenging research issue. There are four

challenging issues about designing IDS. The first is the high accuracy and low false alarm

rates, especially, the false positive rate (which should be less than 1%) and the false

negative rate. Second, the IDS should be able to detect new/unknown attacks because

new threats evolve every day. In addition, the performance of classification algorithm in

the IDS should be good enough for real-time detection, such as computation speed,

memory consumption, etc., because there are a lot of data packets over the real network.

A bad performance can cause the system clash. Finally, the IDS should provide more

information about the attacks in order to prevent the malicious activities such as attack

type, target computer, etc.

Figure 1.1 Network Environments and Intrusion Detection System

1.2 Objective and Research Scope
In this thesis, we focus on real-time and unknown detection. The algorithm is able to

handle the attack and send an alarm message with useful information within three seconds

after the packet arrives to the system. There are two output classes from the system

including the normal class and the attack class. We are interested in designing an IDS

algorithm using fuzzy genetic algorithm. The fuzzy rule is a supervised learning technique

and a genetic algorithm which help the system find the best rule from a training dataset.

This technique has a high detection rate, a low false alarm rate, fast processing and is

robust for unknown data. Therefore, we develop the fuzzy genetic algorithm approach to

implement our real-time intrusion detection system where the input network data is

captured in the online network, and it will respond to the attack within 2-3 seconds. We

evaluate our IDS in terms of the detection speed, CPU consumption, memory

consumption, false alarm rate and overall detection rate.

 2

1.3 General Approach
KDD99 dataset is a benchmark dataset that is used in various research studies. However,

there were some research groups which generated their own datasets because the KDD99

dataset was now too old. Moreover, it did not contain the present network activities and

present attack.

In general, IDS can be classified into two types which are host-based (HIDS) and

network-based (NIDS). The HIDS analyzes information that is available on individual

computers, such as system calls and log file while the NIDS monitors information in

network traffic. The IDS can be further classified into misuse-based and anomaly-based.

The misuse-based is a pattern matching. When the packets are matched with the patterns,

they will be classified as the attacks. This technique has high accuracy and a low false

alarm rate; however, it is not robust for new attacks. The anomaly-based IDS is designed

to detect new/unknown attacks. However, it has a low detection rate when comparing

with the misuse-based IDS. The general techniques for the unknown detection are as

follows:

 Clustering is the algorithm that clusters input data into groups without training data

(unsupervised-learning) such as k-means, k-nearest neighbors. However, these

techniques have low accuracy.

 Neural network is a group of nodes which are associated with each other. The

algorithm will create a neural network structure to recognize the given information.

The neural network can work well with noisy data and incomplete data. However, it

uses high computation time.

 Fuzzy set is used to create a rule (s). The behavior which agrees with the rule will be

considered as an attack. There are many researchers using the fuzzy method because

of its robustness and efficiency in detecting unknown data.

 Artificial immune system is a concept of simulating immunology which is inspired

by a biological immune system. The intrusion detection system can be considered as

an immune system and the attack packet is pathogens. The algorithm only creates a

model of normal behavior. When the matching behavior is not found, it will be labeled

as an attack.

1.4 Research Contribution
In summary, we make the following contribution:

1. We develop a real-time ID that detects both known and unknown attacks.

2. We improve performance of unknown detection with our proposed approach and

compare the results with those from the existing methods.

3. We demonstrate the real time in a real-time network environment.

1.5 Report Overview
This research proposal is organized as follows: in chapter two, there are background study

and literature review. Then, chapter three describes the detection approach. The

experimental designs and results will be presented in chapter four, and chapter five is the

conclusion.

 3

CHAPTER 2 LITERATURE SURVEY AND BACKGROUND

STUDY

2.1 Literature Survey
In this chapter, we present literature review consisting of two parts which are offline IDS

and online IDS (real-time). The offline data uses KDD99 dataset which is a benchmark

dataset. In this section, we focus on comparing various techniques for intrusion detection.

Besides, we compare the performances of each technique, such as a detection rate, a false

alarm rate and limitation. For the online IDS, we focus on a new technique to preprocess

data in an actual network environment and testing environment.

2.1.1 IDS for Offline Data
Gómez and León [1] proposed a Fuzzy Genetic Algorithm to classify behavior of

intrusion into two classes (normal class and attack class). This algorithm could be trained

by one class (normal class). The behavior different from the training class would be

classified as an attack. They used KDDC99 dataset which had four attack types including

DoS, Probe, R2L and U2R. In the KDD99 dataset, they found that there were some

features that had the same value for each record, so they reduced the number of the

features into 33 features. The dataset was divided into two sets including the training set

and the testing set. The training set had only the normal data containing 2,000 records.

The highest obtained detection rate was 98.28% with 5% of the false alarm rate.

Banković et al. [2] proposed an interesting Fuzzy Genetic Algorithm Approach to reduce

the number of the features in the dataset and maintain the high detection rate. From the

experiment, they found that there were three features that were relevant. There were two

experiments: the first experiment had two output classes (normal class and attack class).

The accuracy of the detecting attack (TN) was 94.87% with 1.62% of the false positive.

The second experiment had four classes (the fuzzy rule could identify each type of the

attacks including the normal class, the portsweep class, the smurf class and the neptune

class). From this experiment, the maximum detection rate was 87.6% because there was

only 30% of the detection rate of the portsweep. These two experiments used the KDD99

dataset. However, the training dataset had 976 records (137 of attack records and 839 of

normal records) and the testing dataset had 977 records (234 of attack records and 743 of

normal records). Moreover, they considered only three types of the attacks which were

the portsweep, smurf and neptune.

Tsang et al. [3] proposed Multi-Objective Genetic Fuzzy Intrusion Detection System

(MOGFIDS) for detecting anomaly attack. There were three objectives for MOGFIDS:

having the high classification rate, reducing the number of fuzzy rules and reducing

complexity of fuzzy rules. This experiment used 10% version of KDD99 dataset for

training including four attack types (DoS, Probe, R2L and U2R). However, they found

that the dataset was biased against DoS (Neptune attack and Smurf attack). In order to

make the training set more realistic, they sampled 1,000 records for each type of the DoS,

10,000 records of the normal and the remaining intact number of the records of other

attacks (the number of the training set was 20,752 records). The testing set used 311,029

records with additional 14 unseen attack types. The result showed that this algorithm

with 27 features gave 92.77% of the detection rate and 1.6 of the false positive rate.

 4

Ensafi et al. [4] proposed optimizing fuzzy K-means for network anomaly detection using

particle swarm optimization (PSO). Two versions of the KDD99 dataset were used (full

version and 10% version). The training dataset had only the normal class from the 10%

version. The testing dataset consisted of 60,592 records of the normal class and 250,436

of the attack class. Figure 2.1 presents the diagram of the proposed work. Particles swarm

and K-means clustering was used together to cluster the dataset in each generation. A

genetic algorithm was used to find the best solution. The output classes were Normal,

DoS, R2L, U2R and Probe, and the detection rate was 95 % with 2.12% of the false alarm

rate.

Figure 2.1 Optimizing fuzzy K-means for network anomaly framework [4]

Fries [5] proposed a Fuzzy Genetic Algorithm Approach. This work had two phases:

preprocessing phase and detection phase. In the preprocessing phase, they used clustering

and genetic algorithm to find the significant features. The result showed that there were

8 relevant features. In the detection phase, they evaluated the algorithm by using the 10%

version of the KDD99 dataset as the training set (about 500,000 records) and the full

version of the KDD99 dataset as the testing set (about 5 million records). In the testing

set, there were 14 types of new attacks that were not presented in the training set. The

detection rate was 99.6% with 0.2 of the false positive rate. They found that this algorithm

had the high detection rate and was robust for an untrained attack.

Abadeh et al. [6] proposed a genetic fuzzy algorithm. They used three different kinds of

genetic fuzzy systems based on Michigan, Pittsburgh and iterative rule learning. The

algorithm could be classified into five classes (Normal, U2R, R2L, DoS, and Probe). The

distribution of the training dataset and the testing dataset is shown in Table 2.1. The result

showed that the Pittsburgh method had the highest detection rate of 99.53% with 1.94%

of the false alarm rate.

 5

Table 2.1 Distribution of different classes in training and testing datasets [6]

Attack Type Train Test

Normal 100 1,000

U2R 50 59

R2L 100 1,000

DoS 300 6,500

PORBE 100 1,000

Total 650 9,559

Ngamwitthayanon and Wattanapongsakorn [7] proposed a Fuzzy-Adaptive Resonance

Theory (ART) in network anomaly detection with feature-reduction dataset. The

Adaptive Resonance was a type of the neural network algorithm. The main algorithm was

the ART algorithm while the Fuzzy was used to simplify a network structure of the ART.

Moreover, they applied a feature reduction method with the KDD99 dataset. This

approach increased the detection rate to 98.96% and used only14 features. However, this

algorithm indicating the similar problem as the previous algorithm was impractical in the

real network. Also, it did not provide enough information for a protection system.

Table 2.2 Detection rate with different numbers of KDD99 features [7]

Dataset
Number of

Features
Detection Rate (%)

1 7 98.87

2 9 99.44

3 12 98.98

4 14 98.93

5 22 99.12

6 24 99.20

7 41 97.96

Muda et al. [8] proposed a detection solution by combining of the K-means algorithm and

the Naïve Bayes algorithm. The first step of the algorithm was using the K-means

algorithm to categorize data into two classes; normal class and attack class. Then, the

Naïve Bayes algorithm was used to classify the previous results into attack types. They

sampled 49,402 records of the training set from the 10% version of the KDD99 dataset

and another 49,402 records from the full version of the KDD99 which had more 14 types

of new attacks. The detection rate was 99.6%. However, this solution was impractical for

a real network environment because the K-Means algorithm required time to process. It

could cause the bottleneck problem in network traffic or system clash.

Seungmin et al. [9] proposed a self-organizing map (SOM) combined with the K-means

algorithm to classify untrained attacks. The system was able to learn from the new data.

There were three phases consisting of an adjusting SOM network, updating centroid (K-

means algorithm) and splitting normal cluster. The cluster system could divide the output

into two classes (normal class and attack class). They sampled the dataset from the

KDD99 dataset. The size of the sampling dataset was 20,000 records which consisted of

1% of the attack and 99% of the normal class. They reduced the number of features into

 6

eight features (2, 3, 4, 10, 12, 23, 33 and 35). The average detection rate in this work was

89.7% with 2.43 of the false positive rate.

Chandrasekhar and Raghuveer [10] proposed an intrusion detection technique using the

K-means, fuzzy neural network and the SVM algorithm. They found that a rule based

system was worse when encountering with a large scale of the data, so they introduced

the artificial neural network (ANN) for this system [Figure 2.2]. First, they used the K-

mean algorithm to cluster the dataset into n clusters (each cluster was the type of

intrusion). In each cluster, there was a neuro-fuzzy to learn the pattern. The neuro-fuzzy

in each cluster was used to generate the SVM vector to classify attacks (the neuro-fuzzy

algorithm helped to decrease a number of attributes in SVM). They sampled the training

dataset and testing dataset from a 10% version file of the KDD99 dataset which consisted

of 26,114 records for the training dataset and 27,112 records for the testing dataset (Table

2.3). The accuracy of each attack was 98% for DoS attack, 97.31% for Probe, 97.51 for

R2L and 97.52 for U2R. Total detection rate was 98.48% with 2.41 % of the false positive

rate.

Figure2.2 Block diagram of proposed IDS from using K-means, fuzzy neural network

 and SVM algorithm [10]

Table 2.3 Data record taken for training and testing in [10]

 Normal DoS PROBE R2L U2R TOTAL

Training 12,500 12,500 1,054 39 21 26,114

Testing 12,500 12,500 2,053 38 21 27,112

 7

Table 2.4 Summary of Offline IDS

Year Author Algorithm DR(%) FP(%) Feature Output

2006

[1]
Gómez and León Genetic Fuzzy 98.28 N/A 33 Normal, Attack

2007

[2]
Banković et al Genetic Fuzzy

94.87 0-1.62

3

Normal, Attack

87.6 0

Normal,

Portsweep,

Smurf and

Neptune

2007

[3]
Tsang et al. Genetic Fuzzy 92.77 1.6 27

Normal, Probe,

DoS, U2R, R2L

2008

[4]
Ensafi et al

Fuzzy K-means

and PSO
95.9 2.12 33

Normal, Probe,

DoS, U2R, R2L

20010

[5]
Fries Genetic Fuzzy 99.6 0.2 8 Normal, attack

2010

[6]
Abadeh et al. Genetic Fuzzy 99.53 1.94 21

Normal, Probe,

DoS, U2R, R2L

2011

[7]

Ngamwitthayanon

and

Wattanapongsakorn

Fuzzy and

ART
 98.96 N/A 14 Normal, Attack

2011

[8]
Muda et al.

K-means+

naïve bayes

technique

99.8 0.09 41
Normal, Probe,

DoS, U2R, R2L

2011

[9]
Seungmin et al.

SOM and

K-means
89.7 2.43 8 Normal, attack

2013

[10]
Chandrasekhar et al.

K-means,

fuzzy neural

network and

SVM

98.48 2.41 N/A
Normal, Probe,

DoS, U2R, R2L

** DR = Detection Rate

** FA = False Alarm

** N/A not available

 8

2.1.2 IDS for Online Data
Labib and Vemuri [11] proposed a real-time intrusion detection system by considering

10 features of header packets. Each record was the statistic data which was collected in

every 50 packets. Then, they used SOM as an algorithm to classify attacks. The outputs

were normal and DoS attacks. On the other hand, it needed a human expert to visualize

the output data.

Amini et al. [12] proposed a real-time intrusion detection system using neural network

algorithms (Adaptive Resonance Theory (ART) and Self-Organizing Map (SOM)) to

classify normal packets and attack packets (two classes) as shown in Figure 2.3. They

generated the attacks and collected the attack data by using attack tools as shown in Table

2.5 (left). They collected normal traffic in a real traffic network within 4 days. So, they

created their own dataset which consisted of training data (5,000 packets) and testing

dataset (3,000 packets). They preprocessed the packets into 27 features as shown in Table

2.5 (right). The result showed that the ART had the higher detection of 97.42%. The result

is shown in Table 2.5.

Figure 2.3 RT-UNNID systems [12]

Table 2.5 Real-time detection rate of RT-UNNID using SOM ART-1 and ART-2 [12]

 ETTR TR FPR FNR

ART-1 71.71 97.42 1.99 0.59

ART-2 73.18 97.19 2.3 0.51

SOM 83.44 95.74 3.5 0.77

**ETTR is exact true types detection rate

 TR is true detection rate

 FPR is false positive detection rate

 NFR is false negative detection rate

 9

Table 2.6 Attack name (left) and feature name in proposed approach (right) [12]

Attack name
Attack

generation tools

Train

dataset

Test

dataset

Category Feature

1 Bonk targa2.c √ √ - protocol

2 Jolt targa2.c √ √
IP diff-time

stamp

3 Land targa2.c √ √ ip id

4 Saihyousen targa2.c √ √ IP tos

5 TearDrop targa2.c √ √ ipttl

6 Newtear targa2.c √ √ ipheaderlen

7 1234 targa2.c √ √ iplen

8 Winnuke targa2.c √ √ is home srcip

9 Oshare targa2.c √ √ is home dstip

10 Nestea targa2.c √ √ is land

11 SynDrop targa2.c √ √ ip frag flag

12 Octopus Octopus.c √ √ TCP tcpsrc port

13 KillWin KillWin.c √ √ tcpdst port

14 Twinge Twinge.c √ √ tcp fin

15 TcpWindowScan Nmap √ √ tcpsyn

16 SynScan Nmap √ √ tcprst

17 Neptune FireHack √ √ tcp push

18 Dosnuke FireHack √ √ tcpack

19 Smbdie Smbdie.exe √ √ tcpurg

20 XmassTree-Scan Namp √ √ tcp offset

21 LinuxICMP linux-icmp.c - √ tcp win size

22 Moyari13 Moyari13.c - √ UDP udpsrc port

23 Sesquipedalian.c Sesquipedalian - √ udpdst port

24 Smurf smurf4.c - √ ICMP icmp type

25 OverDrop overdrop.c - √ icmp code

26 OpenTear opentear.c - √ icmp id

27 ExhoChargen FireHack - √ icmp sequence

Pukkawanna et al. [13] proposed the Lightweight Detection system (LD2) to detect Denial

of Service Attack (DoS). The target attacks included SYN Flood, ICMP flood, Port scan

Host scan, UDP flood and smurf. The system preprocessed the network into five features

(srcIP, protocol, dstIP, srcPort, and dstPort). The background traffic environment had two

types: controlled environment and real traffic environment. In the controlled network

environment, they used Iperf to generate the UDP traffic in various rates. In the real

network environment, they replied traces by using tcpreplay. The trace was sampled from

WIDE Backbone (100-150 Mbps). In each experiment, they generated a DoS attack on

the top of a single background trace. Figure 2.4 showed the graph pattern that the system

used for detecting each type of the attacks. For example, SYN flood had the same (srcIP,

prot, dstIP, dstPort) but various srcPort. Thus, the detection system needed the training

process in order to find a threshold for each attack type (Table 2.7). They generated

multiple attacks at once (12 instances). The experiment result showed that the LD2

 10

performed well with the 100% detection rate (except a host scan that could not detect

some activities) with no false positive. They also evaluated a system performance in term

of CPU consumption and memory consumption by using a systat tool. It showed that the

increasing packet rate of a background also increased the CPU usage [Figure 2.5]. The

maximum CPU utilization of the LD2 was 16% at 7,000 pps and the memory consumption

was 20 MB. The behavior of the memory consumption is shown in [Figure 2.6].

Figure 2.4 DoS attack graphlets [13]

Figure 2.5 CPU initialized for LD2 (left) and Snort (right) [13]

Figure 2.6 Memory usage for LD2 (left) and Snort (right) [13]

 11

Table 2.7 Threshold for attack graphlets [13]

Dos Type Threshold Parameters (per minute) Upper Bound Suggest Value

SYN flood Source ports 1,998 1,598

UDP flood Number of UDP packets 1,918 1,534

ICMP flood

Number of ICMP packets to broadcast

address 2,151 1,721

Smurf

Number of ICMP packets to broadcast

address 2,151 1,721

Port scan Destination ports 394 313

Host scan Destination IP adresses 5 4

Su [14] proposed the real-time IDS for large-scale attacks by using fuzzy association

rules. The technique derived features from a packet header from the open network within

every 2 seconds (one record per two seconds). There were 16 features used in this

technique as shown in Table 2.8. The system architecture is shown in Figure 2.7. The

computer A preprocessed data from a real network and sent a record to the computer B

to create a fuzzy rule. The computer D compared the rules between the computer B and

C to find the attacks. This experiment was tested on 30 DoS attacks. A network topology

is shown in Figure 2.8. IP traffic (a sender) was a computer used to generate the

background traffic, such as TCP packets, UDP packets, ICMP packets and ARP packets.

It connected to the internet. There was the IP traffic (a receiver) located in the local

network. An attack generator was used to generate attacks (DoS) where the victim was

found in the local network. The system was also located in the local network. It monitored

the traffic in the local network. The traffic rate during the experiment was 0-80 Mbps.

The result is shown in Figure 2.9. We can see that the system responded to the attack five

time units (10 seconds) after the system was attacked. This system could only give an

alarm signal when the network was under attack. However, it could not provide any useful

information to prevent the network from malicious network activities.

Figure 2.7 Architecture of NIDS [14]

 12

Figure 2.8 Network topology for simulation [14]

Figure 2.9 Similarity degradation during flooding for DoS.Win32.IIS [14]

Table 2.8 Feature list of real-time network IDS for large-scale attacks based on

an incremental mining approach [14]

Protocol Feature

1 TCP source IP+SYN count

2 TCP source IP+URG_Flag+URG_data count

3 TCP Source IP+ACK-Flag+ACK count

4 ARP Source IP+ARP count

5 IP Destination IP slots hit

6 IP Header length 1=20 count

7 IP MF_Flag count

8 IP (total length > 1400||<40)&&TTL=64 count

9 IP Checksum_error count

10 TCP ACK_Flag+ACK count

11 TCP Checksum_error count

12 UDP Same_length_interval count

13 ICMP Type error count

14 ICMP Checksum_error count

15 ICMP Checksum_error count

16 ICMP Length>1000count

 13

Komviriyavut et al. [15] proposed a real-time detection. They used a packet sniffer to

sniff the packets in the network every 2 seconds and preprocessed it into 13 features by

counting the number of connections between two IP addresses every 2 seconds [Table

2.9]. They also used the decision tree algorithm to classify the data. In order to evaluate

the performance, they collected the normal data from the network traffic in the

Department of CPE from KMUTT. They simulated the attacks in a closed environment

by using attack tools which consisted of 18 types of attacks [Table 2.10]. The dataset

could be categorized into 3 types; DoS, Probe and normal data. The result showed that

this algorithm had 97.5 percent of the detection rate. This technique was efficient to be

used in an actual network environment in terms of speed, memory consumption and CPU

consumption.

Examples of the record of the normal network data from the preprocessing phase are

shown below.

2138,33,33,4,4,644,2136,0,0,0,0,0,0,Normal

12,2,2,0,0,1,12,0,0,0,0,0,0, Normal

Table 2.9 Features in online dataset [15]

No. Feature Description Data Type

1 Number of TCP packets Integer

2 Number of TCP source ports Integer

3 Number of TCP destination ports Integer

4 Number of TCP fin flags Integer

5 Number of TCP syn flags Integer

6 Number of TCP reset flags Integer

7 Number of TCP push flags Integer

8 Number of TCP ack flags Integer

9 Number of TCP urgent flags Integer

10 Number of UDP packets Integer

11 Number of UDP source ports Integer

12 Number of UDP destination ports Integer

13 Number of ICMP packets Integer

Kachurka and Golovko [16] proposed a neural network approach for real-time network

intrusion detection. This algorithm could detect the attacks without the training dataset.

This experiment considered three different types of the attacks: tcp scan, sysn flood and

udp flood (500 records of each attack). The feature names of each record were timestamp,

duration of connection in seconds, source’s and destination’s IP-addresses, name of the

service used, port number, the number of bytes transferred and the result flag of the

connection. They used both KDD99 dataset and real-time dataset to evaluate the

algorithm. This technique was able to detect unknown attacks at least 97% of the detection

rate for each type of the attacks (use the KDD99 dataset to evaluate).

Casas et al. [17] proposed Unsupervised Network Intrusion Detection (NIDSs) using Sub-

Space Clustering Algorithm and Multiple Evidence Accumulation Algorithm. The NIDSs

was able to detect attacks without the training dataset. The system was tested in an offline

environment (with the KDD99 dataset) and an online environment. In the online

environment, they used the traffic trace from the MAWI repository of the WIDE project

and the METROSEC project. These two network traces were generated over the past ten

 14

years. They preprocessed the data network into 9 features [Table 2.11]. The algorithm

could be classified into two classes which were a positive class (attack) and a negative

class. The result showed that 90% of the attacks were correctly detected.

Table 2.10 Attack names in the dataset [15]

No. Data Tools (to Generate) Category

1 Smurf Smurf.c DoS

2 UDP Flood Net Tools 5 DoS

3 HTTP Flood Net Tools 5 DoS

4 Jping Jping.c DoS

5 Port Scan Net Tools 5 Probe

6 Advance Port Scan Net Tools 5 Probe

7 Host Scan Host Scan 1.6 Probe

8 Connect NMapWin 1.3.1 Probe

9 SYN Stealth NmapWin 1.3.1 Probe

10 FIN Stealth NmapWin 1.3.1 Probe

11 UDP Scan NmapWin 1.3.1 Probe

12 Null Scan NmapWin 1.3.1 Probe

13 Xmas Tree NmapWin 1.3.1 Probe

14 IP Scan NmapWin 1.3.1 Probe

15 ACK Scan NmapWin 1.3.1 Probe

16 Window Scan NmapWin 1.3.1 Probe

17 RCP Scan NmapWin 1.3.1 Probe

18 Normal Actual Environment Normal

Table 2.11 Features used in NIDSs [17]

No. Feature Description Abbreviation

1 Number of source IP nSrcs

2 Number of destination IP NDsts

3 Number of TCP source ports nSrcPorts

4 Number of TCP destination ports nDstPorts

5 Ratio of number of sources to number of destination nSrcPorts/nDstPorts

6 packet rate nPkts/sec

7 fraction of ICMP packets nICMP/nPkts

8 number of SYN packets nSYN/nPkts

9 average packets size avgPktsSize

 15

Table 2.12 Summary of Online IDS

Year Author Algorithm DR(%) FP(%)
Number of

Features
Output

2002

[11]

Labib and

Vemuri
NSOM - 10 Normal, DoS

2005

[12]
Amini et al.

Neural

Network (ART

and SOM)

97.427 1.99 27
Normal,

Attack

2007

[13]

Pukkawanna et

al.

BLINd

classification

100
(accept host

scan)

0

 (accept host

scan)
5

SYN Flood,

ICMP flood,

Port scan Host

scan, UDP

flood and

smurf

2009

[14]
Su et al.

Fuzzy

association

rules

N/A N/A 16 Normal, DoS

2009

[15]

Komviriyavut et

al.

Decision Tree

and Rule Based
97.5 0.6 13

Normal, DoS,

Probe

2011

[16]

Kachurka and

Golovko[14]

Neural

Network

N/A N/A 16
Normal,

Attack

2012

[17]
Casas et al. Clustering N/A N/A 9

Normal,

Attack

2.2 Background Study

2.2.1 Artificial Intelligence (AI) [18]. Major AI researchers and textbooks define the

field as “The study and design of intelligent agents” where an intelligent agent is a system

that learns from giving knowledge and takes action that maximizes its chances to achieve

its goal.

John McCarthy : "the science and engineering of making intelligent machines"

2.2.2 Machine Learning [19], a branch of artificial intelligence, is about the construction

and study of systems that can automatically learn from experiences and get more accurate

results. The definition of the machine learning is described as follows:

Arthur Samuel : "Field of study that gives computers the ability to learn without being

explicitly programmed"

Tom M. Mitchell : "A computer program is said to learn from experience E with respect

to some class of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E"

http://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)
http://en.wikipedia.org/wiki/Learning
http://en.wikipedia.org/wiki/Arthur_Samuel
http://en.wikipedia.org/wiki/Tom_M._Mitchell

 16

The learning process of the machine learning can be categorized into four types of the

machine learning described as follows: [20]

1. Supervised learning: during the learning process, the system will be told by the

training dataset what is correct and what is not correct.

2. Unsupervised learning: during the learning process, the correct answers are not

provided; the algorithm will identify similarity of the input data and categorize

the similar input together instead.

3. Reinforcement learning: during the learning process, the algorithm will be told

what is wrong but not be told what is correct. It has to explore and try out different

possibilities until it works out how to get the right answer.

4. Evolutionary learning: biological evaluation can be considered as a learning

process such as the process that living things adapt their generation to survive in

an environment.

There are many ideas proposed to make the algorithm learn. In this work, we are

interested in combining fuzzy logic and genetic algorithms together which is a supervised

learning approach.

2.2.3 Fuzzy Logic can help in decision making or reasoning in an uncertain situation.

From Figure 2.10, the fuzzy value is in a range of completely true and completely false

but Boolean logic has only true or false.

Figure 2.10 Boolean logic and fuzzy logic

Fuzzy logic uses a membership function to find a solution in an uncertain situation. There

are many types of fuzzy functions such as a triangular membership function and a

trapezoidal membership function.

For example:

The trapezoidal membership function has three parameters {a, b, c, d} and x is an

input value. The fuzzy value (from the input x) will be calculated using the

conditions from Figure 2.11.

 17

Figure 2.11 Trapezoidal membership function [22]

2.2.4 Fuzzy Rule contains many fuzzy logics by using an if-then condition. Figure 2.12

presents a fuzzy rule by using many fuzzy logics where xi is a fuzzy value that is

calculated from the fuzzy logic i, Ai is a threshold value from the fuzzy logic i. All input

values will be calculated using the fuzzy logic. When all fuzzy values match to rule 1

then the rule will classify it in to Class A.

Figure 2.12 Fuzzy rule

2.2.5 Genetic Algorithm (GA) Genetic algorithms are the evolutionary technique that

uses the crossover and mutation operators to solve the optimization problems including

NP-hard (non-polynomial) problems. It uses a natural evolution concept of only a

“strongest or best solution” will survive among evolution of various populations. The

technique does not guarantee an optimal solution. However, it can give a well-enough

solution in the given time period. The genetic main algorithm process consists of the

following approaches:

 Encoding: each gene is a parameter that a genetic algorithm uses for

solving problems. The sequence of the genes is called a chromosome. A

chromosome is one solution of that problem.

Figure 2.13 Example of chromosome

 18

 Crossover: the approach to create a new chromosome from an existing

chromosome by exchanging parts of the chromosomes (genes) between

two chromosomes. In Figure 2.10, parent 1 and parent 2 exchange the

chromosomes in a single point and multiple points.

Figure 2.14 Genetic algorithm crossover multi values

 Mutation: the approach to create a new chromosome from an existing

chromosome by randomly choosing the chromosome and randomly

changing the gene.

 Evaluation: the function plays an important role in genetic algorithms. It

is used to define the value of the chromosome.

 19

2.2.6 KDD99 Dataset

KDD99 dataset is a benchmark dataset for an intrusion detection system. It was

established in 1999 from MIT Lincoln labs in order to evaluate research results in

intrusion detection. The Lincoln labs used the TCP dump to capture the local-area

network in the Air Force environment. It was also used with multiple attacks. There were

two file versions of the KDD99 dataset: 10% version file (about 500,000 records) and full

version file (about 5 million records). Table 2.13 shows a number of the records and a

number of the distinct records of each attack type in the 10% version file. Table 2.14

shows 41 features of the dataset.

Table 2.13 Number of each attack in 10% version file of KDD99 dataset [21]

Attack #Original Records #Distinct Records Class

normal 97,277 87,831 Normal

back 2,203 994 DoS

land 21 19 DoS

neptune 107,201 51,820 DoS

pod 264 206 DoS

smurf 280,790 641 DoS

teardrop 979 918 DoS

satan 1,589 908 Probe

ipsweep 1,247 651 Probe

nmap 231 158 Probe

portsweep 1,040 416 Probe

guess_passwd 53 53 R2L

ftp_write 8 8 R2L

imap 12 12 R2L

phf 4 4 R2L

multihop 7 7 R2L

warezmaster 20 20 R2L

warezclient 1,020 1,020 R2L

spy 2 2 R2L

buffer_overflow 30 30 U2R

loadmodule 9 9 U2R

perl 3 3 U2R

rootkit 10 10 U2R

Total 494,020 145,740

Examples of the data records in the KDD99 dataset:

0,tcp,http,SF,241,261,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,34,16

9,1.00,0.00,0.03,0.04,0.00,0.00,0.00,0.00,normal.

0,tcp,other,REJ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,511,1,0.14,0.00,0.86,1.00,0.00,1.00,0.00,255,

1,0.00,1.00,0.00,0.00,0.13,0.00,0.87,1.00,satan.

0,icmp,ecr_i,SF,1032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,510,510,0.00,0.00,0.00,0.00,1.00,0.00,0.0

0,255,255,1.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,smurf.

0,tcp,private,REJ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,132,8,0.00,0.00,1.00,1.00,0.06,0.07,0.00,25

5,8,0.03,0.06,0.00,0.00,0.00,0.00,1.00,1.00,neptune.

0,udp,private,SF,28,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,34,34,0.00,0.00,0.00,0.00,1.00,0.00,0.00,25

5,1,0.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,teardrop.

 20

Network attacks fall into four main categories.

 Denial of Service (DoS) is a network attack that causes computer resources to be

unavailable. DoS can happen from a person or multiple people. The target of the

DoS attack is to serve a host on a high-profile web server such as banks, credit

card payment gate way. Attackers attempt to force victims to either reset or

consume network resources in order to destroy services. There are many methods

used for this attack such as SYN flood, Tear drop attack and Peer to per attack.

 Port Scan (Probe). Port scanner is a tool designed to probe a server for an open

port. Attackers can use this application to monitor behavior of the target and

exploit vulnerability of that target.

 Remote to Local Attack (R2L). Attackers send packets to a machine and exploit

machine’s vulnerability to gain the local access as an authenticated user, such as

a password guessing attack.

 User to Root (U2R). Attackers will start normal access to a user account and

exploit vulnerability in order to gain unauthorized access to the root. In common,

this kind of the attack can cause the buffer overflow.

Table 2.14 Forty one features of KDD99 dataset [21]

Feature Description Type

1 Duration duration of the connection. Cont.

2 protocol type connection protocol (e.g. tcp, udp) Disc

3 Service destination service (e.g. telnet, ftp) Disc.

4 Dlag status flag of the connection Disc.

5 source bytes bytes sent from source to destination Cont.

6 destination bytes bytes sent from destination to source Cont.

7 Land

1 if connection is from/to the same host/port; 0

otherwise Disc.

8 wrong fragment number of wrong fragments Cont.

9 Urgent number of urgent packets Cont.

10 Hot number of “hot” indicators Cont.

11 failed logins number of failed logins Cont.

12 logged in 1 if successfully logged in; 0 otherwise Disc.

13 # compromised number of “compromised’’ conditions Cont.

14 root shell 1 if root shell is obtained; 0 otherwise Cont.

15 su attempted 1 if “su root’’ command attempted; 0 otherwise Cont.

16 # root number of “root’’ accesses Cont.

17 # file creations number of file creation operations Cont.

18 # shells number of shell prompts Cont

19 # access files number of operations on access control files Cont.

20 # outbound cmds number of outbound commands in an ftp session Cont.

21 is hot login 1 if the login belongs to the “hot’’ list; 0 otherwise Disc.

22 is guest login 1 if the login is a “guest’’ login; 0 otherwise Disc.

 21

Table 2.14 Forty one features of KDD99 dataset [21] (Continued)

Feature Description Type

23 Count

number of connections to the same host as the current

connection in the past two seconds Cont.

24 srv count

number of connections to the same service as the current

connection in the past two seconds Cont.

25 serror rate % of connections that have “SYN’’ errors Cont.

26 srvserror rate % of connections that have “SYN’’ errors Cont.

27 rerror rate % of connections that have “REJ’’ error Cont.

28 srvrerror rate % of connections that have “REJ’’ error Cont.

29 same srv rate % of connections to the same service Cont.

30 diff srv rate % of connections to different services Cont.

31 srv diff host rate % of connections to different hosts Cont.

32 dst host count count of connections having the same destination host Cont.

33 dst host srv count

count of connections having the same destination host

and using the same service Cont.

34 dst host same srv rate

% of connections having the same destination host and

using the same service Cont.

35 dst host diff srv rate % of different services on the current host Cont.

36

dst host same src port

rate

% of connections to the current host having the same src

port Cont.

37 dst host srv diff host rate

% of connections to the same service coming from

different hosts Cont.

38 dst host serror rate

% of connections to the current host that have an S0

error Cont.

39 dst host srvserror rate

% of connections to the current host and specified

service that have an S0 error Cont.

40 dst host rerror rate

% of connections to the current host that have an RST

error Cont.

41 dst host srvrerror rate

% of connections to the current host and specified

service that have an RST error Cont.

 22

CHAPTER 3 RESEARCH MOTHODOLOGY

From the literature review presented in chapter 2, the Fuzzy Logic was often chosen as

an approach for network intrusion detection with low research consumption. It was also

robust for unknown attack detection. Thus, we are interested in the Fuzzy Logic and the

Genetic Algorithm. The Genetic Algorithm can help the fuzzy logic to learn a new

data/solution in changing an environment. Therefore, the fuzzy genetic algorithm is

chosen for our network-based intrusion detection. Moreover, we test the performances of

our intrusion detection approach with both known and unknown network data.

Chapter three is organized as follows: the overview of our IDS system is described at the

beginning of the chapter. Then, section 3.1 explains how our IDS preprocesses the online

data and shows examples of the online dataset. Section 3.2 shows an IDS algorithm (fuzzy

genetic algorithm), section 3.3 explains the testing method and evaluation criteria of our

IDS system and section 3.4 displays simulation tools.

Figure 3.1 Real-time detection model

Preprocessing

phase
Internet

Package Sniffer

Sniff package data and extract it

into 12-feature records

Trained with dataset

Rules

Verifying Fuzzy rules

Detection Algorithm

Predict Output Class

Log File

Detection Rate

Training phase Testing phase

OR
offline processing

online processing

 23

Our Real-time IDS, shown in Figure 5, consists of three phases: the pre-processing phase,

the training phase and the testing phase. First, we create a network dataset by capturing

the network data in CPE department of King Mongkut’s University of Technology

Thonburi in different time in a day for 1 month. The data packets are pre-processed using

a packet header. The essential features which represent the network activity are extracted

from this data. The extracted features are considered as the key-signature features,

representing the main characteristics of the data. Then, the pre-processed data with the

key signature extraction is sent to the training phase so that we can obtain fuzzy rules. In

the training phase, the fuzzy rules are evolved by a genetic evolution concept. We can

evaluate the performances of the fuzzy rules in the testing phase. Moreover, we can use

the fuzzy rules to detect network attacks in an actual network environment.

3.1 Preprocessing Phase
In the pre-processing phase, we use a packet sniffer to extract network packet information

as described in Komviriyavut et al [15]. This is shown in Figure 5. Each record consists

of 12 data features. The features along with the data types are shown in Table 1.

Table 3.1 Twelve essential features in pre-processed data [15]

No. Feature Description Data Type

1 number of tcp packets integer

2 number of tcp source ports integer

3 number of tcp destination ports integer

4 number of tcp fin flags integer

5 number of tcpsyn flags integer

6 number of tcp push flags integer

7 number of tcpack flags integer

8 number of tcp urgent flags integer

9 number of udp packets integer

10 number of udp source ports integer

11 number of udp destination ports integer

12 number of icmp packets integer

The packet will be captured using Jpcap library [ref] for information extraction, the

program will consider a connection between any two IP addresses (source IP and

destination IP) and form a record for every 2 seconds. Then, the record will be sent to the

detection phase in order to classify the attacks.

 24

Examples of the data records where each record has 12 feature values and is labeled with

its type (i.e. a normal data or an attack) can be shown as follows:

21,21,15,0,21,0,0,0,0,0,0,0, attack

169,2,90,169,0,0,0,0,0,0,0,0, attack

0,0,0,0,0,0,0,0,0,0,0,12683, attack

6,2,2,2,0,2,6,0,0,0,0,0, normal

111,2,2,0,0,2,111,0,0,0,0,0, normal

102,2,2,0,0,1,102,0,0,0,0,0, normal

3.2 Training Phase
In the detection phase, we use the fuzzy genetic algorithm as described in Fries [2]. The

algorithm uses the data from a log file with the fuzzy genetic algorithm to train the rule.

In this section, we will describe an idea of the fuzzy algorithm in section 3.2.1, an idea of

the genetic algorithm in section 3.2.2, a methodology to encode the fuzzy rules in section

3.2.3 and the Fuzzy Genetic Algorithm in section 3.2.4.

3.2.1 Fuzzy Logic Algorithm

The fuzzy parameter is in between a range of 0-7 and the fuzzy value is between 0-1. The

fuzzy rule is applied to each feature by using this set of the parameters {a, b, c, d}.

Figure 3.2 Trapezoidal fuzzy set {a=2, b=3, c=4, d=5}

From Figure 6, we can calculate the fuzzy value using these four equations:

1. if the data records between b and c, probe =1;

2. if the data records between a and b,

3. if the data records between c and d,

4. otherwise, probe = 0;

ab

avalueattribute
prob






_

cd

valueattributed
prob






_

 25

3.2.2 Genetic Algorithm

Procedure GA:

 Initialize:

 Initialize population P(t)

 while (not (termination condition))

 {

 Create offspring F(t)

 Evaluate offspring F(t)

 Insert offspring in the population F(t)→ P(t)

 }

A Genetic Algorithm uses an evolutionary method to find the best solution. Each solution

is encoded into a string called “chromosome”. At the beginning, the chromosomes are

randomly initiated. A group of the chromosomes is called “population-P(t)” and

“offspring-F(t)”. In creating an offspring step, the algorithm creates a new set of the

chromosome using a reproduction method as described in next paragraph. Then, it

evaluates values of the offspring, and inserts the offspring F(t) to the population P(t). The

new generation of the chromosomes will be created and replaced the old generation until

it reaches stopping criteria. The stopping criterion in this experiment is set to a certain

number, such as 5,000 generations.

There are five ways of reproduction as follows:

I. Crossover: the approach to create a new chromosome from an existing

chromosome by exchanging parts of the chromosomes (genes) between two

chromosomes. We use one-point crossover, i.e.

Parent p1: A-B-C-D-|E-F-G-H-I-J

 p2: D-E-H-A-|B-J-G-F-I-C

Child c1: A-B-C-D- B-J-G-F-I-C

II. Mutation: the approach to create a new chromosome from an existing

chromosome by randomly choosing the chromosome to mutate and randomly

changing its gene(s). This approach is applied to avoid the GA trapping in a local

optimum. In our approach, we randomly choose two genes for mutation.

Parent p1: D-E-H-A-B-J-G-F-I-C

Child c1: D-E-F-A-B-A-G-F-I-C

- At point 3rd gene H mutate to F

- At point 6th gene J mutate to A

 26

III. Alien: the program creates a new chromosome by randomly choosing every gene

in the chromosome.

IV. Elitism best chromosome: the program keeps the best chromosome from the

current population. The strongest chromosome will exist in the next generation.

3.2.2 String Encoding

a. Each feature will be encoded into the string as follows:

Figure 3.3 Fuzzy encoding for each feature {a=2, b=3, c=4, d=5}

b. Each chromosome refers to each feature. The records will be encoded as

the chromosomes below which are series of fuzzy parameters for 12

features and the class at the end of the string.

Figure 3.4 Encoding string

3.2.4 Fuzzy Genetic Algorithm

A Fuzzy Rule was developed by the genetic algorithm in order to find best fuzzy rules.

The step of the algorithm is described below.

1. Initial population: Each generation has 20-50 chromosomes.

2. Finding probability: we calculate probabilities of beginning an attack for each

feature, and then summarize all features in that record.

3. Classify Attack: we set the threshold = 0.5. When the total probabilities are less

than 0.5, the record will be classified as normal.

 27

Figure 3.5 Fuzzy genetic algorithm pseudo code

4. Finding A, B , and , where

o A is a number of attack records in the dataset.

o B is a number of normal records in the dataset.

o i is a number of correctly identified attacks (αi) for each chromosome

o i is a number of normal connections incorrectly characterized as attacks

(false positive, βi) for each chromosome

o Summarize α for this generation and summarize β for this generation





n

i

ia
1


 where n is a number of records in the dataset





n

i

i

1



5. Calculate a fitness value:

The program will calculate a fitness value for each rule by using equation below.

BA
functionfitness


 [3]

6. Evolutionary process:

The program will generate next generation. The next generation includes

 20% of population from the current rule that has the highest value of

fitness

 30% of population from the crossover method

 20% of population from the mutation method

 30% of population from the alien method

Initial rules ();

while{

for each record {

 for each rule{

 for each attribute{

 prob = fuzzy();

 totalprob = totalprob + prob;

}

If (totalprob> threshold)

class is attack;

else

class is normal;

 }

compare the predicted result with actual result

find A, B, , and ,

 }

Calculate fitness

 // create next generation

 Evolutionary process();

 28

3.3 Detecting Phase
The testing phase is a process to evaluate performances of our algorithm. In this phase, a

user can select the dataset from a log-file in order to evaluate accuracy of the fuzzy rule

or connect to a real network environment in order to evaluate other performances of the

IDS such as resource consumption and computation time. There are three steps in the

testing phase as described below.

3.3.1 Data Normalization: The system will normalize each testing record to range 0-7,

the maximum and minimum bounds are imported from the training phase. If the value of

a testing record is greater than the maximum, the normalized value will be 7;

3.3.2 Data Classification: We use the rules from the training phase to classify the attack

class and the normal class. There are 2 types of classification processes.

 a. One rule classification: the program uses one rule to classify.

b. Two-rule classification: the program uses two rules together to classify network

attacks. Then, the program will compare probability of being attacked from each rule with

the threshold below.

3.3.3 Evaluation Criteria: There are four parameters that are used to evaluate accuracy

of this algorithm and are described below.

 Detection rate (DR) is the percentage of the normal and attack classes correctly

classified from the total number of the data records.

 True-positive rate (TP) is the percentage of the normal class correctly classified

from the total number of the data records.

 True-negative (TN) is the percentage of the attack class correctly classified from

the total number of the data records.

 False-positive (FP) is the percentage that the normal data records are classified as

attacks from the total number of the normal data records.

 False-negative rate (FN) is the percentage that the attacks are misclassified from

the total number of the attack records.

If probabilityrule1>threshold or probabilityesrule2>threshold)

then classify as attack.

 else

classify as normal

 29

3.4 Simulation Tools
In this work, we use simulation tools to generate attacks in close environments in order

to create training datasets and also use simulation tools to test our intrusion detection

system. There are 17 types of the attacks that are interesting for real-time datasets

including 4 types of DoS attack type and 13 types of Probe attack type. Table 3.2 shows

each name of the attacks and the simulation tools.

Table 3.2 Attack type and simulation tools [15]

No. Data Tools Category

1 Smurf Smurf.c DoS

2 UDP Flood Net Tools 5 DoS

3 HTTP Flood Net Tools 5 DoS

4 Jping Jping.c DoS

5 Port Scan Net Tools 5 Probe

6 Advance Port Scan Net Tools 5 Probe

7 Host Scan Host Scan 1.6 Probe

8 Connect Nmap Win 1.3.1 Probe

9 SYN Stealth Nmap Win 1.3.1 Probe

10 FIN Stealth Nmap Win 1.3.1 Probe

11 UDP Scan Nmap Win 1.3.1 Probe

12 Null Scan Nmap Win 1.3.1 Probe

13 Xmas Tree Nmap Win 1.3.1 Probe

14 IP Scan Nmap Win 1.3.1 Probe

15 ACK Scan Nmap Win 1.3.1 Probe

16 Window Scan Nmap Win 1.3.1 Probe

17 RCP Scan Nmap Win 1.3.1 Probe

18 Normal Actual Environment Normal

 30

CHAPTER 4 EXPERIMENTAL RESULTS

From chapter 3, our proposed algorithm is the fuzzy genetic algorithm. In this chapter,

we will demonstrate our proposed approach (fuzzy genetic algorithm) with various views.

We perform two types of experiments to evaluate our IDS including Offline IDS (section

4.1) and Online IDS (section 4.2). In the offline IDS, we implement and test our system

using an operating system: Ubuntu ver.12.04. We use two datasets including the KDD99

dataset (discussed in section 4.1.1) and the real-time dataset (discussed in section 4.1.2).

Moreover, we test our IDS with unknown attacks, shown in section 4.1.3 and compare it

with various algorithms in section 4.1.4. In the online IDS, the operating system is

Windows 7. We demonstrate the efficient IDS in terms of the detection rate and resource

consumption by using an actual network environment from the Computer Engineering

Department of KMUTT.

4.1 Offline Detection

4.1.1 Fuzzy GA with KDD99 dataset
In this experiment, we use the Fuzzy Genetic Algorithm with the KDD99 dataset. The

table shows a number of each attack in the KDD99 dataset from two different versions.

We can see that the number of records in the KDD99 dataset have different ratios for each

attack type. For example, there are many Smurf and Neptune data records and few

numbers of Land and Pod. The different numbers of the records are shown in Table 4.1.

In this experiment, we reduce the original 41 features in the KDD99 dataset into 8 features

including duration, src_bytes, num_failed_logins, root_shell, num_access_files,

serror_rate, same_srv_rate and srv_count [5].

Table 4.1 Number of records of each attack in KDD99 dataset (A-full version and

B-10% version contain approximately 5,000,000 records and 200,000 records

respectively)

Normal Attack Type #of records A #of record B

Normal Normal 97,278

Smurf Dos 2,807,886 280,790

Neptune Dos 1,072,017 107201

Teardrop Dos 979 979

Back Dos 2,203 2,203

Land Dos 21 21

Pod Dos 264 264

Ipsweep Probe 12,481 1,247

Nmap Probe 2,316 231

Portsweep Probe 10,413 1,040

Satan Probe 15,892 1,589

Total 3,924,472 494,021

 31

4.1.1.1 One-rule

First, we train our fuzzy genetic algorithm with a training dataset. Table 2 shows a result

of the fuzzy genetic algorithm in a training process. The dataset from this experiment was

randomly collected from 10% file version for training including 160,147 records of attack

data and 39,387 records of normal network data. The dataset was reduced to 8 features as

obtained [ref] and its value was normalized to be in the range of 0-7. The rule was

established and evaluated by the training dataset. There were two output classes, normal

class and attack class. From Table 2, the detection rate is 98.72% with the low false

positive of 0.13%. Table 3 shows the fuzzy rule of this experiment. There are four

parameters (a, b, c and d) for each feature. Information of the fuzzy rules is described in

section 3.2.3.

Table 4.2 Experimental result from Fuzzy Genetic Algorithm with KDD99 dataset

Name #Attack #Normal TP(%) TN(%) FN(%) FP(%) DR(%)

KDD99 dataset 160147 39,387 99.87 98.45 1.55 0.13 98.72

Table 4.3 Detection rule of KDD99 dataset obtained from training process

Fuzzy

parameter

Features

0 1 2 3 4 5 6 7

A 5 2 1 1 4 5 4 0

B 5 5 1 4 4 5 4 0

C 7 7 1 6 4 7 7 1

D 7 6 3 6 6 6 7 1

Next, we investigate in detail for each attack name used in the training dataset. In Table

4.2-1, we extract each attack from the first experiment. This experiment uses the same

dataset as shown in Table 2 (160,147 of attack records and 39,387 of normal records).

From the table, we can see that most attack types have the high detection rate except Back

and Land with the detection rate of only 16.56% and 15.58% respectively. There is the

low false negative rate of most types of the attacks except Nmap having 16.13% of the

false negative rate. However, there are a lot of attacks that have the high false positive

rate including Back (FP: 85.33%), Pod (FP: 84.66%), Ipsweep (FP: 6.64%), Nmap (FP:

6.3%) and Portsweep (FP: 6.4%). In summary, in the KDD99 dataset, there are some

attacks that the fuzzy rule cannot distinguish them from the normal network behavior

including Back, Pod, Ipsweep, Nmap and Portsweep.

These two experiments show that the KDD99 dataset have the high detection rate.

However, when investigating in detail, there is misclassification in the Back attacks and

the Pod attacks. The proportion of the attacks in the KDD99 testing dataset is affected by

the detection rate. In this case, the detection rate is biased by Smurf and Neptune which

are the main part of the whole dataset and have the high detection rate. Therefore, we

cannot use only the detection rate to evaluate the IDS.

 32

Table 4.4-1 Experimental results of Fuzzy Genetic Algorithm with KDD99 dataset

Name Class # Attack
Evaluation Criteria

DR(%)
Data input

TP(%) TN(%) FN(%) FP(%)

Back DoS 893
14.67 100.00 0.00 85.33 16.56

back +

normal

Land DoS 4 99.61 100.00 0.00 0.39 99.61 land + normal

Pod DoS 112 15.34 100.00 0.00 84.66 15.58 : :

Smurf DoS 113,842 99.24 99.90 0.10 0.76 99.73 : :

Teardrop DoS 371 98.81 100.00 0.00 1.19 98.83 : :

Neptune DoS 43,375 99.85 99.66 0.34 0.15 99.75 : :

Ipsweep Probe 479 93.36 100.00 0.00 6.64 93.44 : :

Nmap Probe 93 93.70 83.87 16.13 6.30 93.67 nmap+normal

Portsweep Probe 392 93.60 100.00 0.00 6.40 93.66 : :

Satan Probe 586 99.26 96.25 3.75 0.74 99.22 : :

Total 160,147

From Table 4.4-2, we investigated the reason that the Back attack and the Pod attack have

low detection rates. We found that the 8 features that we selected from the original 41

features were affected by the detection rate as shown in Table 4.4-2. The result showed

that when using the original 41 features with the fuzzy genetic algorithm, the detection

increased in both back attack (96.07%) and pod attack (85.05%). While using the 8

features, the detection rate decreased for the back attack (15.47%) and the pod attack

(12.19%).

Table 4.4-2 Experimental results comparing different numbers of features used for

 Back attack and Pod attack

#Feature TP (%) TN (%) FN (%) FP (%) DR (%)

41 95.99 99.68 0.32 4.01 96.07

8 13.56 100.00 0.00 86.44 15.47

a. Back attack

#Feature TP (%) TN (%) FN (%) FP (%) DR (%)

41 85.01 100.00 0.00 14.99 85.05

8 11.94 100.00 0.00 88.06 12.19

b. Pod attack

Note:

Pod attack is Ping of Death attack. The attacker sends a large size of a ping packet to a

victim. The victim cannot handle the ping packet that is larger than the maximum IPv4

packet size causing a system clash.

Back attack [24] is Denial of Service against Apache web server where a client requests

a URL containing many backslashes. The server will try to respond to these requests until

it clashes. The features that are relevant to the back attack are the following [23]:

 33

 Feature 5 (bytes sent from source to destination)

 Feature 6 (bytes sent from destination to source)

 Feature 10 (number of “hot” indicators)

 Feature 13 (number of “compromised’’ conditions)

 Feature 32 (count connections having the same destination host)

4.1.1.2 Two-rule

In this experiment, we use the fuzzy genetic algorithm to classify the KDD99 dataset in

a different way in order to find a new approach to increase the detection rate. We use two

different datasets that are sampled from 10-percent file version of the KDD99 dataset

including 199,534 records of the training dataset and 199,514 records of the testing set.

 The training dataset contains 158,597 of DoS records, 1,550 of Probe records and

39,387 of normal records.

 The testing dataset contains 158,503 of DoS records, 1,674 of Probe records and

39,337 of normal records.

There are three steps in this experiment.

 DoS Training Process: we use the training dataset to train the DoS rule by

focusing on only the DoS attack in the dataset (Class A). So, we group Probe

and Normal into the same class (Class B) in order to find the DoS rule. The rule

is shown in Table 4.6.

 Probe Training Process: we use the training dataset to train the Probe rule by

focusing on only the Probe attack (Class A). So, we group DoS and Normal into

the same class (Class B) in order to find the Probe rule. The rule is shown in

Table 4.7.

 Testing Process: In the testing dataset, we use both DoS and Probe rules

obtained previously to classify the testing dataset. The testing using these two

rules is described in section 3.3.2.

Table 4.5 Experimental results of Fuzzy Genetic Algorithm with KDD99 dataset

Dataset Name #Class A

(records)

#Class B

(records)

DR(%) FN(%) FP(%)

DoS Training process 158,597 40,937 91.93 0.21 3.91

Probe Training process 1,550 197,984 95.31 98.18 0.00

Testing process 160,177 39,337 95.88 20.45 22.85

Table 4.6 DoS rule with KDD99 dataset obtained from DoS training process

Fuzzy

parameter

Features

0 1 2 3 4 5 6 7

A 4 0 2 1 4 4 4 0

B 4 1 2 5 4 6 5 1

C 4 2 2 2 4 7 7 2

D 4 3 2 6 6 6 6 2

 34

Table 4.7 Probe rule with KDD99 dataset obtained from Probe training process

4.1.2 Fuzzy GA with Real-time Dataset
In this experiment, we use the Fuzzy Genetic Algorithm with the real-time dataset. The

output has two classes which are attack and normal. We collect the real-time dataset in

the actual network environment in our research laboratory. It is the online network data

from the Computer Engineering Department at King Mongkut’s University of

Technology Thonburi (KMUTT). There are 17 types of attacks (4 types are DoS and 13

types are Probe). There are two sets of the data including:

Training dataset with 14,300 records including

 6,300 records of the attacks, consisting of 300 records of each Probe name

and 600 of each DoS record)

 8,000 records of the normal data

Testing set with 26,500 records including

 10,500 records of the attacks (500 records of each Probe name, 1000 of

each DoS record)

 16,000 records of the normal data

4.1.2.1 One-rule

We use the Fuzzy Genetic Algorithm with the real-time dataset (Training dataset) to find

a rule for classifying the normal class and the attack class, as shown in Table 4.8. Then,

we use the Testing dataset to evaluate performances of a rule. It shows that the Fuzzy

Genetic Algorithm can classify the real-time dataset with the high detection rate (97.97%)

and the low false alarm rate (the false negative rate is 3.39% and the false positive rate is

1.14%). Table 4.9 presents parameters of the rule obtained from the training process.

There are 4 parameters (a, b, c and d) for each feature, and we have twelve features of the

network data.

Table 4.8 Experimental results of Fuzzy Genetic Algorithm with real-time dataset

Name #Attack #Normal
Evaluation Criteria

DR(%) TP(%) TN(%) FN(%) FP(%)

Real-time dataset 10500 16000 98.86 96.61 3.39 1.14 97.97

Next, we investigate in detail each attack name used in the training dataset. In Table 4.8,

we extract each attack from the first experiment. This experiment uses the same dataset

as shown in Table 4.8 (10,500 of the attack records and 16,000 of the normal records).

From the table, we can see that most of the attack types have the high detection rate but

UDP-flood and IPscan have the low detection rates of 89.59% and 86.89% respectively.

There are three types of the attacks that have the high false negative rate including

Advances Port Scan (FN: 10.20%), Connectscan (FN: 16:20%) and IPscan (FN: 16.40%).

Fuzzy

parameter

Features

0 1 2 3 4 5 6 7

A 1 2 1 2 1 0 5 3

B 2 3 2 3 1 0 5 6

C 5 5 4 3 2 0 6 1

D 6 5 6 5 7 1 6 7

 35

Moreover, there are two types of the attacks that have the high false positive rates which

are UDP-flooded (FP: 11.06%) and IPscan (FP: 13.01%).

Table 4.9 Detection rule of real-time dataset obtained from training process

Fuzzy

parameter

Features

0 1 2 3 4 5 6 7 8 9 10 11

A 4 0 0 0 0 4 3 0 0 6 0 1

B 4 1 1 1 1 4 3 1 6 6 2 1

C 6 4 2 4 3 5 3 1 7 7 7 0

D 6 7 3 6 7 7 4 2 7 7 7 7

Table 4.10 Experimental results of Fuzzy Genetic Algorithm with real-time dataset

Dataset name Type

attack

Evaluation Criteria DR

(%)
Data input

TP(%) TN(%) FN(%) FP(%)

HTTPflooded DoS 1,000 99.64 96.50 3.50 0.36 99.46 httpflooded+normal

Jping DoS 1,000 99.98 100.00 0.00 0.02 99.98 jping+normal

Smurf DoS 1,000 99.98 100.00 0.00 0.02 99.98 : :

UDPflood DoS 1,000 88.94 100.00 0.00 11.06 89.59 : :

Ackscan Probe 500 99.97 100.00 0.00 0.03 99.97 ackscan+normal

AdvancePortscan Probe 500 100.00 89.80 10.20 0.00 99.69 : :

Connectscan Probe 500 99.86 83.80 16.20 0.14 99.38 : :

Finscan Probe 500 97.42 100.00 0.00 2.58 97.5 : :

Hostscan Probe 500 100.00 97.00 3.00 0.00 99.91 : :

IPscan Probe 500 86.99 83.60 16.40 13.01 86.89 : :

Nullscan Probe 500 99.01 96.00 4.00 0.99 98.92 : :

Portscan Probe 500 99.98 100.00 0.00 0.02 99.98 : :

RCPscan Probe 500 98.63 99.00 1.00 1.38 98.64 : :

Synscan Probe 500 99.35 95.80 4.20 0.65 99.24 : :

UDPscan Probe 500 97.52 100.00 0.00 2.48 97.59 : :

Winscan Probe 500 99.98 100.00 0.00 0.02 99.98 : :

XmasTree Probe 500 99.11 99.40 0.60 0.89 99.12 : :

4.1.2.2 Two-rule

In Table 4.11, we use two rules to classify the network dataset as we perform in section

4.1.1 but change the dataset to the real-time dataset. In this experiment, we use the training

dataset to create rules and use the testing dataset to test in a testing process. The result is

shown in Table 4.11. We can increase detection rate to 95.88% with low false positive

rate. In Tables4.12 and 4.13 present Probe rule and DoS rule obtained from the training

process, respectively.

 36

Table 4.11 Detection rate of real-time dataset from using two rules of Fuzzy Genetic

Algorithm

Dataset name #C-Attack #C-Normal DR(%) FN(%) FP(%)

Training DoS process 2,400 11,900 91.93 30.69 1.48

Training Probe process 3,900 10,400 95.31 10.53 2.34

Testing process 10,500 16,000 95.88 6.28 2.70

#C-Attack (considered as attack) is number of records that is trained as attack.

#C-Normal (considered as normal) is number of record that is trained as normal.

Table 4.12 Probe rule of real-time dataset from training process

Fuzzy

parameter

Features

0 1 2 3 4 5 6 7 8 9 10 11

A 5 5 0 0 3 3 2 0 3 1 0 4

B 6 5 1 2 3 5 4 1 3 2 1 5

C 6 6 6 3 4 6 7 2 3 2 4 5

D 7 6 6 7 6 7 7 6 3 4 7 5

Table 4.13 DoS rule of real-time dataset from training process

Fuzzy

parameter

Features

0 1 2 3 4 5 6 7 8 9 10 11

A 6 0 4 2 0 4 5 2 1 4 2 0

B 6 1 4 2 1 4 5 2 6 4 2 1

C 6 1 4 2 1 4 5 2 7 5 2 7

D 6 2 4 2 1 3 5 2 7 6 2 7

4.1.3 Fuzzy GA with Unknown Detection
In this experiment, we consider detecting unknown attacks with three different algorithms

(Decision Tree Algorithm, Naïve Bayes Algorithm and Fuzzy Genetic Algorithm2 rules).

We use 26,500 data records from the real-time dataset including 16,000 records of the

normal dataset and 10,500 records of the attack dataset. The number of the records in

each attack type is shown in Table 14. In Table 14, seven test cases are used in this

experiment which are T1, T2, ..., T7. For each test case, 13 attack types as well as the

normal network data are provided in the training dataset, while the other 3 attack types

are used as an unknown testing dataset for our Fuzzy Genetic Algorithm. For example, in

the first test case, we use the training set which does not have Advances Port Scan, Ack

Scan and Xmas Tree. Then we use these three types of the attacks for the testing dataset.

Moreover, we test each type. The output classes are attack and normal.

 37

Table 4.14 Seven test cases with unknown data types

No. Data Type Category #Record T1 T2 T3 T4 T5 T6 T7
1 Normal Activity Normal 10,500

2 Smurf DoS 1,000 

3 UDP Flood DoS 1,000  

4 HTTP Flood DoS 1,000  

5 Jping DoS 1,000 

6 Port Scan Probe 500 

7 Host Scan Probe 500 

8 Connect Probe 500 

9 SYN Stealt Probe 500 

10 FIN Stealt Probe 500   

11 UDP Scan Probe 500 

12 Null Scan Probe 500 

13 IP Scan Probe 500 

14 Window Scan Probe 500

15 RCP Scan Probe 500  

16 Adv Port Scan Probe 500 

17 Xmas Tree Probe 500 

18 ACK Scan Probe 500 

Table 4.16 shows that Decision Tree Algorithm has the low detection (9.59%-26.17%).

It has less than 1% of the false negative rate in the test cases 4, 5, 6 and 7, but has the high

false positive rate in every test case (about 90%). With Naïve Bayes Algorithm, the high

detection rates are obtained in the test cases 1, 2, 3, 5 and 7, with the detection rates of

91.11%, 90.35%, 93.11%, 90.90% and 93.17% respectively. However, this algorithm

still has the high false alarm rate in every test case. Fuzzy Genetic Algorithm has the

high detection rate. Its lowest detection rate is the test case 4 with 92.17%. It also has the

low false positive rate of 0.25%-3.24% and the low false negative rate of 2.40%-61.15%.

From this experiment, we can see that the Fuzzy Genetic Algorithm is the most robust

algorithm for the unknown detection comparing with the Decision Tree algorithm and the

Naïve Bayes algorithm.

4.1.4 Intrusion Detection with various Approaches
In this experiment, we compare various algorithms for intrusion detection with the

KDD99 dataset and the real-time dataset. The algorithms include Decision Tree

Algorithm, Naïve Bayes Algorithm and Fuzzy Genetic Algorithm2 rules. There are two

output classes which are normal and attack.

There are four datasets used in this experiment, where the two datasets from the KDD99*

and the two datasets are collected on-line recently from an actual network environment.

 KDD99* Training dataset with 20,000 data records sampling from 10% file

version.

 KDD99* Testing dataset with 50,000 data records sampling from 10% file

version.

 Real-time Training dataset with 14,300 data records

 Real-time Testing dataset with 26,500 data records.

(*The KDD99 dataset was reduced into 8 features as shown in section 4.1.1)

 38

Table 4.15 Experimental results with unknown attack type with real-time dataset

Table 4.16 Number of KDD99 data records in training dataset and testing dataset

KDD99 Dataset Real-time Dataset

Attack Name Training Testing Attack Name Training Testing

Normal 3,919 9,851 Normal 8,000 16,000

Back 84 241 Smurf 600 1,000

IPsweep 45 134 UDP Flood 600 1,000

Land 5 3 HTTP Flood 600 1,000

Neptune 4,419 11,062 Jping 600 1,000

Nmap 12 22 Port Scan 300 500

Pod 13 29 Host Scan 300 500

Portsweep 32 88 Connect 300 500

Satan 67 137 SYN Stealt 300 500

Smurf 11,359 28,348 FIN Stealt 300 500

Teardrop 45 85 UDP Scan 300 500

Total 20,000 50,000 Null Scan 300 500

 Adv Port Scan 300 500

 Xmas Tree 300 500

 ACK Scan 300 500

 Total 14,300 26,500

Advance Port Scan 6.67 96.25 0.00 90.95 9.09 8.00 99.44 0.26 10.20

Ack Scan 6.67 96.25 0.00 91.19 9.09 0.00 99.75 0.26 0.00

Xmas Tree 4.12 96.25 84.20 90.81 9.09 12.40 99.74 0.26 0.40

HTTP Flood (DoS) 22.30 82.56 0.00 93.12 7.22 1.50 98.15 1.81 2.50

IP Scan 19.47 82.56 15.60 93.00 7.22 0.00 97.15 1.81 36.20

Null Scan 19.93 82.56 0.40 92.59 7.22 13.60 98.08 1.81 5.40

Smurf (DoS) 9.44 96.22 0.00 93.21 7.21 0.00 98.48 0.54 17.30

Port Scan 6.70 96.22 0.00 93.01 7.21 0.00 99.48 0.54 0.00

Connect Scan 6.35 96.22 11.40 92.47 7.21 17.60 98.97 0.54 16.80

UDP Flood 9.44 96.23 0.00 35.99 61.96 96.80 93.10 1.16 98.70

Host Scan 6.62 96.23 2.20 39.82 61.96 3.00 98.79 1.16 2.80

UDP Scan 6.69 96.23 0.00 37.16 61.96 91.00 97.53 1.16 44.40

Jping (DoS), 9.43 96.23 0.00 90.83 7.21 40.50 96.91 3.24 0.70

Syn Scan, 6.67 96.23 0.60 92.90 7.21 3.40 96.54 3.24 10.60

Fin Scan 6.68 96.23 0.00 92.62 7.21 12.60 96.86 3.24 0.00

UDP Flood, 9.44 96.23 0.00 55.07 43.06 74.90 93.59 0.64 98.70

RCP Scan, 6.69 96.23 0.00 58.24 43.06 0.40 99.08 0.64 10.00

Fin Scan 6.69 96.23 0.00 57.87 43.06 12.60 99.21 0.64 5.80

Http Flood, 9.44 96.23 0.00 93.15 7.21 1.10 97.16 2.96 1.00

RCP Scan, 6.69 96.23 0.00 92.99 7.21 0.40 96.90 2.96 7.60

Fin Scan 6.69 96.23 0.00 92.62 7.21 12.60 97.13 2.96 0.00

Fuzzy GeneticNaïve BayesDecision Tree[7]

DR (%)

97.10

98.09

92.17

96.79

93.51

91.11

90.35

93.11

36.94

90.90

57.21

93.17

96.23

96.23

96.25

82.56

0.0014.47

9.59

26.17

14.16

14.41

14.44

14.47

FP(%) FN(%) FP(%) FN(%)DR (%) FN(%) DR (%)

0.26

1.81

0.54

1.16

3.24

0.64

2.96

61.96

7.21

43.05

7.21

99.46

97.11 2.40

3.53

11.65

12.90

61.15

3.00

53.30

6.80

29.15

4.40

71.90

24.25

40.70

3.80

9.08

7.21

6

7

28.07

4.00

2.85

0.55

0.15

0.00

1

2

3

4

5

96.22

96.23

96.23

7.21

Test

Case

Unknown

Attacks FP(%)

 39

Table 4.17 Results from various detection algorithms

Dataset Decision Tree Naïve Bay Fuzzy GA

 2 rules 1 rule

KDD99 dataset 83.19 95.94 79.77 99.77

Real-time dataset 99.71 99.17 97.3 98.86

(a) True Positive rate

Dataset Decision

Tree

Naïve Bay Fuzzy GA

 2 rules 1 rule

KDD99 dataset 98.84 98.64 98.77 98.28

Real-time dataset 98.75 88.31 93.72 96.61

(b) True Negative rate

Dataset Decision

Tree

Naïve Bay Fuzzy GA

 2 rules 1 rule

KDD99 dataset 1.16 1.36 1.23 1.72

Real-time dataset 1.25 11.69 6.28 3.39

(c) False Negative rate

Dataset Decision

Tree

Naïve Bay Fuzzy GA

 2 rules 1 rule

KDD99 dataset 16.81 4.06 98.52 0.23

Real-time dataset 0.29 0.83 2.71 1.14

(d) False Positive

In Table 17, the highest true positive rate in the KDD99 dataset is the Fuzzy Genetic

Algorithm with 1 rule (99.77%) and the Naïve Bayes Algorithm (95.94%). Moreover,

every algorithm has high values of the true negative rate with the low false negative rate.

In addition, the false positive rates from the different algorithms are different. The false

positive rate in the Fuzzy Genetic Algorithm with 1 rule is as low as 0.23% while the

Decision Tree Algorithm gives 16.81%.

From the table, we can see that the Decision Tree can classify the real-time dataset better

than other algorithms (highest values of true positive (99.71%) and true negative

(98.75%); lowest values of false negative (1.25%) and false positive (0.29%)). However,

the Fuzzy Genetic Algorithm with 2 rules has the same rate of true positive as the

Decision Tree Algorithm but has the lower false negative rate which is 93.72%.

 40

4.2 Online Detection
In online IDS, we would like to test performances of IDS in term of CPU Consumption,

Memory Consumption and Network Consumption.

4.2.1 Experimental Setting:

Figure 4.1 Real-time network environments

In this experiment, we monitor every packet in the CPE Department of KMUTT in both

in and out of the network gate way. (The speed of the traffic is between 5-100 Mbit/sec).

We connect our IDS to a gateway router using a mirror port during 12.30 pm. - 17.30 pm.

on April 24, 2013. The IDS computer used Intel® Core™ i7-3770k CPU@ 3.5GHz 3.90

GHz RAM 8 GB Windows 7 Ultimate 67-bit with Network Interface card: Atheros

AR8151 PCI-E Gigabit Ethernet Controller (NIDS 6.20).

In Table 4.18, there are 52,564,018 packets during the experimental time. It consists of

47,822,054 packets of TCP, 4,634,052 packets of UDP and 107912 of ICMP. In our real-

time IDS, the system preprocessed these network data into 1,201,208 records. Moreover,

our IDS classifies 1,519 records into the attack class. The CPU Consumption is between

7-14% while using only 2-2.5 GB of memory.

4.2.2 Experimental Result

Table 4.18 Experimental result from CPE network environment

TCP UDP ICMP Total Attack Normal CPU Memory

47,822,054 4,634,052 107,912 1,201,208 1,519 1,199,689 7-14% 2-2.5 GB

Total: 52,564,018 packets

Note:

TCP: Number of TCP packets

UDP: Number of UPD packets

ICMP: Number of ICMP packets

Total: Total number of records after preprocessing

Attack: Number of records that was detected as

attack

Normal: Number of records that was detected as

Normal

CPU: CPU Consumption

Memory: Memory Consumpt

 41

CHAPTER 5 CONCLUSION

In this thesis, we proposed the fuzzy genetic algorithm to detect DoS and Probe attacks

in both offline and online network environments. Our IDS can detect the attack in the

real-time network environment. We began by evaluating accuracy of the fuzzy genetic

algorithm in an offline dataset. The offline dataset includes a benchmark dataset (KDD99

dataset which was reduced to 8 features), and our real-time dataset. The result showed

that the fuzzy genetic algorithm offered the high detection rate with the low false alarm

rate on both datasets.

In addition, we explored in detail for each attack name in the dataset. We found that there

were two attacks in the KDD99 dataset, namely Back and Pod, that were misclassified

with the fuzzy genetic algorithm, while the algorithm could detect all attack types in our

real-time dataset. From previous study, we have learned that the detection rate could be

biased by the dataset. Therefore, we had to consider the false alarm rate and the proportion

of the dataset. Next, we evaluated our fuzzy genetic algorithm by comparing with other

algorithms considering both datasets. The accuracy of the fuzzy genetic algorithm is close

to the results obtained from the decision tree algorithm.

We also compared our fuzzy genetic algorithm with other algorithms for detecting

unknown attacks. We used only the real-time dataset to evaluate with seven test cases.

Each of the training sets contained 13 attack types while the other 3 attack types were

used as an unknown testing dataset. The results showed that the fuzzy genetic algorithm

was the most robust algorithm for the unknown attack detection.

In the online network environment, we used our IDS to monitor the real-time traffic in

the CPE Department of KMUTT (IDS PC spec: Intel® Core™ i7-3770k CPU@ 3.5GHz

3.90 GHz RAM 8 GB Windows 7 Ultimate 67-bit and Network Interface Card is Atheros

AR8151 PCI-E Gigabit Ethernet Controller) in order to demonstrate performances of our

IDS. The speed of the traffic was between 5-100 Mbit/sec. Our IDS consumed less than

14% of CPU resources while using only 2.5 GB of memory. In the real-time detection,

our IDS could raise an alarm message within 2-3 seconds. This did not affect the PC

performance when other applications were running.

 42

REFERENCES

1. Gómez, J. and León, E., 2006, “A Fuzzy Set/Rule Distance for Evolving Fuzzy

Anomaly Detectors”, IEEE International Conference on Fuzzy Systems, Art.

No. 1682017, pp. 2286-2292.

2. Banković, Z. , Stepanović, D. , Bojanić, S . and Nieto-Taladriz, O., 2007,

“Improving Network Security Using Genetic Algorithm Approach”, Computers

and Electrical Engineering, pp. 438-451.

3. Tsang, C.-H., Kwong, S. and Wang, H., 2007, “Genetic-Fuzzy Rule Mining

Approach and Evaluation of Feature Selection Techniques for Anomaly Intrusion

Detection” Pattern Recognition, pp. 2373-2391.

4. Ensafi, R., Dehghanzadeh, S., Akbarzadeh-T, M.-R., 2008, “Optimizing Fuzzy K-

means for Network Anomaly Detection using PSO”, AICCSA 08 – 6th

IEEE/ACS International Conference on Computer Systems and

Applications, Art. No. 4493603, pp. 686-693.

5. Fries, T.P., 2008, “A Fuzzy-Genetic Approach to Network Intrusion Detection”,

Proceedings of the 10th Annual Conference on Genetic and Evolutionary

Computation, pp. 2141-2146.

6. Abadeh, M.S., Mohamadi, H. and Habibi, J., 2011, “Design and Analysis of

Genetic Fuzzy Systems for Intrusion Detection in Computer Networks”, Expert

Systems with Applications, pp. 7067-7075.

7. Ngamwitthayanon, N. and Wattanapongsakorn, N., 2011, “Fuzzy-ART in

Network Anomaly Detection with Feature-Reduction Dataset”, Proceedings – 7th

International Conference on Networked Computing, INC2011, Art. No.

6058956, pp. 116-121.

8. Muda, Z., Yassin, W., Sulaiman, M.N. and Udzir, N.I., 2011, “Intrusion Detection

Based on K-Means Clustering and Naïve Bayes Classification” 7th International

Conference on Information Technology in Asia: Emerging Convergences

and Singularity of Forms - Proceedings of CITA'11, Art. No. 5999520.

9. Lee, S., Kim, G. and Kim, S., 2011, “Self-adaptive and Dynamic Clustering for

Online Anomaly Detection”, Expert Systems with Applications, pp. 14891-

14898.

 43

10. Chandrasekhar, A. M. and Raghuveer, K., 2013, “Intrusion Detection Technique

by Using K-means, Fuzzy Neural Network and SVM Classifiers”, International

Conference on Computer Communication and Informatics, ICCCI 2013.

11. Labib, K. and Vemuri, R., 2002, “NSOM: A Real-Time Network-Based Intrusion

Detection System Using Self-Organizing Maps”, Networks and Security.

12. Amini, M., Jalili, A. and Shahriari, H.R., 2005, “RT-UNNID: A Practical Solution

to Real-Time Network-Based Intrusion Detection Using Unsupervised Neural

Networks”, Computer & Security, pp. 459-468.

13. Pukkawanna, S., Pongpaibool, P. and Visoottiviseth, V., 2008, “LD2: A System

for Lightweight Detection of Denial-Of-Service Attacks”, In the Proceedings of

Milcom.

14. Su, M.-Y, 2009, “A Real-Time Network Intrusion Detection System for Large-

Scale Attacks based on an Incremental Mining Approach”, Computers and

Security, pp. 301-309.

15. Komviriyavut, T., Sangkatsanee, P., Wattanapongsakorn, N. and Charnsripinyo,

C., 2009, “Network Intrusion Detection and Classification with Decision Tree and

Rule-based Approaches”, 9th International Symposium on Communications

and Information Technology, Art. No. 5341005, pp. 1046-1050.

16. Kachurka, P. and Golovko, V., 2011, “Neural Network Approach to Real-Time

Network Intrusion Detection and Recognition”, Proceedings of the 6th IEEE

International Conference on Intelligent Data Acquisition and Advanced

Computing Systems: Technology and Applications, IDAACS'2011 1, Art. No.

6072781, pp. 393-397.

17. Casas, P., Mazel, J. and Owezarski, P., 2012, “Unsupervised Network Intrusion

Detection Systems: Detecting the Unknown without Knowledge”, Computer

Communications, pp. 772-783.

18. Artificial Intelligence [Online], Available: http://en.wikipedia.org/wiki/

Artificial_ intelligence [2013, April 18].

19. Machine Learning [Online], Available: http://en.wikipedia.org/wiki/Machine_

learning / [2013, April 18].

 44

20. Marsland, S.P., 2009, Machine Learning, 2nd ed., Massey Universities

Palmerston North, pp. 95-122.

21. Adetunmbi A.O., Adeola S.O. and Daramola O.A., 2010, “Analysis of KDD ’99

Intrusion Detection Dataset for Selection of Relevance Features”, Proceedings of

the World Congress on Engineering and Computer Science 2010 Vol. I.

22. Fuzzy Logic [Online], Available: http://alaska.reru.ac.th/text/fuzzylogic.pdf

[2013, April 10]

23. Nguyen, H.T., Petrović, S. and Franke, K., 2010, “A comparison of feature-

selection methods for intrusion detection”, 5th International Conference on

Mathematical Methods, Models and Architectures for Computer Network

Security, pp. 242-255

24. Christian Mèuller-Scholer, 2011, Organic Computing -- a Paradigm Shift for

Complex Systems, p. 627.

 45

CURRICULUM VITAE

NAME Miss Pawita Jongsuebsuk

DATE OF BIRTH 23 July 1988

EDUCATIONAL RECORD

HIGH SCHOOL High School Graduation

 Sa-Nguan Ying School, 2007

BACHELOR’S DEGREE Bachelor of Engineering (Computer Engineering)

 King Mongkut’s University of Technology

Thonburi, 2011

MASTER’S DEGREE Master of Engineering (Computer Engineering)

 King Mongkut’s University of Technology

Thonburi, 2012

PUBLICATIONS Wattanapongsakorn, N., Srakaew, S., Wonghirunsombat,

E., Sribavonmongkol, C., Junhom, T., Jongsubsook, P.

and Charnsripinyo, C., “A Practical Network-Based

Intrusion Detection and Prevention System”, Trust,

Security and Privacy in Computing and Communications

(Trust Com), 2012 IEEE 11th International Conference,

Liverpool, United Kingdom, 25-27 June 2012.

Jongsuebsuk, P., Wattanapongsakorn, N. and

Charnsripinyo, C., “Network intrusion detection with

Fuzzy Genetic Algorithm for unknown attacks”,

Information Networking (ICOIN), 2013 International

Conference, Bangkok, Thailand, 28-30 January 2013.

Jongsuebsuk, P., Wattanapongsakorn, N. and

Charnsripinyo, C., “Real-Time Intrusion Detection with

Fuzzy Genetic Algorithm”, International Conference on

Electrical Engineering/Electronics, Computer,

 46

Telecommunications and Information Technology, ECTI-

CON 2013, Krabi, Thailand, 15-17 May 2013.

