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CHAPTER 2 LITERATURE SURVEY AND BACKGROUND 

STUDY 
 

2.1 Literature Survey 
In this chapter, we present literature review consisting of two parts which are offline IDS 

and online IDS (real-time). The offline data uses KDD99 dataset which is a benchmark 

dataset. In this section, we focus on comparing various techniques for intrusion detection. 

Besides, we compare the performances of each technique, such as a detection rate, a false 

alarm rate and limitation. For the online IDS, we focus on a new technique to preprocess 

data in an actual network environment and testing environment.  

 

2.1.1 IDS for Offline Data 
Gómez and León [1] proposed a Fuzzy Genetic Algorithm to classify behavior of 

intrusion into two classes (normal class and attack class). This algorithm could be trained 

by one class (normal class). The behavior different from the training class would be 

classified as an attack. They used KDDC99 dataset which had four attack types including 

DoS, Probe, R2L and U2R. In the KDD99 dataset, they found that there were some 

features that had the same value for each record, so they reduced the number of the 

features into 33 features. The dataset was divided into two sets including the training set 

and the testing set. The training set had only the normal data containing 2,000 records. 

The highest obtained detection rate was 98.28% with 5% of the false alarm rate.  

 

Banković et al. [2] proposed an interesting Fuzzy Genetic Algorithm Approach to reduce 

the number of the features in the dataset and maintain the high detection rate. From the 

experiment, they found that there were three features that were relevant. There were two 

experiments: the first experiment had two output classes (normal class and attack class). 

The accuracy of the detecting attack (TN) was 94.87% with 1.62% of the false positive. 

The second experiment had four classes (the fuzzy rule could identify each type of the 

attacks including the normal class, the portsweep class, the smurf class and the neptune 

class). From this experiment, the maximum detection rate was 87.6% because there was 

only 30% of the detection rate of the portsweep. These two experiments used the KDD99 

dataset. However, the training dataset had 976 records (137 of attack records and 839 of 

normal records) and the testing dataset had 977 records (234 of attack records and 743 of 

normal records). Moreover, they considered only three types of the attacks which were 

the portsweep, smurf and neptune.  

 
Tsang et al. [3] proposed Multi-Objective Genetic Fuzzy Intrusion Detection System 

(MOGFIDS) for detecting anomaly attack. There were three objectives for MOGFIDS: 

having the high classification rate, reducing the number of fuzzy rules and reducing 

complexity of fuzzy rules. This experiment used 10% version of KDD99 dataset for 

training including four attack types (DoS, Probe, R2L and U2R). However, they found 

that the dataset was biased against DoS (Neptune attack and Smurf attack). In order to 

make the training set more realistic, they sampled 1,000 records for each type of the DoS, 

10,000 records of the normal and the remaining intact number of the records of other 

attacks (the number of the training set was 20,752 records). The testing set used 311,029 

records with additional 14 unseen attack types.  The result showed that this algorithm 

with 27 features gave 92.77% of the detection rate and 1.6 of the false positive rate. 
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Ensafi et al. [4] proposed optimizing fuzzy K-means for network anomaly detection using 

particle swarm optimization (PSO). Two versions of the KDD99 dataset were used (full 

version and 10% version). The training dataset had only the normal class from the 10% 

version. The testing dataset consisted of 60,592 records of the normal class and 250,436 

of the attack class. Figure 2.1 presents the diagram of the proposed work. Particles swarm 

and K-means clustering was used together to cluster the dataset in each generation. A 

genetic algorithm was used to find the best solution. The output classes were Normal, 

DoS, R2L, U2R and Probe, and the detection rate was 95 % with 2.12% of the false alarm 

rate.  

 

 

 
 

 

Figure 2.1 Optimizing fuzzy K-means for network anomaly framework [4] 

 
Fries [5] proposed a Fuzzy Genetic Algorithm Approach. This work had two phases: 

preprocessing phase and detection phase. In the preprocessing phase, they used clustering 

and genetic algorithm to find the significant features. The result showed that there were 

8 relevant features. In the detection phase, they evaluated the algorithm by using the 10% 

version of the KDD99 dataset as the training set (about 500,000 records) and the full 

version of the KDD99 dataset as the testing set (about 5 million records). In the testing 

set, there were 14 types of new attacks that were not presented in the training set. The 

detection rate was 99.6% with 0.2 of the false positive rate. They found that this algorithm 

had the high detection rate and was robust for an untrained attack. 

 

Abadeh et al. [6] proposed a genetic fuzzy algorithm. They used three different kinds of 

genetic fuzzy systems based on Michigan, Pittsburgh and iterative rule learning. The 

algorithm could be classified into five classes (Normal, U2R, R2L, DoS, and Probe). The 

distribution of the training dataset and the testing dataset is shown in Table 2.1. The result 

showed that the Pittsburgh method had the highest detection rate of 99.53% with 1.94% 

of the false alarm rate.  
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Table 2.1 Distribution of different classes in training and testing datasets [6] 

 

Attack Type Train Test 

Normal 100 1,000 

U2R 50 59 

R2L 100 1,000 

DoS 300 6,500 

PORBE 100 1,000 

Total 650 9,559 

 

Ngamwitthayanon and Wattanapongsakorn [7] proposed a Fuzzy-Adaptive Resonance 

Theory (ART) in network anomaly detection with feature-reduction dataset. The 

Adaptive Resonance was a type of the neural network algorithm. The main algorithm was 

the ART algorithm while the Fuzzy was used to simplify a network structure of the ART. 

Moreover, they applied a feature reduction method with the KDD99 dataset. This 

approach increased the detection rate to 98.96% and used only14 features. However, this 

algorithm indicating the similar problem as the previous algorithm was impractical in the 

real network. Also, it did not provide enough information for a protection system. 

 

Table 2.2 Detection rate with different numbers of KDD99 features [7] 

 

Dataset 
Number of 

Features 
Detection Rate (%) 

1 7 98.87 

2 9 99.44 

3 12 98.98 

4 14 98.93 

5 22 99.12 

6 24 99.20 

7 41 97.96 

 

Muda et al. [8] proposed a detection solution by combining of the K-means algorithm and 

the Naïve Bayes algorithm. The first step of the algorithm was using the K-means 

algorithm to categorize data into two classes; normal class and attack class. Then, the 

Naïve Bayes algorithm was used to classify the previous results into attack types. They 

sampled 49,402 records of the training set from the 10% version of the KDD99 dataset 

and another 49,402 records from the full version of the KDD99 which had more 14 types 

of new attacks. The detection rate was 99.6%. However, this solution was impractical for 

a real network environment because the K-Means algorithm required time to process. It 

could cause the bottleneck problem in network traffic or system clash. 

 

Seungmin et al. [9] proposed a self-organizing map (SOM) combined with the K-means 

algorithm to classify untrained attacks. The system was able to learn from the new data. 

There were three phases consisting of an adjusting SOM network, updating centroid (K-

means algorithm) and splitting normal cluster. The cluster system could divide the output 

into two classes (normal class and attack class). They sampled the dataset from the 

KDD99 dataset. The size of the sampling dataset was 20,000 records which consisted of 

1% of the attack and 99% of the normal class. They reduced the number of features into 
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eight features (2, 3, 4, 10, 12, 23, 33 and 35). The average detection rate in this work was 

89.7% with 2.43 of the false positive rate. 

 

Chandrasekhar and Raghuveer [10] proposed an intrusion detection technique using the 

K-means, fuzzy neural network and the SVM algorithm. They found that a rule based 

system was worse when encountering with a large scale of the data, so they introduced 

the artificial neural network (ANN) for this system [Figure 2.2]. First, they used the K-

mean algorithm to cluster the dataset into n clusters (each cluster was the type of 

intrusion). In each cluster, there was a neuro-fuzzy to learn the pattern. The neuro-fuzzy 

in each cluster was used to generate the SVM vector to classify attacks (the neuro-fuzzy 

algorithm helped to decrease a number of attributes in SVM). They sampled the training 

dataset and testing dataset from a 10% version file of the KDD99 dataset which consisted 

of 26,114 records for the training dataset and 27,112 records for the testing dataset (Table 

2.3). The accuracy of each attack was 98% for DoS attack, 97.31% for Probe, 97.51 for 

R2L and 97.52 for U2R. Total detection rate was 98.48% with 2.41 % of the false positive 

rate. 

 

 

 

 
 

 

Figure2.2 Block diagram of proposed IDS from using K-means, fuzzy neural network  

  and SVM algorithm [10] 

 

 

 

Table 2.3 Data record taken for training and testing in [10] 

 

  Normal DoS PROBE R2L U2R TOTAL 

Training 12,500 12,500 1,054 39 21 26,114 

Testing 12,500 12,500 2,053 38 21 27,112 
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Table 2.4 Summary of Offline IDS  

 
Year Author Algorithm DR(%) FP(%) Feature Output 

2006 

[1] 
Gómez and León Genetic Fuzzy  98.28 N/A 33 Normal, Attack 

2007 

[2] 
Banković et al Genetic Fuzzy 

94.87 0-1.62 

3 

Normal, Attack 

87.6 0 

Normal, 

Portsweep, 

Smurf and 

Neptune 

2007 

[3] 
Tsang et al.  Genetic Fuzzy 92.77 1.6 27 

Normal, Probe, 

DoS, U2R, R2L 

2008 

[4] 
Ensafi et al 

Fuzzy K-means 

and PSO 
95.9 2.12 33 

Normal, Probe, 

DoS, U2R, R2L 

20010 

[5] 
Fries Genetic Fuzzy 99.6 0.2 8  Normal, attack 

2010 

[6] 
Abadeh et al. Genetic Fuzzy 99.53 1.94 21 

Normal, Probe, 

DoS, U2R, R2L 

2011 

[7] 

Ngamwitthayanon 

and  

Wattanapongsakorn  

Fuzzy and 

ART 
 98.96 N/A 14  Normal, Attack 

2011 

[8] 
Muda et al. 

K-means+ 

naïve bayes 

technique 

99.8 0.09 41 
Normal, Probe, 

DoS, U2R, R2L 

2011 

[9] 
Seungmin et al. 

SOM and  

K-means 
89.7 2.43 8 Normal, attack 

2013 

[10] 
Chandrasekhar et al. 

K-means, 

fuzzy neural 

network and 

SVM  

98.48 2.41  N/A 
Normal, Probe, 

DoS, U2R, R2L 

** DR = Detection Rate  

** FA = False Alarm 

** N/A not available 
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2.1.2 IDS for Online Data 
Labib and Vemuri [11] proposed a real-time intrusion detection system by considering 

10 features of header packets. Each record was the statistic data which was collected in 

every 50 packets. Then, they used SOM as an algorithm to classify attacks. The outputs 

were normal and DoS attacks. On the other hand, it needed a human expert to visualize 

the output data. 

 

Amini et al. [12] proposed a real-time intrusion detection system using neural network 

algorithms (Adaptive Resonance Theory (ART) and Self-Organizing Map (SOM)) to 

classify normal packets and attack packets (two classes) as shown in Figure 2.3. They 

generated the attacks and collected the attack data by using attack tools as shown in Table 

2.5 (left). They collected normal traffic in a real traffic network within 4 days. So, they 

created their own dataset which consisted of training data (5,000 packets) and testing 

dataset (3,000 packets). They preprocessed the packets into 27 features as shown in Table 

2.5 (right). The result showed that the ART had the higher detection of 97.42%. The result 

is shown in Table 2.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 RT-UNNID systems [12] 

 

 

 

Table 2.5 Real-time detection rate of RT-UNNID using SOM ART-1 and ART-2 [12] 

 

  ETTR TR FPR FNR 

ART-1 71.71 97.42 1.99 0.59 

ART-2 73.18 97.19 2.3 0.51 

SOM 83.44 95.74 3.5 0.77 

 

**ETTR is exact true types detection rate 

        TR is true detection rate 

       FPR is false positive detection rate 

       NFR is false negative detection rate 
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Table 2.6 Attack name (left) and feature name in proposed approach (right) [12] 

 

# Attack name 
Attack 

generation tools 

Train 

dataset 

Test  

dataset 

  

Category Feature 

1 Bonk targa2.c √ √ - protocol 

2 Jolt targa2.c √ √ 
IP diff-time 

stamp 

3 Land targa2.c √ √ ip id 

4 Saihyousen targa2.c √ √ IP tos 

5 TearDrop targa2.c √ √ ipttl 

6 Newtear targa2.c √ √ ipheaderlen 

7 1234 targa2.c √ √ iplen 

8 Winnuke targa2.c √ √ is home srcip 

9 Oshare targa2.c √ √ is home dstip 

10 Nestea targa2.c √ √ is land 

11 SynDrop targa2.c √ √ ip frag flag 

12 Octopus Octopus.c √ √ TCP tcpsrc port 

13 KillWin KillWin.c √ √ tcpdst port 

14 Twinge Twinge.c √ √ tcp fin 

15 TcpWindowScan Nmap √ √ tcpsyn 

16 SynScan Nmap √ √ tcprst 

17 Neptune FireHack √ √ tcp push 

18 Dosnuke FireHack √ √ tcpack 

19 Smbdie Smbdie.exe √ √ tcpurg 

20 XmassTree-Scan Namp √ √ tcp offset 

21 LinuxICMP linux-icmp.c - √ tcp win size 

22 Moyari13 Moyari13.c - √ UDP udpsrc port 

23 Sesquipedalian.c Sesquipedalian - √ udpdst port 

24 Smurf smurf4.c - √ ICMP icmp type 

25 OverDrop overdrop.c - √ icmp code 

26 OpenTear opentear.c - √ icmp id 

27 ExhoChargen FireHack - √ icmp sequence 
 

 

Pukkawanna et al. [13] proposed the Lightweight Detection system (LD2) to detect Denial 

of Service Attack (DoS). The target attacks included SYN Flood, ICMP flood, Port scan 

Host scan, UDP flood and smurf. The system preprocessed the network into five features 

(srcIP, protocol, dstIP, srcPort, and dstPort). The background traffic environment had two 

types: controlled environment and real traffic environment. In the controlled network 

environment, they used Iperf to generate the UDP traffic in various rates. In the real 

network environment, they replied traces by using tcpreplay. The trace was sampled from 

WIDE Backbone (100-150 Mbps). In each experiment, they generated a DoS attack on 

the top of a single background trace. Figure 2.4 showed the graph pattern that the system 

used for detecting each type of the attacks. For example, SYN flood had the same (srcIP, 

prot, dstIP, dstPort) but various srcPort. Thus, the detection system needed the training 

process in order to find a threshold for each attack type (Table 2.7). They generated 

multiple attacks at once (12 instances). The experiment result showed that the LD2 
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performed well with the 100% detection rate (except a host scan that could not detect 

some activities) with no false positive. They also evaluated a system performance in term 

of CPU consumption and memory consumption by using a systat tool. It showed that the 

increasing packet rate of a background also increased the CPU usage [Figure 2.5]. The 

maximum CPU utilization of the LD2 was 16% at 7,000 pps and the memory consumption 

was 20 MB. The behavior of the memory consumption is shown in [Figure 2.6].  

 

 
 

 

Figure 2.4 DoS attack graphlets [13] 

 

 
 

 

Figure 2.5 CPU initialized for LD2 (left) and Snort (right) [13] 

 

 
 

 

Figure 2.6 Memory usage for LD2 (left) and Snort (right) [13] 
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Table 2.7 Threshold for attack graphlets [13] 

 
Dos Type Threshold Parameters  (per minute) Upper Bound Suggest Value 

SYN flood Source ports 1,998 1,598 

UDP flood Number of UDP packets 1,918 1,534 

ICMP flood 

Number of ICMP packets to broadcast 

address 2,151 1,721 

Smurf 

Number of ICMP packets to broadcast 

address 2,151 1,721 

Port scan Destination ports 394 313 

Host scan Destination IP adresses 5 4 

 

 

Su [14] proposed the real-time IDS for large-scale attacks by using fuzzy association 

rules. The technique derived features from a packet header from the open network within 

every 2 seconds (one record per two seconds). There were 16 features used in this 

technique as shown in Table 2.8. The system architecture is shown in Figure 2.7. The 

computer A preprocessed data from a real network and sent a record to the computer B 

to create a fuzzy rule. The computer D compared the rules between the computer B and 

C to find the attacks. This experiment was tested on 30 DoS attacks. A network topology 

is shown in Figure 2.8. IP traffic (a sender) was a computer used to generate the 

background traffic, such as TCP packets, UDP packets, ICMP packets and ARP packets. 

It connected to the internet. There was the IP traffic (a receiver) located in the local 

network. An attack generator was used to generate attacks (DoS) where the victim was 

found in the local network. The system was also located in the local network. It monitored 

the traffic in the local network. The traffic rate during the experiment was 0-80 Mbps. 

The result is shown in Figure 2.9. We can see that the system responded to the attack five 

time units (10 seconds) after the system was attacked. This system could only give an 

alarm signal when the network was under attack. However, it could not provide any useful 

information to prevent the network from malicious network activities. 

 

 

 
 

 

Figure 2.7 Architecture of NIDS [14] 
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Figure 2.8 Network topology for simulation [14] 

 

 
 

 

Figure 2.9 Similarity degradation during flooding for DoS.Win32.IIS [14] 

 

 

Table 2.8 Feature list of real-time network IDS for large-scale attacks based on            

an incremental mining approach [14] 

 

# Protocol Feature 

1 TCP source IP+SYN count 

2 TCP source IP+URG_Flag+URG_data count 

3 TCP Source IP+ACK-Flag+ACK count 

4 ARP Source IP+ARP count 

5 IP Destination IP slots hit 

6 IP Header length 1=20 count 

7 IP MF_Flag count 

8 IP (total length > 1400||<40)&&TTL=64 count 

9 IP Checksum_error count 

10 TCP ACK_Flag+ACK count 

11 TCP Checksum_error count 

12 UDP Same_length_interval count 

13 ICMP Type error count 

14 ICMP Checksum_error count 

15 ICMP Checksum_error count 

16 ICMP Length>1000count 
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Komviriyavut et al. [15] proposed a real-time detection. They used a packet sniffer to 

sniff the packets in the network every 2 seconds and preprocessed it into 13 features by 

counting the number of connections between two IP addresses every 2 seconds [Table 

2.9]. They also used the decision tree algorithm to classify the data. In order to evaluate 

the performance, they collected the normal data from the network traffic in the 

Department of CPE from KMUTT. They simulated the attacks in a closed environment 

by using attack tools which consisted of 18 types of attacks [Table 2.10]. The dataset 

could be categorized into 3 types; DoS, Probe and normal data. The result showed that 

this algorithm had 97.5 percent of the detection rate. This technique was efficient to be 

used in an actual network environment in terms of speed, memory consumption and CPU 

consumption.  

 

Examples of the record of the normal network data from the preprocessing phase are 

shown below. 

2138,33,33,4,4,644,2136,0,0,0,0,0,0,Normal 

12,2,2,0,0,1,12,0,0,0,0,0,0, Normal 

 

 

Table 2.9 Features in online dataset [15] 

 
No. Feature Description Data Type 

1 Number of TCP packets Integer 

2 Number of TCP source ports Integer 

3 Number of TCP destination ports Integer 

4 Number of TCP fin flags Integer 

5 Number of TCP syn flags Integer 

6 Number of TCP reset flags Integer 

7 Number of TCP push flags Integer 

8 Number of TCP ack flags Integer 

9 Number of TCP urgent flags Integer 

10 Number of UDP packets Integer 

11 Number of UDP source ports Integer 

12 Number of UDP destination ports Integer 

13 Number of ICMP packets Integer 

 

 

Kachurka and Golovko [16] proposed a neural network approach for real-time network 

intrusion detection. This algorithm could detect the attacks without the training dataset. 

This experiment considered three different types of the attacks: tcp scan, sysn flood and 

udp flood (500 records of each attack). The feature names of each record were timestamp, 

duration of connection in seconds, source’s and destination’s IP-addresses, name of the 

service used, port number, the number of bytes transferred and the result flag of the 

connection. They used both KDD99 dataset and real-time dataset to evaluate the 

algorithm. This technique was able to detect unknown attacks at least 97% of the detection 

rate for each type of the attacks (use the KDD99 dataset to evaluate).  

 

Casas et al. [17] proposed Unsupervised Network Intrusion Detection (NIDSs) using Sub-

Space Clustering Algorithm and Multiple Evidence Accumulation Algorithm. The NIDSs 

was able to detect attacks without the training dataset. The system was tested in an offline 

environment (with the KDD99 dataset) and an online environment. In the online 

environment, they used the traffic trace from the MAWI repository of the WIDE project 

and the METROSEC project. These two network traces were generated over the past ten 
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years. They preprocessed the data network into 9 features [Table 2.11]. The algorithm 

could be classified into two classes which were a positive class (attack) and a negative 

class. The result showed that 90% of the attacks were correctly detected. 

 

 

Table 2.10 Attack names in the dataset [15] 

 
No. Data Tools (to Generate) Category 

1 Smurf Smurf.c DoS 

2 UDP Flood Net Tools 5 DoS 

3 HTTP Flood Net Tools 5 DoS 

4 Jping Jping.c DoS 

5 Port Scan Net Tools 5 Probe 

6 Advance Port Scan Net Tools 5 Probe 

7 Host Scan Host Scan 1.6 Probe 

8 Connect NMapWin 1.3.1 Probe 

9 SYN Stealth NmapWin 1.3.1 Probe 

10 FIN Stealth NmapWin 1.3.1 Probe 

11 UDP Scan NmapWin 1.3.1 Probe 

12 Null Scan NmapWin 1.3.1 Probe 

13 Xmas Tree NmapWin 1.3.1 Probe 

14 IP Scan NmapWin 1.3.1 Probe 

15 ACK Scan NmapWin 1.3.1 Probe 

16 Window Scan NmapWin 1.3.1 Probe 

17 RCP Scan NmapWin 1.3.1 Probe 

18 Normal Actual Environment Normal 

 

 

 

Table 2.11 Features used in NIDSs [17] 

 

No. Feature Description Abbreviation 

1 Number of source IP nSrcs 

2 Number of destination IP NDsts 

3 Number of TCP source ports nSrcPorts 

4 Number of TCP destination ports nDstPorts 

5 Ratio of number of sources to number of destination nSrcPorts/nDstPorts 

6 packet rate nPkts/sec 

7 fraction of ICMP packets nICMP/nPkts 

8 number of SYN packets nSYN/nPkts 

9 average packets size avgPktsSize 
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Table 2.12 Summary of Online IDS  

 

Year Author Algorithm DR(%) FP(%) 
Number of 

Features 
Output 

2002 

[11] 

Labib and 

Vemuri 
NSOM -  10 Normal, DoS 

2005 

[12] 
Amini et al. 

Neural 

Network (ART 

and SOM)  

97.427 1.99 27 
Normal, 

Attack 

2007 

[13] 

Pukkawanna et 

al. 

BLINd 

classification 

100 
(accept host 

scan) 

0 

 (accept host 

scan) 
5 

SYN Flood, 

ICMP flood, 

Port scan Host 

scan, UDP 

flood and 

smurf 

2009 

[14] 
Su et al. 

Fuzzy 

association 

rules 

N/A N/A 16 Normal, DoS 

2009 

[15] 

Komviriyavut et 

al. 

Decision Tree 

and Rule Based 
97.5 0.6 13 

Normal, DoS, 

Probe 

2011 

[16] 

Kachurka and 

Golovko[14] 

Neural 

Network 

 

N/A N/A 16 
Normal, 

Attack 

2012 

[17] 
Casas et al. Clustering N/A N/A 9 

Normal, 

Attack 

 

 

 

 

2.2 Background Study 

 
2.2.1 Artificial Intelligence (AI) [18]. Major AI researchers and textbooks define the 

field as “The study and design of intelligent agents” where an intelligent agent is a system 

that learns from giving knowledge and takes action that maximizes its chances to achieve 

its goal. 

John McCarthy : "the science and engineering of making intelligent machines" 

 

 

2.2.2 Machine Learning [19], a branch of artificial intelligence, is about the construction 

and study of systems that can automatically learn  from experiences and get more accurate 

results. The definition of the machine learning is described as follows: 

 
 

Arthur Samuel : "Field of study that gives computers the ability to learn without being 

explicitly programmed" 
 

 
 

Tom M. Mitchell  : "A computer program is said to learn from experience E with respect 

to some class of tasks T and performance measure P, if its performance at tasks in T, as 

measured by P, improves with experience E" 
 

 

 

http://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)
http://en.wikipedia.org/wiki/Learning
http://en.wikipedia.org/wiki/Arthur_Samuel
http://en.wikipedia.org/wiki/Tom_M._Mitchell
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The learning process of the machine learning can be categorized into four types of the 

machine learning described as follows: [20] 

 

1. Supervised learning: during the learning process, the system will be told by the 

training dataset what is correct and what is not correct.  

 

2. Unsupervised learning: during the learning process, the correct answers are not 

provided; the algorithm will identify similarity of the input data and categorize 

the similar input together instead. 

 

3. Reinforcement learning: during the learning process, the algorithm will be told 

what is wrong but not be told what is correct. It has to explore and try out different 

possibilities until it works out how to get the right answer. 

 

4. Evolutionary learning: biological evaluation can be considered as a learning 

process such as the process that living things adapt their generation to survive in 

an environment.  

 

There are many ideas proposed to make the algorithm learn. In this work, we are 

interested in combining fuzzy logic and genetic algorithms together which is a supervised 

learning approach. 

 

 

2.2.3 Fuzzy Logic can help in decision making or reasoning in an uncertain situation. 

From Figure 2.10, the fuzzy value is in a range of completely true and completely false 

but Boolean logic has only true or false.  

 

 
 

 

Figure 2.10 Boolean logic and fuzzy logic 

 

Fuzzy logic uses a membership function to find a solution in an uncertain situation. There 

are many types of fuzzy functions such as a triangular membership function and a 

trapezoidal membership function. 

 

For example:  

 

The trapezoidal membership function has three parameters {a, b, c, d} and x is an 

input value. The fuzzy value (from the input x) will be calculated using the 

conditions from Figure 2.11. 
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Figure 2.11 Trapezoidal membership function [22] 

 

 

 

2.2.4 Fuzzy Rule contains many fuzzy logics by using an if-then condition. Figure 2.12 

presents a fuzzy rule by using many fuzzy logics where xi is a fuzzy value that is 

calculated from the fuzzy logic i, Ai is a threshold value from the fuzzy logic i. All input 

values will be calculated using the fuzzy logic. When all fuzzy values match to rule 1 

then the rule will classify it in to Class A. 

 

 

 
 

 

Figure 2.12 Fuzzy rule 

 

2.2.5 Genetic Algorithm (GA) Genetic algorithms are the evolutionary technique that 

uses the crossover and mutation operators to solve the optimization problems including 

NP-hard (non-polynomial) problems. It uses a natural evolution concept of only a 

“strongest or best solution” will survive among evolution of various populations. The 

technique does not guarantee an optimal solution. However, it can give a well-enough 

solution in the given time period. The genetic main algorithm process consists of the 

following approaches: 

 Encoding: each gene is a parameter that a genetic algorithm uses for 

solving problems. The sequence of the genes is called a chromosome. A 

chromosome is one solution of that problem. 

 

 
 

 

Figure 2.13 Example of chromosome 
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 Crossover: the approach to create a new chromosome from an existing 

chromosome by exchanging parts of the chromosomes (genes) between 

two chromosomes. In Figure 2.10, parent 1 and parent 2 exchange the 

chromosomes in a single point and multiple points. 

 
 

Figure 2.14 Genetic algorithm crossover multi values 

 

 Mutation: the approach to create a new chromosome from an existing 

chromosome by randomly choosing the chromosome and randomly 

changing the gene. 

 Evaluation: the function plays an important role in genetic algorithms. It 

is used to define the value of the chromosome.  
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2.2.6 KDD99 Dataset  

KDD99 dataset is a benchmark dataset for an intrusion detection system. It was 

established in 1999 from MIT Lincoln labs in order to evaluate research results in 

intrusion detection. The Lincoln labs used the TCP dump to capture the local-area 

network in the Air Force environment. It was also used with multiple attacks. There were 

two file versions of the KDD99 dataset: 10% version file (about 500,000 records) and full 

version file (about 5 million records). Table 2.13 shows a number of the records and a 

number of the distinct records of each attack type in the 10% version file. Table 2.14 

shows 41 features of the dataset. 

 

Table 2.13 Number of each attack in 10% version file of KDD99 dataset [21] 

 

Attack #Original Records #Distinct    Records Class 

normal 97,277 87,831 Normal 

back 2,203 994 DoS 

land 21 19 DoS 

neptune 107,201 51,820 DoS 

pod 264 206 DoS 

smurf 280,790 641 DoS 

teardrop 979 918 DoS 

satan 1,589 908 Probe 

ipsweep 1,247 651 Probe 

nmap 231 158 Probe 

portsweep 1,040 416 Probe 

guess_passwd 53 53 R2L 

ftp_write 8 8 R2L 

imap 12 12 R2L 

phf 4 4 R2L 

multihop 7 7 R2L 

warezmaster 20 20 R2L 

warezclient 1,020 1,020 R2L 

spy 2 2 R2L 

buffer_overflow 30 30 U2R 

loadmodule 9 9 U2R 

perl 3 3 U2R 

rootkit 10 10 U2R 

Total 494,020 145,740   

 

 

 

Examples of the data records in the KDD99 dataset:  

 
0,tcp,http,SF,241,261,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,34,16

9,1.00,0.00,0.03,0.04,0.00,0.00,0.00,0.00,normal. 

0,tcp,other,REJ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,511,1,0.14,0.00,0.86,1.00,0.00,1.00,0.00,255,

1,0.00,1.00,0.00,0.00,0.13,0.00,0.87,1.00,satan. 

0,icmp,ecr_i,SF,1032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,510,510,0.00,0.00,0.00,0.00,1.00,0.00,0.0

0,255,255,1.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,smurf. 

0,tcp,private,REJ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,132,8,0.00,0.00,1.00,1.00,0.06,0.07,0.00,25

5,8,0.03,0.06,0.00,0.00,0.00,0.00,1.00,1.00,neptune. 

0,udp,private,SF,28,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,34,34,0.00,0.00,0.00,0.00,1.00,0.00,0.00,25

5,1,0.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,teardrop. 
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Network attacks fall into four main categories. 

 Denial of Service (DoS) is a network attack that causes computer resources to be 

unavailable. DoS can happen from a person or multiple people. The target of the 

DoS attack is to serve a host on a high-profile web server such as banks, credit 

card payment gate way. Attackers attempt to force victims to either reset or 

consume network resources in order to destroy services. There are many methods 

used for this attack such as SYN flood, Tear drop attack and Peer to per attack. 

 Port Scan (Probe). Port scanner is a tool designed to probe a server for an open 

port. Attackers can use this application to monitor behavior of the target and 

exploit vulnerability of that target. 

 Remote to Local Attack (R2L). Attackers send packets to a machine and exploit 

machine’s vulnerability to gain the local access as an authenticated user, such as 

a password guessing attack. 

 User to Root (U2R). Attackers will start normal access to a user account and 

exploit vulnerability in order to gain unauthorized access to the root. In common, 

this kind of the attack can cause the buffer overflow. 

 

 

Table 2.14 Forty one features of KDD99 dataset [21] 

 

# Feature Description Type 

1 Duration duration of the connection. Cont. 

2 protocol type connection protocol (e.g. tcp, udp) Disc 

3 Service destination service (e.g. telnet, ftp) Disc. 

4 Dlag status flag of the connection Disc. 

5 source bytes bytes sent from source to destination Cont. 

6 destination bytes bytes sent from destination to source Cont. 

7  Land 

1 if connection is from/to the same host/port; 0 

otherwise Disc. 

8 wrong fragment number of wrong fragments Cont. 

9 Urgent number of urgent packets Cont. 

10 Hot number of “hot” indicators Cont. 

11  failed logins number of failed logins Cont. 

12 logged in 1 if successfully logged in; 0 otherwise Disc. 

13 # compromised number of “compromised’’ conditions Cont. 

14 root shell 1 if root shell is obtained; 0 otherwise Cont. 

15 su attempted 1 if “su root’’ command attempted; 0 otherwise Cont. 

16 # root number of “root’’ accesses Cont. 

17 # file creations number of file creation operations Cont. 

18 # shells number of shell prompts Cont 

19 # access files number of operations on access control files Cont. 

20 # outbound cmds number of outbound commands in an ftp session Cont. 

21 is hot login 1 if the login belongs to the “hot’’ list; 0 otherwise Disc. 

22 is guest login 1 if the login is a “guest’’ login; 0 otherwise Disc. 
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Table 2.14 Forty one features of KDD99 dataset [21] (Continued) 

 

# Feature Description Type 

23 Count 

number of connections to the same host as the current 

connection in the past two seconds Cont. 

24 srv count 

number of connections to the same service as the current 

connection in the past two seconds Cont. 

25 serror rate % of connections that have “SYN’’ errors Cont. 

26 srvserror rate % of connections that have “SYN’’ errors Cont. 

27 rerror rate % of connections that have “REJ’’ error Cont. 

28 srvrerror rate % of connections that have “REJ’’ error Cont. 

29 same srv rate % of connections to the same service Cont. 

30 diff srv rate % of connections to different services Cont. 

31 srv diff host rate % of connections to different hosts Cont. 

32 dst host count count of connections having the same destination host Cont. 

33 dst host srv count 

count of connections having the same destination host 

and using the same service Cont. 

34 dst host same srv rate 

% of connections having the same destination host and 

using the same service Cont. 

35 dst host diff srv rate % of different services on the current host Cont. 

36 

dst host same src port 

rate 

% of connections to the current host having the same src 

port Cont. 

37 dst host srv diff host rate 

% of connections to the same service coming from 

different hosts Cont. 

38 dst host serror rate 

% of connections to the current host that have an S0 

error Cont. 

39 dst host srvserror rate 

% of connections to the current host and specified 

service that have an S0 error Cont. 

40 dst host rerror rate 

% of connections to the current host that have an RST 

error Cont. 

41 dst host srvrerror rate 

% of connections to the current host and specified 

service that have an RST error Cont. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


