
 3

CHAPTER 2 LITERATURE SURVEY AND BACKGROUND

STUDY

2.1 Literature Survey
In this chapter, we present literature review consisting of two parts which are offline IDS

and online IDS (real-time). The offline data uses KDD99 dataset which is a benchmark

dataset. In this section, we focus on comparing various techniques for intrusion detection.

Besides, we compare the performances of each technique, such as a detection rate, a false

alarm rate and limitation. For the online IDS, we focus on a new technique to preprocess

data in an actual network environment and testing environment.

2.1.1 IDS for Offline Data
Gómez and León [1] proposed a Fuzzy Genetic Algorithm to classify behavior of

intrusion into two classes (normal class and attack class). This algorithm could be trained

by one class (normal class). The behavior different from the training class would be

classified as an attack. They used KDDC99 dataset which had four attack types including

DoS, Probe, R2L and U2R. In the KDD99 dataset, they found that there were some

features that had the same value for each record, so they reduced the number of the

features into 33 features. The dataset was divided into two sets including the training set

and the testing set. The training set had only the normal data containing 2,000 records.

The highest obtained detection rate was 98.28% with 5% of the false alarm rate.

Banković et al. [2] proposed an interesting Fuzzy Genetic Algorithm Approach to reduce

the number of the features in the dataset and maintain the high detection rate. From the

experiment, they found that there were three features that were relevant. There were two

experiments: the first experiment had two output classes (normal class and attack class).

The accuracy of the detecting attack (TN) was 94.87% with 1.62% of the false positive.

The second experiment had four classes (the fuzzy rule could identify each type of the

attacks including the normal class, the portsweep class, the smurf class and the neptune

class). From this experiment, the maximum detection rate was 87.6% because there was

only 30% of the detection rate of the portsweep. These two experiments used the KDD99

dataset. However, the training dataset had 976 records (137 of attack records and 839 of

normal records) and the testing dataset had 977 records (234 of attack records and 743 of

normal records). Moreover, they considered only three types of the attacks which were

the portsweep, smurf and neptune.

Tsang et al. [3] proposed Multi-Objective Genetic Fuzzy Intrusion Detection System

(MOGFIDS) for detecting anomaly attack. There were three objectives for MOGFIDS:

having the high classification rate, reducing the number of fuzzy rules and reducing

complexity of fuzzy rules. This experiment used 10% version of KDD99 dataset for

training including four attack types (DoS, Probe, R2L and U2R). However, they found

that the dataset was biased against DoS (Neptune attack and Smurf attack). In order to

make the training set more realistic, they sampled 1,000 records for each type of the DoS,

10,000 records of the normal and the remaining intact number of the records of other

attacks (the number of the training set was 20,752 records). The testing set used 311,029

records with additional 14 unseen attack types. The result showed that this algorithm

with 27 features gave 92.77% of the detection rate and 1.6 of the false positive rate.

 4

Ensafi et al. [4] proposed optimizing fuzzy K-means for network anomaly detection using

particle swarm optimization (PSO). Two versions of the KDD99 dataset were used (full

version and 10% version). The training dataset had only the normal class from the 10%

version. The testing dataset consisted of 60,592 records of the normal class and 250,436

of the attack class. Figure 2.1 presents the diagram of the proposed work. Particles swarm

and K-means clustering was used together to cluster the dataset in each generation. A

genetic algorithm was used to find the best solution. The output classes were Normal,

DoS, R2L, U2R and Probe, and the detection rate was 95 % with 2.12% of the false alarm

rate.

Figure 2.1 Optimizing fuzzy K-means for network anomaly framework [4]

Fries [5] proposed a Fuzzy Genetic Algorithm Approach. This work had two phases:

preprocessing phase and detection phase. In the preprocessing phase, they used clustering

and genetic algorithm to find the significant features. The result showed that there were

8 relevant features. In the detection phase, they evaluated the algorithm by using the 10%

version of the KDD99 dataset as the training set (about 500,000 records) and the full

version of the KDD99 dataset as the testing set (about 5 million records). In the testing

set, there were 14 types of new attacks that were not presented in the training set. The

detection rate was 99.6% with 0.2 of the false positive rate. They found that this algorithm

had the high detection rate and was robust for an untrained attack.

Abadeh et al. [6] proposed a genetic fuzzy algorithm. They used three different kinds of

genetic fuzzy systems based on Michigan, Pittsburgh and iterative rule learning. The

algorithm could be classified into five classes (Normal, U2R, R2L, DoS, and Probe). The

distribution of the training dataset and the testing dataset is shown in Table 2.1. The result

showed that the Pittsburgh method had the highest detection rate of 99.53% with 1.94%

of the false alarm rate.

 5

Table 2.1 Distribution of different classes in training and testing datasets [6]

Attack Type Train Test

Normal 100 1,000

U2R 50 59

R2L 100 1,000

DoS 300 6,500

PORBE 100 1,000

Total 650 9,559

Ngamwitthayanon and Wattanapongsakorn [7] proposed a Fuzzy-Adaptive Resonance

Theory (ART) in network anomaly detection with feature-reduction dataset. The

Adaptive Resonance was a type of the neural network algorithm. The main algorithm was

the ART algorithm while the Fuzzy was used to simplify a network structure of the ART.

Moreover, they applied a feature reduction method with the KDD99 dataset. This

approach increased the detection rate to 98.96% and used only14 features. However, this

algorithm indicating the similar problem as the previous algorithm was impractical in the

real network. Also, it did not provide enough information for a protection system.

Table 2.2 Detection rate with different numbers of KDD99 features [7]

Dataset
Number of

Features
Detection Rate (%)

1 7 98.87

2 9 99.44

3 12 98.98

4 14 98.93

5 22 99.12

6 24 99.20

7 41 97.96

Muda et al. [8] proposed a detection solution by combining of the K-means algorithm and

the Naïve Bayes algorithm. The first step of the algorithm was using the K-means

algorithm to categorize data into two classes; normal class and attack class. Then, the

Naïve Bayes algorithm was used to classify the previous results into attack types. They

sampled 49,402 records of the training set from the 10% version of the KDD99 dataset

and another 49,402 records from the full version of the KDD99 which had more 14 types

of new attacks. The detection rate was 99.6%. However, this solution was impractical for

a real network environment because the K-Means algorithm required time to process. It

could cause the bottleneck problem in network traffic or system clash.

Seungmin et al. [9] proposed a self-organizing map (SOM) combined with the K-means

algorithm to classify untrained attacks. The system was able to learn from the new data.

There were three phases consisting of an adjusting SOM network, updating centroid (K-

means algorithm) and splitting normal cluster. The cluster system could divide the output

into two classes (normal class and attack class). They sampled the dataset from the

KDD99 dataset. The size of the sampling dataset was 20,000 records which consisted of

1% of the attack and 99% of the normal class. They reduced the number of features into

 6

eight features (2, 3, 4, 10, 12, 23, 33 and 35). The average detection rate in this work was

89.7% with 2.43 of the false positive rate.

Chandrasekhar and Raghuveer [10] proposed an intrusion detection technique using the

K-means, fuzzy neural network and the SVM algorithm. They found that a rule based

system was worse when encountering with a large scale of the data, so they introduced

the artificial neural network (ANN) for this system [Figure 2.2]. First, they used the K-

mean algorithm to cluster the dataset into n clusters (each cluster was the type of

intrusion). In each cluster, there was a neuro-fuzzy to learn the pattern. The neuro-fuzzy

in each cluster was used to generate the SVM vector to classify attacks (the neuro-fuzzy

algorithm helped to decrease a number of attributes in SVM). They sampled the training

dataset and testing dataset from a 10% version file of the KDD99 dataset which consisted

of 26,114 records for the training dataset and 27,112 records for the testing dataset (Table

2.3). The accuracy of each attack was 98% for DoS attack, 97.31% for Probe, 97.51 for

R2L and 97.52 for U2R. Total detection rate was 98.48% with 2.41 % of the false positive

rate.

Figure2.2 Block diagram of proposed IDS from using K-means, fuzzy neural network

 and SVM algorithm [10]

Table 2.3 Data record taken for training and testing in [10]

 Normal DoS PROBE R2L U2R TOTAL

Training 12,500 12,500 1,054 39 21 26,114

Testing 12,500 12,500 2,053 38 21 27,112

 7

Table 2.4 Summary of Offline IDS

Year Author Algorithm DR(%) FP(%) Feature Output

2006

[1]
Gómez and León Genetic Fuzzy 98.28 N/A 33 Normal, Attack

2007

[2]
Banković et al Genetic Fuzzy

94.87 0-1.62

3

Normal, Attack

87.6 0

Normal,

Portsweep,

Smurf and

Neptune

2007

[3]
Tsang et al. Genetic Fuzzy 92.77 1.6 27

Normal, Probe,

DoS, U2R, R2L

2008

[4]
Ensafi et al

Fuzzy K-means

and PSO
95.9 2.12 33

Normal, Probe,

DoS, U2R, R2L

20010

[5]
Fries Genetic Fuzzy 99.6 0.2 8 Normal, attack

2010

[6]
Abadeh et al. Genetic Fuzzy 99.53 1.94 21

Normal, Probe,

DoS, U2R, R2L

2011

[7]

Ngamwitthayanon

and

Wattanapongsakorn

Fuzzy and

ART
 98.96 N/A 14 Normal, Attack

2011

[8]
Muda et al.

K-means+

naïve bayes

technique

99.8 0.09 41
Normal, Probe,

DoS, U2R, R2L

2011

[9]
Seungmin et al.

SOM and

K-means
89.7 2.43 8 Normal, attack

2013

[10]
Chandrasekhar et al.

K-means,

fuzzy neural

network and

SVM

98.48 2.41 N/A
Normal, Probe,

DoS, U2R, R2L

** DR = Detection Rate

** FA = False Alarm

** N/A not available

 8

2.1.2 IDS for Online Data
Labib and Vemuri [11] proposed a real-time intrusion detection system by considering

10 features of header packets. Each record was the statistic data which was collected in

every 50 packets. Then, they used SOM as an algorithm to classify attacks. The outputs

were normal and DoS attacks. On the other hand, it needed a human expert to visualize

the output data.

Amini et al. [12] proposed a real-time intrusion detection system using neural network

algorithms (Adaptive Resonance Theory (ART) and Self-Organizing Map (SOM)) to

classify normal packets and attack packets (two classes) as shown in Figure 2.3. They

generated the attacks and collected the attack data by using attack tools as shown in Table

2.5 (left). They collected normal traffic in a real traffic network within 4 days. So, they

created their own dataset which consisted of training data (5,000 packets) and testing

dataset (3,000 packets). They preprocessed the packets into 27 features as shown in Table

2.5 (right). The result showed that the ART had the higher detection of 97.42%. The result

is shown in Table 2.5.

Figure 2.3 RT-UNNID systems [12]

Table 2.5 Real-time detection rate of RT-UNNID using SOM ART-1 and ART-2 [12]

 ETTR TR FPR FNR

ART-1 71.71 97.42 1.99 0.59

ART-2 73.18 97.19 2.3 0.51

SOM 83.44 95.74 3.5 0.77

**ETTR is exact true types detection rate

 TR is true detection rate

 FPR is false positive detection rate

 NFR is false negative detection rate

 9

Table 2.6 Attack name (left) and feature name in proposed approach (right) [12]

Attack name
Attack

generation tools

Train

dataset

Test

dataset

Category Feature

1 Bonk targa2.c √ √ - protocol

2 Jolt targa2.c √ √
IP diff-time

stamp

3 Land targa2.c √ √ ip id

4 Saihyousen targa2.c √ √ IP tos

5 TearDrop targa2.c √ √ ipttl

6 Newtear targa2.c √ √ ipheaderlen

7 1234 targa2.c √ √ iplen

8 Winnuke targa2.c √ √ is home srcip

9 Oshare targa2.c √ √ is home dstip

10 Nestea targa2.c √ √ is land

11 SynDrop targa2.c √ √ ip frag flag

12 Octopus Octopus.c √ √ TCP tcpsrc port

13 KillWin KillWin.c √ √ tcpdst port

14 Twinge Twinge.c √ √ tcp fin

15 TcpWindowScan Nmap √ √ tcpsyn

16 SynScan Nmap √ √ tcprst

17 Neptune FireHack √ √ tcp push

18 Dosnuke FireHack √ √ tcpack

19 Smbdie Smbdie.exe √ √ tcpurg

20 XmassTree-Scan Namp √ √ tcp offset

21 LinuxICMP linux-icmp.c - √ tcp win size

22 Moyari13 Moyari13.c - √ UDP udpsrc port

23 Sesquipedalian.c Sesquipedalian - √ udpdst port

24 Smurf smurf4.c - √ ICMP icmp type

25 OverDrop overdrop.c - √ icmp code

26 OpenTear opentear.c - √ icmp id

27 ExhoChargen FireHack - √ icmp sequence

Pukkawanna et al. [13] proposed the Lightweight Detection system (LD2) to detect Denial

of Service Attack (DoS). The target attacks included SYN Flood, ICMP flood, Port scan

Host scan, UDP flood and smurf. The system preprocessed the network into five features

(srcIP, protocol, dstIP, srcPort, and dstPort). The background traffic environment had two

types: controlled environment and real traffic environment. In the controlled network

environment, they used Iperf to generate the UDP traffic in various rates. In the real

network environment, they replied traces by using tcpreplay. The trace was sampled from

WIDE Backbone (100-150 Mbps). In each experiment, they generated a DoS attack on

the top of a single background trace. Figure 2.4 showed the graph pattern that the system

used for detecting each type of the attacks. For example, SYN flood had the same (srcIP,

prot, dstIP, dstPort) but various srcPort. Thus, the detection system needed the training

process in order to find a threshold for each attack type (Table 2.7). They generated

multiple attacks at once (12 instances). The experiment result showed that the LD2

 10

performed well with the 100% detection rate (except a host scan that could not detect

some activities) with no false positive. They also evaluated a system performance in term

of CPU consumption and memory consumption by using a systat tool. It showed that the

increasing packet rate of a background also increased the CPU usage [Figure 2.5]. The

maximum CPU utilization of the LD2 was 16% at 7,000 pps and the memory consumption

was 20 MB. The behavior of the memory consumption is shown in [Figure 2.6].

Figure 2.4 DoS attack graphlets [13]

Figure 2.5 CPU initialized for LD2 (left) and Snort (right) [13]

Figure 2.6 Memory usage for LD2 (left) and Snort (right) [13]

 11

Table 2.7 Threshold for attack graphlets [13]

Dos Type Threshold Parameters (per minute) Upper Bound Suggest Value

SYN flood Source ports 1,998 1,598

UDP flood Number of UDP packets 1,918 1,534

ICMP flood

Number of ICMP packets to broadcast

address 2,151 1,721

Smurf

Number of ICMP packets to broadcast

address 2,151 1,721

Port scan Destination ports 394 313

Host scan Destination IP adresses 5 4

Su [14] proposed the real-time IDS for large-scale attacks by using fuzzy association

rules. The technique derived features from a packet header from the open network within

every 2 seconds (one record per two seconds). There were 16 features used in this

technique as shown in Table 2.8. The system architecture is shown in Figure 2.7. The

computer A preprocessed data from a real network and sent a record to the computer B

to create a fuzzy rule. The computer D compared the rules between the computer B and

C to find the attacks. This experiment was tested on 30 DoS attacks. A network topology

is shown in Figure 2.8. IP traffic (a sender) was a computer used to generate the

background traffic, such as TCP packets, UDP packets, ICMP packets and ARP packets.

It connected to the internet. There was the IP traffic (a receiver) located in the local

network. An attack generator was used to generate attacks (DoS) where the victim was

found in the local network. The system was also located in the local network. It monitored

the traffic in the local network. The traffic rate during the experiment was 0-80 Mbps.

The result is shown in Figure 2.9. We can see that the system responded to the attack five

time units (10 seconds) after the system was attacked. This system could only give an

alarm signal when the network was under attack. However, it could not provide any useful

information to prevent the network from malicious network activities.

Figure 2.7 Architecture of NIDS [14]

 12

Figure 2.8 Network topology for simulation [14]

Figure 2.9 Similarity degradation during flooding for DoS.Win32.IIS [14]

Table 2.8 Feature list of real-time network IDS for large-scale attacks based on

an incremental mining approach [14]

Protocol Feature

1 TCP source IP+SYN count

2 TCP source IP+URG_Flag+URG_data count

3 TCP Source IP+ACK-Flag+ACK count

4 ARP Source IP+ARP count

5 IP Destination IP slots hit

6 IP Header length 1=20 count

7 IP MF_Flag count

8 IP (total length > 1400||<40)&&TTL=64 count

9 IP Checksum_error count

10 TCP ACK_Flag+ACK count

11 TCP Checksum_error count

12 UDP Same_length_interval count

13 ICMP Type error count

14 ICMP Checksum_error count

15 ICMP Checksum_error count

16 ICMP Length>1000count

 13

Komviriyavut et al. [15] proposed a real-time detection. They used a packet sniffer to

sniff the packets in the network every 2 seconds and preprocessed it into 13 features by

counting the number of connections between two IP addresses every 2 seconds [Table

2.9]. They also used the decision tree algorithm to classify the data. In order to evaluate

the performance, they collected the normal data from the network traffic in the

Department of CPE from KMUTT. They simulated the attacks in a closed environment

by using attack tools which consisted of 18 types of attacks [Table 2.10]. The dataset

could be categorized into 3 types; DoS, Probe and normal data. The result showed that

this algorithm had 97.5 percent of the detection rate. This technique was efficient to be

used in an actual network environment in terms of speed, memory consumption and CPU

consumption.

Examples of the record of the normal network data from the preprocessing phase are

shown below.

2138,33,33,4,4,644,2136,0,0,0,0,0,0,Normal

12,2,2,0,0,1,12,0,0,0,0,0,0, Normal

Table 2.9 Features in online dataset [15]

No. Feature Description Data Type

1 Number of TCP packets Integer

2 Number of TCP source ports Integer

3 Number of TCP destination ports Integer

4 Number of TCP fin flags Integer

5 Number of TCP syn flags Integer

6 Number of TCP reset flags Integer

7 Number of TCP push flags Integer

8 Number of TCP ack flags Integer

9 Number of TCP urgent flags Integer

10 Number of UDP packets Integer

11 Number of UDP source ports Integer

12 Number of UDP destination ports Integer

13 Number of ICMP packets Integer

Kachurka and Golovko [16] proposed a neural network approach for real-time network

intrusion detection. This algorithm could detect the attacks without the training dataset.

This experiment considered three different types of the attacks: tcp scan, sysn flood and

udp flood (500 records of each attack). The feature names of each record were timestamp,

duration of connection in seconds, source’s and destination’s IP-addresses, name of the

service used, port number, the number of bytes transferred and the result flag of the

connection. They used both KDD99 dataset and real-time dataset to evaluate the

algorithm. This technique was able to detect unknown attacks at least 97% of the detection

rate for each type of the attacks (use the KDD99 dataset to evaluate).

Casas et al. [17] proposed Unsupervised Network Intrusion Detection (NIDSs) using Sub-

Space Clustering Algorithm and Multiple Evidence Accumulation Algorithm. The NIDSs

was able to detect attacks without the training dataset. The system was tested in an offline

environment (with the KDD99 dataset) and an online environment. In the online

environment, they used the traffic trace from the MAWI repository of the WIDE project

and the METROSEC project. These two network traces were generated over the past ten

 14

years. They preprocessed the data network into 9 features [Table 2.11]. The algorithm

could be classified into two classes which were a positive class (attack) and a negative

class. The result showed that 90% of the attacks were correctly detected.

Table 2.10 Attack names in the dataset [15]

No. Data Tools (to Generate) Category

1 Smurf Smurf.c DoS

2 UDP Flood Net Tools 5 DoS

3 HTTP Flood Net Tools 5 DoS

4 Jping Jping.c DoS

5 Port Scan Net Tools 5 Probe

6 Advance Port Scan Net Tools 5 Probe

7 Host Scan Host Scan 1.6 Probe

8 Connect NMapWin 1.3.1 Probe

9 SYN Stealth NmapWin 1.3.1 Probe

10 FIN Stealth NmapWin 1.3.1 Probe

11 UDP Scan NmapWin 1.3.1 Probe

12 Null Scan NmapWin 1.3.1 Probe

13 Xmas Tree NmapWin 1.3.1 Probe

14 IP Scan NmapWin 1.3.1 Probe

15 ACK Scan NmapWin 1.3.1 Probe

16 Window Scan NmapWin 1.3.1 Probe

17 RCP Scan NmapWin 1.3.1 Probe

18 Normal Actual Environment Normal

Table 2.11 Features used in NIDSs [17]

No. Feature Description Abbreviation

1 Number of source IP nSrcs

2 Number of destination IP NDsts

3 Number of TCP source ports nSrcPorts

4 Number of TCP destination ports nDstPorts

5 Ratio of number of sources to number of destination nSrcPorts/nDstPorts

6 packet rate nPkts/sec

7 fraction of ICMP packets nICMP/nPkts

8 number of SYN packets nSYN/nPkts

9 average packets size avgPktsSize

 15

Table 2.12 Summary of Online IDS

Year Author Algorithm DR(%) FP(%)
Number of

Features
Output

2002

[11]

Labib and

Vemuri
NSOM - 10 Normal, DoS

2005

[12]
Amini et al.

Neural

Network (ART

and SOM)

97.427 1.99 27
Normal,

Attack

2007

[13]

Pukkawanna et

al.

BLINd

classification

100
(accept host

scan)

0

 (accept host

scan)
5

SYN Flood,

ICMP flood,

Port scan Host

scan, UDP

flood and

smurf

2009

[14]
Su et al.

Fuzzy

association

rules

N/A N/A 16 Normal, DoS

2009

[15]

Komviriyavut et

al.

Decision Tree

and Rule Based
97.5 0.6 13

Normal, DoS,

Probe

2011

[16]

Kachurka and

Golovko[14]

Neural

Network

N/A N/A 16
Normal,

Attack

2012

[17]
Casas et al. Clustering N/A N/A 9

Normal,

Attack

2.2 Background Study

2.2.1 Artificial Intelligence (AI) [18]. Major AI researchers and textbooks define the

field as “The study and design of intelligent agents” where an intelligent agent is a system

that learns from giving knowledge and takes action that maximizes its chances to achieve

its goal.

John McCarthy : "the science and engineering of making intelligent machines"

2.2.2 Machine Learning [19], a branch of artificial intelligence, is about the construction

and study of systems that can automatically learn from experiences and get more accurate

results. The definition of the machine learning is described as follows:

Arthur Samuel : "Field of study that gives computers the ability to learn without being

explicitly programmed"

Tom M. Mitchell : "A computer program is said to learn from experience E with respect

to some class of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E"

http://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)
http://en.wikipedia.org/wiki/Learning
http://en.wikipedia.org/wiki/Arthur_Samuel
http://en.wikipedia.org/wiki/Tom_M._Mitchell

 16

The learning process of the machine learning can be categorized into four types of the

machine learning described as follows: [20]

1. Supervised learning: during the learning process, the system will be told by the

training dataset what is correct and what is not correct.

2. Unsupervised learning: during the learning process, the correct answers are not

provided; the algorithm will identify similarity of the input data and categorize

the similar input together instead.

3. Reinforcement learning: during the learning process, the algorithm will be told

what is wrong but not be told what is correct. It has to explore and try out different

possibilities until it works out how to get the right answer.

4. Evolutionary learning: biological evaluation can be considered as a learning

process such as the process that living things adapt their generation to survive in

an environment.

There are many ideas proposed to make the algorithm learn. In this work, we are

interested in combining fuzzy logic and genetic algorithms together which is a supervised

learning approach.

2.2.3 Fuzzy Logic can help in decision making or reasoning in an uncertain situation.

From Figure 2.10, the fuzzy value is in a range of completely true and completely false

but Boolean logic has only true or false.

Figure 2.10 Boolean logic and fuzzy logic

Fuzzy logic uses a membership function to find a solution in an uncertain situation. There

are many types of fuzzy functions such as a triangular membership function and a

trapezoidal membership function.

For example:

The trapezoidal membership function has three parameters {a, b, c, d} and x is an

input value. The fuzzy value (from the input x) will be calculated using the

conditions from Figure 2.11.

 17

Figure 2.11 Trapezoidal membership function [22]

2.2.4 Fuzzy Rule contains many fuzzy logics by using an if-then condition. Figure 2.12

presents a fuzzy rule by using many fuzzy logics where xi is a fuzzy value that is

calculated from the fuzzy logic i, Ai is a threshold value from the fuzzy logic i. All input

values will be calculated using the fuzzy logic. When all fuzzy values match to rule 1

then the rule will classify it in to Class A.

Figure 2.12 Fuzzy rule

2.2.5 Genetic Algorithm (GA) Genetic algorithms are the evolutionary technique that

uses the crossover and mutation operators to solve the optimization problems including

NP-hard (non-polynomial) problems. It uses a natural evolution concept of only a

“strongest or best solution” will survive among evolution of various populations. The

technique does not guarantee an optimal solution. However, it can give a well-enough

solution in the given time period. The genetic main algorithm process consists of the

following approaches:

 Encoding: each gene is a parameter that a genetic algorithm uses for

solving problems. The sequence of the genes is called a chromosome. A

chromosome is one solution of that problem.

Figure 2.13 Example of chromosome

 18

 Crossover: the approach to create a new chromosome from an existing

chromosome by exchanging parts of the chromosomes (genes) between

two chromosomes. In Figure 2.10, parent 1 and parent 2 exchange the

chromosomes in a single point and multiple points.

Figure 2.14 Genetic algorithm crossover multi values

 Mutation: the approach to create a new chromosome from an existing

chromosome by randomly choosing the chromosome and randomly

changing the gene.

 Evaluation: the function plays an important role in genetic algorithms. It

is used to define the value of the chromosome.

 19

2.2.6 KDD99 Dataset

KDD99 dataset is a benchmark dataset for an intrusion detection system. It was

established in 1999 from MIT Lincoln labs in order to evaluate research results in

intrusion detection. The Lincoln labs used the TCP dump to capture the local-area

network in the Air Force environment. It was also used with multiple attacks. There were

two file versions of the KDD99 dataset: 10% version file (about 500,000 records) and full

version file (about 5 million records). Table 2.13 shows a number of the records and a

number of the distinct records of each attack type in the 10% version file. Table 2.14

shows 41 features of the dataset.

Table 2.13 Number of each attack in 10% version file of KDD99 dataset [21]

Attack #Original Records #Distinct Records Class

normal 97,277 87,831 Normal

back 2,203 994 DoS

land 21 19 DoS

neptune 107,201 51,820 DoS

pod 264 206 DoS

smurf 280,790 641 DoS

teardrop 979 918 DoS

satan 1,589 908 Probe

ipsweep 1,247 651 Probe

nmap 231 158 Probe

portsweep 1,040 416 Probe

guess_passwd 53 53 R2L

ftp_write 8 8 R2L

imap 12 12 R2L

phf 4 4 R2L

multihop 7 7 R2L

warezmaster 20 20 R2L

warezclient 1,020 1,020 R2L

spy 2 2 R2L

buffer_overflow 30 30 U2R

loadmodule 9 9 U2R

perl 3 3 U2R

rootkit 10 10 U2R

Total 494,020 145,740

Examples of the data records in the KDD99 dataset:

0,tcp,http,SF,241,261,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,34,16

9,1.00,0.00,0.03,0.04,0.00,0.00,0.00,0.00,normal.

0,tcp,other,REJ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,511,1,0.14,0.00,0.86,1.00,0.00,1.00,0.00,255,

1,0.00,1.00,0.00,0.00,0.13,0.00,0.87,1.00,satan.

0,icmp,ecr_i,SF,1032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,510,510,0.00,0.00,0.00,0.00,1.00,0.00,0.0

0,255,255,1.00,0.00,1.00,0.00,0.00,0.00,0.00,0.00,smurf.

0,tcp,private,REJ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,132,8,0.00,0.00,1.00,1.00,0.06,0.07,0.00,25

5,8,0.03,0.06,0.00,0.00,0.00,0.00,1.00,1.00,neptune.

0,udp,private,SF,28,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,34,34,0.00,0.00,0.00,0.00,1.00,0.00,0.00,25

5,1,0.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,teardrop.

 20

Network attacks fall into four main categories.

 Denial of Service (DoS) is a network attack that causes computer resources to be

unavailable. DoS can happen from a person or multiple people. The target of the

DoS attack is to serve a host on a high-profile web server such as banks, credit

card payment gate way. Attackers attempt to force victims to either reset or

consume network resources in order to destroy services. There are many methods

used for this attack such as SYN flood, Tear drop attack and Peer to per attack.

 Port Scan (Probe). Port scanner is a tool designed to probe a server for an open

port. Attackers can use this application to monitor behavior of the target and

exploit vulnerability of that target.

 Remote to Local Attack (R2L). Attackers send packets to a machine and exploit

machine’s vulnerability to gain the local access as an authenticated user, such as

a password guessing attack.

 User to Root (U2R). Attackers will start normal access to a user account and

exploit vulnerability in order to gain unauthorized access to the root. In common,

this kind of the attack can cause the buffer overflow.

Table 2.14 Forty one features of KDD99 dataset [21]

Feature Description Type

1 Duration duration of the connection. Cont.

2 protocol type connection protocol (e.g. tcp, udp) Disc

3 Service destination service (e.g. telnet, ftp) Disc.

4 Dlag status flag of the connection Disc.

5 source bytes bytes sent from source to destination Cont.

6 destination bytes bytes sent from destination to source Cont.

7 Land

1 if connection is from/to the same host/port; 0

otherwise Disc.

8 wrong fragment number of wrong fragments Cont.

9 Urgent number of urgent packets Cont.

10 Hot number of “hot” indicators Cont.

11 failed logins number of failed logins Cont.

12 logged in 1 if successfully logged in; 0 otherwise Disc.

13 # compromised number of “compromised’’ conditions Cont.

14 root shell 1 if root shell is obtained; 0 otherwise Cont.

15 su attempted 1 if “su root’’ command attempted; 0 otherwise Cont.

16 # root number of “root’’ accesses Cont.

17 # file creations number of file creation operations Cont.

18 # shells number of shell prompts Cont

19 # access files number of operations on access control files Cont.

20 # outbound cmds number of outbound commands in an ftp session Cont.

21 is hot login 1 if the login belongs to the “hot’’ list; 0 otherwise Disc.

22 is guest login 1 if the login is a “guest’’ login; 0 otherwise Disc.

 21

Table 2.14 Forty one features of KDD99 dataset [21] (Continued)

Feature Description Type

23 Count

number of connections to the same host as the current

connection in the past two seconds Cont.

24 srv count

number of connections to the same service as the current

connection in the past two seconds Cont.

25 serror rate % of connections that have “SYN’’ errors Cont.

26 srvserror rate % of connections that have “SYN’’ errors Cont.

27 rerror rate % of connections that have “REJ’’ error Cont.

28 srvrerror rate % of connections that have “REJ’’ error Cont.

29 same srv rate % of connections to the same service Cont.

30 diff srv rate % of connections to different services Cont.

31 srv diff host rate % of connections to different hosts Cont.

32 dst host count count of connections having the same destination host Cont.

33 dst host srv count

count of connections having the same destination host

and using the same service Cont.

34 dst host same srv rate

% of connections having the same destination host and

using the same service Cont.

35 dst host diff srv rate % of different services on the current host Cont.

36

dst host same src port

rate

% of connections to the current host having the same src

port Cont.

37 dst host srv diff host rate

% of connections to the same service coming from

different hosts Cont.

38 dst host serror rate

% of connections to the current host that have an S0

error Cont.

39 dst host srvserror rate

% of connections to the current host and specified

service that have an S0 error Cont.

40 dst host rerror rate

% of connections to the current host that have an RST

error Cont.

41 dst host srvrerror rate

% of connections to the current host and specified

service that have an RST error Cont.

