CONTENTS

			PAGE	
AE	BSTRACT		ii	
AC	CKNOWLE	DGEMENT	iii	
CC	ONTENTS		iv	
LI	ST OF TAB	LES	vii	
LI	LIST OF FIGURES			
LI	ST OF TEC	HNICAL VOCABULARY AND ABBREVIATIONS	xi	
CI	HAPTER			
1.	INTROD	UCTION	1	
	1.1	Back ground and rationale	1	
	1.2	Objective	2	
	1.3	Scope of work	3	
2.	LITERA	FURE REVIEWS	4	
	2.1	Ethanol	4	
	2.2	Biomass	4	
	2.2.1	Biomass potential in Thailand	4	
	2.2.2	Oil palm plantation	5	
	2.2.3	Oil palm empty fruit bunch (OPEFB)	5	
	2.2.4	Composition of oil palm empty fruit bunch	7	
	2.3	Cellulose	7	
	2.3.1	Structural unit of cellulose	8	
	2.3.2	Functionality	9	
	2.3.3	Cellulase enzyme	9	
	2.3.4	The mechanism of cellulase enzyme in producing glucose	10	
	2.4	Pretreatment process	10	
	2.4.1	Hydrolysis	13	
	2.4.2	Enzymatic hydrolysis	13	
	2.4.3	Acid hydrolysis	13	
	2.4.4	Dilute acid	14	
	2.4.5	Steam explosion	14	
	2.5	Saccharification	15	
	2.6	Fermentation process	15	
	2.6.1	Separate hydrolysis and fermentation	15	
	2.7	Cellulolytic microorganisms	16	
	2.7.1	Degradation of cellulose	17	
3.	MATERI	ALS AND METHODS	19	
	3.1.	Raw materials and chemicals	19	
	3.1.1	Raw materials	19	
	3.1.2	Chemical	19	
	3.1.3	Microbial culture medium	19	
	3.2	Equipment for analysis	19	

CONTENTS (Cont.)

			PAGE
	3.2.1	Machinery and equipment	19
	3.2.2	Glass equipment	20
	3.3	Method	20
	3.3.1	Source of microorganisms	20
	3.3.2	Preparation of oil palm empty fruit bunch (OPEFB)	20
	3.3.3	Preparation of residue from acid hydrolysis of OPEFB	21
	3.3.4	Isolation of microorganisms	21
	3.3.5	Pre-primary identification and characterization of cellulolytic microorganisms	21
	3.3.6.	Detection of extracellular cellulases activity on CMC agar	22
	3.3.7	Determination of extracellular cellulase activity and cell growth in a liquid CMC medium	22
	3.3.8	Investigation of optimum conditions of cellulase production medium	24
	3.3.9	Cellulase purification	25
	3.3.10	Effect of temperature and pH on cellulase activity	26
	3.3.11	Ethanol production	26
	3.3.12	Identification of cellulase producing actinomycetes by 16S rRNA sequence	27
4.	RESULT	AND DISCUSSION	31
	4.1	Samples for isolation of cellulolytic microorganisms	31
	4.2	Composition of oil palm empty fruit bunch (OPEFB) fiber and residue of acid hydrolysis of OPEFB	33
	4.3	Isolation of microorganisms	34
	4.3.1	Colony properties of microorganism	36
	4.4	Detection of extracellular cellulase activity on CMC agar	42
	4.5	Determination of microbial growth and extracellular cellulase	
		production in a liquid CMC medium	44
	4.6	Optimum conditions for cellulase production of the selected cellulolytic actinomycetes	46
	4.7	Optimum conditions for cellulase production of the isolate 12.3.A	49
	4.7.1	Optimum Ph	49
	4.7.2	Optimum incubation temperature	52
	4.7.3	Optimum concentration of OPEFB and residue as substrate for enzyme production	56
	4.7.4	Effect of nitrogen sources on cellulase and reducing sugar production of the isolate 12.3.A	60
	4.8	Cellulase partial purification	64
	4.8.1	Crude cellulase, ammonium sulfate precipitation and dialysis	65
	4.8.2	clear zone of cellulase determination by zymogram	66
	4.9	Effect of temperature and pH on cellulase activity of the Isolate 12.3.A	67
	4.9.1	Optimum pH	67
	4.9.2	Optimum temperature	68
	4.10	Ethanol production	69
	4.10.1	Saccharification	69

PAGE

CONTENTS (Cont.)

4.10.2	Ethanol production	70
4.11	Identification of cellulase producing actinomycetes by 16S rRNA sequence analysis	71
4.11.1	16S rRNA analysis	71
4.11.2	Construction of phylogenetic tree	72
CONCL	LUSION AND SUGGESTION	76
5.1	Conclusion	76
5.2	Suggestion	76
REFER	ENCES	77
APPEN	DIX	87
A.	Medium preparation and composition	88
B.	Proximate analysis	90
C.	Determination of cellulose, hemicellulose and lignin	93
D.	Slide culture preparation for fungi and gram staining for bacteria	96
E.	Microorganisms and substrate	98
F.	Plate count	103
G.	Cellulase activity	105
H.	Reducing sugar	107
Ι	Standard curve of glucose	109
J	Protein content determination	112
Κ	Clear zone of cellulase by zymogram	114
L	Staining process in zymogram method	116
М	Residue preparation after enzymatic saccharification by evaporator	118
Ν	Analysis of alcohol by gas chromatography (GC)	120
0	16S rDNA	123
Р	Reagent and chemical preparation	125
CUDDI		126

CURRICULUM VITAE

126

LIST OF TABLES

TABLE		PAGE
2.1	Chemical composition of oil palm empty fruit bunch	7
2.2	Pretreament processes of lignocellulosic material	12
4.1	Types, sources, and characteristics of samples which are selected from the palm oil plantation and palm oil mill areas	31
4.2	Composition of OPEFB and the esidue from acid hydrolysis of OPEFB	34
4.3	The amount of residue was obtained after acid hydrolysis process of OPEFB	34
4.4	The fifty eight (58) isolates of microorganisms obtained from plant and soil samples assosiated with palm the samples were incubated for 10 days at 30° C and agitation rate of 150 rpm	35
4.5	Cell, colony morphology and Gram staining of bacterial isolates	37
4.6	Cell, colony morphology and gram staining of actinomycetes isolates	38
4.7	Cell and colony morphology of fungi isolates	40
4.8	Ratio between the diameter of the clear zone and the microbial colony	43
4.9	Purification of Cellulase Enzyme	65
4.10	The 15 alignment matches for the isolate 12.3.A of actinomycetes	73
A.1	Medium preparation and composition were used as a substrate for cellulase activity and reducing sugar	88
A.2	Medium preparation and composition were used for growing microbial	88
I.1	The different concentration of glucose standard	109
I.2	Absorbances of glucose	109
P.1	Reagent and chemical preparation	125

LIST OF FIGURES

2.1 Palm oil planta	tion	6
2.2 Oil palm empty	y fruit bunch	6
2.3 Solid waste pa	m oil (oil palm empty fruit bunch)	7
2.4 Cellulose in pla	ant structure	8
2.5 Molecule of ce	llulose	8
2.6 Schematic view	v the hydrogen bonding between glucose residues	9
2.7 The mechanism	ns of cellulase in producing cellulose	10
2.8 Flow chart out	ining processes in an integrated bench plant	11
2.9 Flow chart a sc	hematic picture of a possible bio-ethanol process	16
using separate	hydrolysis and fermentation (SHF)	• •
3.1 Flow chart prej	paration acid hydrolysis residue from OPEFB	28
3.2 Flow chart of associated with	the ethanol production from microbial cellulase palm oil industry	29
3.3 Flow charts zy	mogram of cellulase enzyme	30
4.1 Cellulase activ	vity demonstated by a clear zone surrounded the	43
actinomycetes	are (A) 5.1.A, (B) 12.3.A and (C) 11.2.A	
4.2 Growth of the	selected cellulolytic actinomycetes in CMC broth	45
4.3 Extracellular of actinomycetes	cellulase production of the selected cellulolytic in CMC broth	45
4.4 Reducing suga	r in the culture supernatant of the selected cellulolytic	46
actinomycetes	growing in CMC broth	47
4.5 Centrase produces on OPEFB and	d residue culture medium, incubated at 30°C and	47
150 rpm agitat	on	
4.6 The maximum	values of cellulase activity of the isolate 11.2.A and	47
the isolate 12 medium, growi	.3.A with OPEFB and the residue as the culture ng at 30° C and 150 rpm agitation	
4.7 Reducing suga	r in the culture supernatant of the isolate 11.2.A and	48
the isolate 12.3	A on OPEFB and the residue as the culture medium,	
performing at 3	30°C and 150 rpm agitation	10
4.8 The maximum and the isolate	production of reducing sugar of the isolate 11.2.A 12.3.A with OPEFB and the residue as the culture	48
medium, cultur	ing at 30° C and 150 rpm agitation	
4.9 Cellulase prod	uction of the isolate 12.3.A on OPEFB medium with 12.3 A on OPEFB medium with	49
4 10 Cellulase prod	uction of the isolate 12.3 A on the residue medium	50
with different p	bH, incubated at 30° C and 150 rpm agitation	50
4.11 The maximum	values of cellulase activity of the isolate 12.3.A in	50
the OPEFB an 30° C and agita	d the residue medium with different pH, culturing at tion rate of 150 rpm	
4 12 Reducing suga	r in the culture supernatant of the isolate 12.3 Δ in	51
OPEFB mediu:	m with different pH, performing at 30°C and 150 rpm	51

LIST OF FIGURES (Cont.)

FIGURE		PAGE
4.13	Reducing sugar in the culture supernatant of the isolate 12.3.A in the residue medium with different pH, performing at 30°C and 150 rpm agitation.	51
4.14	The maximum production of reducing sugar of the isolate 12.3.A in the OPEFB and the residue medium with different pH, culturing at 30° C and agitation rate of 150 rpm.	52
4.15	Cellulase production of the isolate 12.3.A on the OPEFB medium pH 7 incubated at various temperatures with 150 rpm agitation	53
4.16	Cellulase production of the isolate 12.3.A on the residue medium pH 7 incubated at various temperatures with 150 rpm agitation	53
4.17	The maximum values of cellulase activity of the isolate 12.3.A in the OPEFB and the residue mediums pH 7 incubated at different temperatures with agitation rate of 150 rpm	54
4.18	Reducing sugar production of the isolate 12.3.A in OPEFB medium pH 7 incubated at different temperatures with 150 rpm agitation	55
4.19	Reducing sugar production of the isolate 12.3.A in the residue medium pH 7 incubated at different temperatures with 150 rpm agitation	55
4.20	The maximum production of reducing sugar of the isolate 12.3.A in the different temperatures with OPEFB and the residue as substrates at pH 7 and agitation rate of 150 rpm	56
4.21	Cellulase production of the isolate 12.3.A in medium with different concentrations of OPEFB at pH 7, 30°C, and agitation rate of 150 rpm	57
4.22	Cellulase production of the isolate 12.3.A in medium with different concentrations of the residue at pH 7, 30°C, and agitation rate of 150 rpm	57
4.23	Maximum values of cellulase activity in the medium with different concentrations of OPEFB and the residue at pH 7, 30°C and agitation rate of 150 rpm	58
4.24	Reducing sugar production of the isolate 12.3.A in medium with different concentrations of OPEFB at pH 7, 30°C, and agitation rate of 150 rpm	58
4.25	Reducing sugar production of the isolate 12.3.A in medium with different concentrations of the residue at pH 7, 30°C, and agitation rate of 150 rpm	59
4.26	Maximum production of reducing sugar in the medium with different concentrations of OPEFB and the residue at pH 7, 30°C and agitation rate of 150 rpm	59
4.27	Cellulase production of the isolate 12.3.A in OPEFB medium with different nitrogen sources, cultivated at pH 7, 30°C, and agitation rate of 150 rpm	61
4.28	Cellulase production of the isolate 12.3.A in the residue medium with different nitrogen sources, cultivated at pH 7, 30°C, and agitation rate of 150 rpm	61

LIST OF FIGURES (Cont.)

FIGURE		PAGE
4.29	The maximum values of cellulase production in OPEFB and the residue medium with different nitrogen sources, cultivated at pH 7, 30° C and agitation rate of 150 rpm	62
4.30	Reducing sugar production of the isolate 12.3.A in OPEFB medium with different nitrogen sources, cultivated at pH 7, 30°C, and agitation rate of 150 rpm	63
4.31	Reducing sugar production of the isolate 12.3.A in the residue medium with different nitrogen sources, cultivated at pH 7, 30°C, and agitation rate of 150 rpm	63
4.32	The maximum production of reducing sugar of the isolate 12.3.A in OPEFB and the residue medium with different nitrogen sources, cultivated at pH 7, 30°C, and agitation rate of 150 rpm	64
4.33	Purification stages of cellulase	66
4.34	Carboxymethylcellulose (CMC) zymogram of the isolate 12.3.A cellulases	67
4.35	Effect of pH on cellulase activity	68
4.36	Effect of temperature on cellulase activity	68
4.37	Saccharification process of 5% OPEFB and residue in buffer pH 6.5 by cellulase enzyme (31.38 U/mL) incubated at 45° C	70
4.38	Ethanol production from OPEFB and the residue as substrates for sugar production by <i>Saccharomyces cerevisiae</i>	71
4.39	Neighbor-joining tree based on 16S rDNA gene sequences, shown the phylogenetics relationship between the isolate 12.3.A and 14 related species of the genus Streptomyces	74
A.1	Medium preparation and composition were used as a substrate for cellulase activity and reducing sugar assay	88
A.2	Medium preparation and composition were used for growing microbial	88
E.1	The isolate 12.3.A	98
E.2	OPEFB (A) and the residue of acid hydrolysis of OPEFB fiber (B)	98
E.3	Isolates of microorganisms from the samples $1-6$	99
E.4	Isolates of microorganisms from the samples 7–12	100
E.5	Clear zone from isolates of microorganisms	101
I.1	The different concentration of glucose standard	109
I.2	Absorbances of glucose	109
I.3	Standard curve of glucose	110
J.1	Standard curve of protein	112
N.1	Ethanol standard graph for Gas chromatography analysis	120
N.2	Ethanol analysis report by Gas Chromatography (GC) autosystem XL	121

LIST OF TECHNICAL VOCABULARY AND ABBREVIATIONS

CMC	=	carboxy methyl cellulose
h	=	hour (s)
min	=	minute
d	=	day
mg	=	milligram
g	=	gram
L	=	liter
mL	=	milliliter
U/mL	=	units/milliliter
mg/mL	=	milligram/milliliter
U/mg	=	units/milligram
g/L	=	gram/liter
μL	=	microliter
w/w	=	weight per weight
w/v	=	weight per volume
v/v	=	wolume per volume
°C	=	degree of celcius
YPG	=	yeast peptone glucose
NA	=	nutrient agar
PDA	=	potato dextrose agar
rpm	=	round per minute
U	=	unit
S. cerevisiae	=	Saccharomyces cerevisiae