CHAPTER 5 BEST PROXIMITY POINTS FOR
GENERALIZED CONTRACTION MAPPINGS IN
METRIC SPACES

The aim of this chapter is to introduce new mappings which is generalize con-
traction non-self mappings and prove some best proximity point and common best

proximity point theorems for these class in metric spaces.

5.1 Best proximity points for Geraghty’s proximal

contraction mappings

In this section, we introduce the new class of proximal contractions, so called
Geraghty’s proximal contraction mappings, and prove best proximity theorems for
these classes and also give some examples to illustrate our main Theorems. Let G be
the family of functions from [0, 00) into [0, 1) which satisfies the condition: if § € G,
then we have

B(t,) — 1= t, = 0.

Definition 5.1.1. A mapping T : A — B is called Geraghty’s proximal contraction
of the first kind if, there exists f € G such that

d(u,Tz) = d(A, B)
d(v, Ty) = d(A, B)

= d(u,v) < B(d(z,y))d(z,y)

for all u,v,x,y € A.

Definition 5.1.2. A mapping T': A — B is called Geraghty’s proximal contraction
of the second kind if there exists § € G such that

= d(Tu,Tv) < p(d(Tz,Ty))d(Tx,Ty)

for all u,v,z,y € A.
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It is easy to see that, if we take 5(t) = k, where k € [0,1), then Geraghty’s
proximal contraction of the first kind and Geraghty’s proximal contraction of the
second kind reduce to a proximal contraction of the first kind (Definition 2.6.8) and

a proximal contraction of the second kind (Definition 2.6.9), respectively.

Next, we extend the result of Sadiq Basha [54] and Banach’s fixed point the-
orem to the class of nonself-mappings satisfying Geraghty’s proximal contraction

condition.

Theorem 5.1.3. Let (X, d) be a complete metric space and A, B be nonempty closed
subsets of X such that Ay and By are nonempty. Let S: A — B, T : B — A and
g: AU B — AU B satisfy the following conditions:

(i) S and T are Geraghty’s proximal contractions of the first kind;
(ii) g is an isometry;
(iii) the pair (S,T) is a proximal cyclic contraction;
(iv) S(Ap) C By, T(By) C Ay;
(v) Ao € g(Ap) and By C g(By).

Then there exists a unique point x € A and there exists a unique point y € B such
that
d(gx, Sx) = d(gy, Ty) = d(z,y) = d(A, B).

Moreover, for any fived xq € Ay, the sequence {x,} defined by
d(gxns1, S,) = d(A, B)
converges to the element x. For any fized yo € By, the sequence {y,} defined by
A(gyn+1, Tyn) = d(A, B)

converges to the element y.

Proof. Let xy be a fixed element in Aj. In view of the fact that S(Ay) C By and

Ap C g(Ap), it follows that there exists an element x; € Aj such that

d(gzy, Szo) = d(A, B).
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Again, since S(Ap) C By and Ay C g(Ayp), there exists an element x5 € Ay such that
d(gxs, Sx1) = d(A, B).
By the same method, we can find z,, € Ay such that
d(gxy,, Sx,—1) = d(A, B).
So, inductively, one can determine an element x,, 11 € Ay such that
d(grpi1,ST,) = d(A, B). (5.1.1)

Since S is Geraghty’s proximal contraction of the first kind, ¢ is an isometry and

B € @G, it follows that for each n > 1,

d(anrlaxn) = d(ganrlvgxn)
B(d(:p'nn xn—l))d(‘rn? xn—l)
S d(xnvrn—l)a

IA

which implies that the sequence {d(x,1,%,)} is non-increasing and bounded below.
Hence there exists r > 0 such that lim,_,. d(2,4+1,x,) = r. Suppose that r > 0.

Observe that
d<xn+17 xn)
d(l’n, xn71>

which implies that lim, . 8(d(zp, z,—1)) = 1. Since 8 € G, we have r = 0, which

< B(d(wn, xn1)),

is a contradiction and hence

lim d(zy—1,2,) = 0. (5.1.2)

n—o0

Now, we claim that {z,} is a Cauchy sequence. Suppose that {z,} is not a
Cauchy sequence. Then there exists ¢ > 0 and the subsequences {z,,, }, {x,,} of

{z,,} such that, for any nj, > my > k,
Tk = ATy, Tny,) > € ATy, Tpy1) < €
for any k£ > 1. For each n > 1, let o, := d(zp+1,,). Then we have

£ S Tk S d(xmkﬂtnkfl) + d(xnkfla xnk)
< e+ Olny—1

(5.1.3)
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and so it follows from (5.1.2) and (5.1.3) that

lim r, =e. (5.1.4)

k—o00

Notice also that

€S Tk
S d(l‘mk, xmk—i-l) + d($nk+1, znk) + d(xmk-‘rl) xnk-‘rl)

= amk + ank + d(xmk-‘rl? xnk—&—l)

S Oémk + ank + /B(d(mmk7$nk>>d<xmk7mnk)

and so

T — Qg — Oy,

d(xmk7 I”k)

< B(d(Zmys Tny)).

Taking k — oo in the above inequality, by (5.1.2), (5.1.4) and 8 € G, we get ¢ = 0,
which is a contradiction. So we know that the sequence {z,} is a Cauchy sequence.
Hence {x,} converges to some element x € A.

Similarly, in view of the fact that T'(By) C Ag and By C g(By), we can conclude
that there exists a sequence {y,, } such that converges to some element y € B. Since

the pair (S,7T) is a proximal cyclic contraction and g is an isometry, we have
A(Tni1; Ynt1) = (g1, GYnt1) < kd(2n, yn) + (1 — k)d(A, B). (5.1.5)
Taking n — oo in (5.1.5), it follows that
d(xz,y) =d(A, B) (5.1.6)

and so z € Ag and y € By. Since S(Ay) C By and T(By) C Ay, there exist u € A
and v € B such that

d(u,Sz) =d(A,B), d(v,Ty)=d(A,B). (5.1.7)

From (5.1.1) and (5.1.7), since S is Geraghty’s proximal contraction of the first kind
of S, we get
d(u, grni1) < pd(z, x,))d(x, x,). (5.1.8)
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Letting n — oo in the above inequality, we get d(u, gx) < 0 and so u = gzx. Therefore,
d(gx,Sz) = d(A, B). (5.1.9)
Similarly, we can show that v = gy and so
d(gy, Ty) = d(A, B). (5.1.10)
From (5.1.6), (5.1.9) and (5.1.10), we get
d(z,y) = d(gz, Sx) = d(gy, Ty) = d(A, B).

Next, to prove the uniqueness, suppose that there exist x* € A and y* € B with
x # x* and y # y* such that

d(ga*, Sz*) = d(A,B), d(gy*,Ty") =d(A,B).

Since g is an isometry and S is Geraghty’s proximal contraction of the first kind, it
follows that
d(x,z%) = d(gz, gz*) < B(d(z,2"))d(z, 7)
and hence
_d(z, ")
~d(w,z*)

which is a contradiction. Thus we have x = x*. Similarly, we can prove that y = y*.

< Bld(z,z7)) <1,

This completes the proof. O

If g is the identity mapping in Theorem 5.1.3, then we obtain the following:

Corollary 5.1.4. Let (X,d) be a complete metric space and A, B be nonempty
closed subsets of X. Further, suppose that Ay and By are nonempty. Let S : A — B,

T : B — A be the mappings satisfying the following conditions:
(i) S and T are Geraghty’s proximal contractions of the first kind;
(ii) S(Ao) € By, T(Bo) C Ay,

(iii) the pair (S,T) is a proximal cyclic contraction.

Then there exists a unique point x € A and there exists a unique point y € B such
that
d(z,Sx) = d(y,Ty) = d(x,y) = d(A, B).
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If we take 5(t) = k, where 0 < k < 1, we obtain the following:

Corollary 5.1.5. [55] Let (X, d) be a complete metric space and A, B be nonempty
closed subsets of X. Further, suppose that Ay and By are nonempty. Let S : A — B,
T:B— Aandg: AUB — AUB be the mappings satisfying the following conditions:

(i) S and T are proximal contractions of the first kind;
(ii) g is an isometry;
(iii) the pair (S,T) is a proximal cyclic contraction;
(iv) S(Ao) C By, T(Bo) C Ay;
(v) Ao C g(Ap) and By C g(By).

Then there exists a unique point x € A and there exists a unique point y € B such
that
d(gz, Sx) = d(gy, Ty) = d(z,y) = d(A, B).

Moreover, for any fized xo € Ao, the sequence {x,} defined by
d(gxn41, S,) = d(A, B)
converges to the element x. For any fized yo € By, the sequence {y,} defined by
d(9Yn+1, Tyn) = d(A, B)

converges to the element y.

If g is the identity mapping in Corollary 5.1.5, we obtain the following:

Corollary 5.1.6. Let (X,d) be a complete metric space and A, B be nonempty
closed subsets of X. Further, suppose that Ag and By are nonempty. Let S : A — B,
T : B — A be the mappings satisfying the following conditions:

(i) S and T are prozimal contraction of first kind;
(ii) S(Ao) € Bo, T(By) € Ao;

(ili) the pair (S,T) is a proximal cyclic contraction.
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Then there exists a unique point x € A and there exists a unique point y € B such

that
d(z,Sz) =d(y,Ty) = d(z,y) = d(A, B).

Next, we establish a best proximity point theorem for nonself-mappings which

are Geraghty’s proximal contractions of the first kind and the second kind.

Theorem 5.1.7. Let (X, d) be a complete metric space and A, B be nonempty closed
subsets of X. Further, suppose that Ay and By are nonempty. Let S : A — B and
g: A — A be the mappings satisfying the following conditions:

(i) S is Geraghty’s prozimal contractions of the first and second kinds;
(ii) g is an isometry;

(iii) S preserves isometric distance with respect to g;

(iv) S(Ag) C Bo;

(v) Ao € g(Ao).
Then there exists a unique point x € A such that

d(gx,Sz) = d(A, B).
Moreover, for any fixed xo € Ay, the sequence {x,} defined by
d(gxns1, Sz,) = d(A, B)

converges to the element x.

Proof. Since S(Ap) C By and Ay C g(Ap), as in the proof of Theorem 5.1.3, we can

construct the sequence {z,} in Ay such that
d(gxni1, Sz,) = d(A, B) (5.1.11)

for each n > 1. Since g is an isometry and S is Geraghty’s proximal contraction of

the first kind, we see that

(T, Tpy1) = d(gTn, gTni1) < B(d(Tn, Tpo1))d(Tp, Tp_1)
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for all n > 1. Again, similarly, we can show that the sequence {x,} is a Cauchy
sequence and so it converges to some x € A. Since S is Geraghty’s proximal con-
traction of the second kind and preserves the isometric distance with respect to g,

we have

d(ana anJrl) = d(ngm SgwnJrl)
B(d(Sxy_1,Sxy,))d(Szp_1, Sxy)
< d(Sx,_1,Sxy),

IN

which means that the sequence {d(Sx,+1, Sz,)} is non-increasing and bounded be-

low. Hence there exists » > 0 such that

lim d(Szp41, Sx,) =1

n—o0

Suppose that » > 0. Observe that

d(Sxy, STpyi1)

Aoy, By = DA, ST0)

Taking n — oo in the above inequality, we get 5(d(Sz,—1,Sz,)) — 1. Since § € G,

we have r = 0 which is a contradiction and thus

lim d(Szp41,Sx,) = 0. (5.1.12)

n—o0

Now, we claim that {Sz,} is a Cauchy sequence. Suppose that {Sxz,} is not a
Cauchy sequence. Then there exists ¢ > 0 and the subsequences {Sz,,, },{Sx,, } of

{Sz,} such that, for any n; > my > k,
T = d(STpm,, Stp,) >, d(STm,, STp,—1) < €
for any £ > 1. For each n > 1, let ~,, := d(Szp 41, Sx,). Then we have

e<r < d(STm,, ST, 1)+ d(Sxp,—1,5T,)
< €4 Yny-1

(5.1.13)
and so it follows from (5.1.12) and (5.1.13) that

lim r, = e.
k—00
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Notice also that

e <y

< d(S!L‘mk, Smmk-i-l) + d(ank-f-l? ank) + d(S£L‘mk+1, Smnk-i-l)

= Tmy + Tng, + d(Sxmk—i-la ank+1)
< Vo + Yo + BA(ST iy S0, ))A(STm, , S ).

So, it follows that

Tk = Ymy, — Tny, :
= <
b L U, Sy S A S0 )) < 1

and so limy o0 B(d(STpm,, STy, )) = 1. Since 5 € G, we have limy_, o0 d(STp,, STy, ) =
0, that is, ¢ = 0, which is a contradiction. So, we obtain the claim and then it

converges to some y € B. Therefore, we can conclude that
d(gz,y) = lim d(gx,11, Szy,) = d(A, B),
n—oo

which implies that gz € Ay. Since Ay C g(Ap), we have gxr = gz for some z € Ay and
then d(gx, gz) = 0. By the fact that g is an isometry, we have d(z, z) = d(gzx, gz) =

0. Hence x = z and so x € Ay. Since S(Ap) C By, there exists u € A such that
d(u,Sx) = d(A, B). (5.1.14)

Since S is Geraghty’s proximal contraction of the first kind, it follows from (5.1.11)
and (5.1.14) that
d(u, gr,e1) < B(d(x, x,))d(x, x,) (5.1.15)

for all n > 1. Taking n — oo in (5.1.15), it follows that the sequence {gx, } converges
to a point u. Since g is continuous and lim,,_,, z,, = x, we have gz,, — gr asn — oc.
By the uniqueness of the limit, we conclude that u = gx. Therefore, it follows that
d(gz,Sz) = d(u,Sz) = d(A, B). The proof of uniqueness follow from the proof of
Theorem 5.1.3. This completes the proof. O]

If g is the identity mapping in Theorem 5.1.7, then we obtain the following:

Corollary 5.1.8. Let (X,d) be a complete metric space and A, B be nonempty
closed subsets of X . Further, suppose that Ay and By are nonempty. Let S : A — B
be the mappings satisfying the following conditions:
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(i) S is Geraghty’s proximal contraction of the first and second kinds;
(if) S(Ao) € Bo.
Then there exists a unique point x € A such that
d(z,Sz) = d(A, B).
Moreover, for any fived xq € Ay, the sequence {x,} defined by
d(xpy1,Sx,) = d(A, B)

converges to the best proximity point x of S.

If we take 5(t) = k in Theorem 5.1.7, where 0 < k < 1, we obtain the following:

Corollary 5.1.9. [55] Let (X, d) be a complete metric space and let A, B be nonempty
closed subsets of X . Further, suppose that Ay and By are nonempty. Let S : A — B
and g : A — A be the mappings satisfying the following conditions:

(i) S is a proxzimal contraction of the first and second kinds;
(ii) g is an isometry;
(iii) S preserves isometric distance with respect to g;
(iv) S(Ap) C By;
(v) Ao C g(Ay).
Then there exists a unique point x € A such that
d(gx,Sz) = d(A, B).
Moreover, for any fived xq € Ay, the sequence {x,} defined by
d(gzps1, Sz,) = d(A, B)

converges to the element x.

If g is the identity mapping in Corollary 5.1.9, then we obtain the following:
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Corollary 5.1.10. Let (X,d) be a complete metric space and A, B be nonempty
closed subsets of X. Further, suppose that Ay and By are nonempty. Let S : A — B

be a mapping satisfying the following conditions:
(i) S is a proximal contraction of the first and second kinds;
(i) S(A4o) € Bo -
Then there exists a unique point x € A such that
d(z,Sz) = d(A, B).
Moreover, for any fizved xo € Ay, the sequence {x,} defined by
d(xpi1,Sx,) = d(A, B)

converges to the best proximity point x of S.

Next, we give an example to show that Definition 5.1.1 is different form Definition
2.6.8. Moreover, we give an example which supports Theorem 5.1.3. First, we give

some proposition for our example.
Proposition 5.1.11. Let f : [0,00) — [0,00) be a function defined by f(t) =
In(1+t). Then we have the following inequality:

fla) = f(b) < f(la—b]) (5.1.16)

for all a,b € [0, 00).

Proof. 1f x =y, we have done. Suppose that x > y. Then since we have

142 14z+y— T —
= J y:1+—y<1+\x—y\,
14y 1+y 1+y

it follows that In(1 4+ z) —In(1 +y) < In(1+ |z —y|). In the case x < y, by a similar

argument, we can prove that inequality (5.1.16) holds. O

Proposition 5.1.12. For each z,y € R, we have that the following inequality holds:

1 1
<
A+ ]z))X+y]) = 1+ |z —y
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Proof. Since

L+ ]z —yl <1+ |z|+ |y
<1+ x|+ [y| + |2yl
= (14 [z)(1 + |y]),

so that
1 1

A DA+ ) T+ —y]

Example 5.1.13. Consider the complete metric space R? with Euclidean metric.
Let
A={(0,z): xR}, B={(2,y):y R}

Then d(A, B) = 2. Define the mappings S : A — B as follows:
S((0,)) = (2,1n(1 + a])).

First, we show that S is Geraghty’s proximal contractions the first kind with g € G

defined by
1, t=0,
B =9 ma+1)
PR
Let (0,21), (0,22),(0,a1) and (0, az) be elements in A satisfying

t > 0.

d((0,a1), 8(0,21)) = d(A, B) =2, d((0,as), S(0,22)) = d(A, B) = 2.

Then we have a; = In(1 + |x;|) for i = 1,2. If 1 = x9, we have done. Assume that

x1 # 5. Then, by Proposition 5.1.11 and the fact that the function f(z) = In(1+1)
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is increasing, we have
d((ov al)v (O’ a2>> = d((07 111(1 + |l‘1|))7 (07 111(1 + |CL’2|)))

= [In(1 +[z1]) = In(1 + [25])]

IN

[ (1 + [|z1] = |22|])]

IN

|1I1(1 + ’331 — .CEQD|

[ In(1 + |z — 23])|
= T —ZL’Ql
|21 — 2o

= Bd((0,21), (0,22))d((0, z1), (0, z2).
Thus S is Geraghty’s proximal contraction of the first kind.
Next, we prove that S is not a proximal contraction of the first kind. Suppose S'is
proximal contraction of the first kind, then for each (0, z*), (0, 3*), (0,a*), (0,0*) € A

satisfying
d((0,2%),5(0,a*)) = d(A, B) =2 and d((0,y*),S(0,0%)) =d(A,B) =2, (5.1.17)
there exists k € [0,1) such that
d((0,2"), (0,y")) < kd((0,a"), (0,0)).
From (5.1.17), we get z* = In(1 + |a*|) and y* = In(1 + |b*|) and so

[ In(1+[a’]) = In(1 + [b*])] = d((0,2"), (0,5"))
< kd((0,a"), (0,07))
= kl|a* —b"|.

Letting b* = 0, we get

i }1n(1—|—|a*|)‘
im ——

la*|—0+ |a*|

1= <k<l,

which is a contradiction. Thus S is not a proximal contraction of the first kind.

Example 5.1.14. Consider the complete metric space R? with metric defined by

d((z1,22), (Y1, 92)) = |21 — yu| + |22 — 12,



60

for all (z1,72), (y1,y2) € R?. Let
A={(0,z): xR}, B={(2,y):yeR}
Define two mappings S: A — B, T: B— Aand g: AUB — AU B as follows:

] vl

50,00 = (25755 )s 7@ = (0507 5)s 9l = ()

Then d(A, B) =2, Ay = A, By = B and the mapping g is an isometry.
Next, we show that S and T" are Geraghty’s proximal contractions the first kind

with 8 € G defined by

1
80 = 1

for all t > 0. Let (0,21),(0,22), (0,a1) and (0, as) be elements in A satisfying
d((0,a1),S(0,21)) =d(A, B) = d((0,a2),5(0,29)) = d(A, B) =

Then we have

|24]

2(1 + |i))

a; =

for i = 1,2. If x7 = x5, we have done. Assume that x; # x5, Then, by Proposition

5.1.12, we have

d((0,a1),(0,a5)) = d((o’ m‘i—ly’xl\Q ’ (O’ %))

1] |2

21+ [21])  2(1+ |w2)

21| — |2

2(1+ [ [)(1 + [2])

Ty — T2

(14 [a1[)(1 + |a2])

IN

1

1 —+ |l’1 — x2|}$1 B $2|

= Bd((0,21), (0,22))d((0, 21), (0, z2)).
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Thus S'is Geraghty’s proximal contraction of the first kind. Similarly, we can see that
T is Geraghty’s proximal contraction of the first kind. Next, we show that the pair
(S,T) is a proximal cyclic contraction. Let (0,u),(0,2) € A and (2,v),(2,y) € B
be such that

d((0,u), S(0,2)) = d(A, B) =2, d((2,v),T(2,y)) = d(A, B) = 2.

Then we get

] [yl
U= ———r, U=
2(1 + [z]) 2(1 + [y[)

In case x = y, clear. Suppose that = # y, then we have
d((0,u), (2,v)) = [u —v[+2
|z |yl

’2(1 T 20+ |y|>‘ i

’ [z — |y ’+
2(1+ [=]) (1 + |y])

_ |z —y| L
21+ [z (L + Jyl)
1
< Zle—yl+2
_2|$ y| +

<k(jz—y|+2)+ (1 —-k)2
= kd((0,2),(2,y)) + (1 = k)d(A, B),

where k = [3,1). Hence the pair (S,T) is a proximal cyclic contraction. Therefore,
all the hypotheses of Theorem 5.1.3 are satisfied. Further, it is easy to see that
(0,0) € A and (2,0) € B are the unique elements such that

d(9(0,0),5(0,0)) = d(g(2,0),7(2,0)) = d((0,0), (2,0)) = d(A, B).

5.2 Best proximity points for generalized proximal

C-contraction mappings

In this section, we first introduce the notion of generalized proximal C-contraction
mapping which is a generalization of C-contraction for non-self mappings and es-
tablish the best proximity point theorems. Recall a generalization of C-contraction

given by the following definition:
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Definition 5.2.1. [58] Let (X, d) be a metric space. A mapping 7' : X — X is

called a weakly C'-contraction if,

1
for all z,y € X, where ¢ : [0,00)? — [0,00) is a continuous function such that

Y(a,b) =0 if and only if a = b = 0.

Later, Harjani et al. [59] presented some fixed point result for weakly C' con-
traction mapping incomplete matric spaces endowed with partial order. Now, we
extend the notion of weakly C-contraction to non-self mapping with partial order,

which called generalized proximal C-contraction mapping as follow:

Definition 5.2.2. Let X be a nonempty set such that (X, <) is a partially ordered
set and (X,d) be a metric space. Let A and B be nonempty subsets of X. A

mapping T : A — B is said to be a generalized proximal C-contraction if satisfies

r =2y
d(u,Tz) =d(A,B) ; = d(u,v) <
d(v,Ty) = d(A, B)

(d(z,v) + d(y,u)) — P(d(z,v),d(y, u))

N | —

(5.2.2)
for all u,v,x,y € A, where ¢ : [0,00)*> — [0,00) is continuous function such that

Y(z,y) =0 if and only if z =y = 0.

For a self-mapping, it is easy to see that (5.2.2) reduces to (5.2.1).

Theorem 5.2.3. Let X be a nonempty set such that (X, =) is a partially ordered
set and (X, d) be a complete metric space. Let A and B be nonempty closed subsets
of X such that Ay and By are nonempty. Let T : A — B satisfy the following

conditions:

(i) T is a continuous, proximally order-preserving and generalized prozimal C'-

contraction such that T(Ag) C By;

(ii) there ezist element x¢ and x1 in Ay such that xg =< x1 and

d(x1,Tx) = d(A, B).
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Then there exists a point x € A and such that
d(xz,Tz) = d(A, B).
Moreover, for any fixed xo € Ay, the sequence {x,} defined by
d(xps1, Txy,) = d(A, B)

converges to the point x.

Proof. By the hypothesis (i7), there exist xq,x; € Ag such that xo < z; and
d(xy,Txo) = d(A, B).

Since T'(Ag) C By, there exists a point x5 € Ay such that
d(xe, Tx1) = d(A, B).

By the proximally order-preserving of T, we get xy; =< x9. Continuing this process,

we can find a sequence {x,} in Ay such that =, ; < x, and
d(xp, Tr,—1) = d(A, B).

Having found the point x,, one can choose a point x,,; € Ag such that =, < z,.1

and

d(zpy1,Tx,) = d(A, B). (5.2.3)

Since T' is a generalized proximal C-contraction, for each n > 1, we have

1
d(xna xn-i-l) < é(d(ajn—l» mn-i-l) + d(xna xn)) - ¢(d(xn—la xn-&-l)v d(xm xn))

1

= id(xn—la $n+1) - ¢(d($n—1, 'xn—l—l)a 0)
1

< id(%—l, Tpi1)
1

S §(d(xn—17 xn) + d(Ina In—&-l))

(5.2.4)
and so it follow that d(xy, zp41) < d(xp_1,x,), that is, the sequence {d(zy41,2,)}

is nonincreasing and bounded below. Then there exists » > 0 such that

lim d(zp41,2n) =7 (5.2.5)

n—0o0
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Taking n — oo in (5.2.4), we have

1 1
r< lim §d(xn,1, Tpi1) < 5(7“ +r)=r
and so
lim d(z,_1,Tp1) = 21 (5.2.6)
n—oo

Again, taking n — oo in (5.2.4), using (5.2.5), (5.2.6) and the continuity of v, we

get

1
r < 5(27“) =r—(2r0)<r

and hence ¥(2r,0) = 0. So, by the property of 1, we have r = 0, which implies that

lim d(zy41,2,) = 0. (5.2.7)

n—o0

Next, we prove that {z,} is a Cauchy sequence. Suppose that {z,} is not a
Cauchy sequence. Then there exists € > 0 and subsequence {z,,, }, {x,,} of {z,}

such that n; > m; > k with

Tk = ATy, Tny) > €, ATy Tny—1) < € (5.2.8)
for each k > 1. For each n > 1, let o, :== d(zp41,%,). So, we have

e<ry < d(@my,Tn,-1)+ d(Tp,—1,2n,)

< e+ Ay —1,

it follows from (5.2.7) that
lim r, = €. (5.2.9)

k—o0

Notice also that

d

Tk Tnys Ty,

IA
.

d(Tp,s Ty 1) + Qo (5.2.10)

(
(Tny, Timgt1) + ATy t1, Timy,)
(
(

IN

d LTy, s :Umk) + d(xmka xmk-i—l) + Ay,

= TE+ Qm, + Q.

Taking k — oo in (5.2.10), by (5.2.7) and (5.2.9), we conclude that

lim d(zn,, Tmy+1) = €. (5.2.11)

k—oo
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Similarly, we can show that

lim d(zp,, Tnpt1) = €. (5.2.12)

k—oo

On the other hand, by the construction of {z,}, we may assume that x,, < z,,
such that
d(zp, 41, Txy,) = d(A, B) (5.2.13)

and

(i1, Ttn,) = d(A, B). (5.2.14)

By the triangle inequality, (5.2.13), (5.2.14) and the generalized proximal C-contraction

of T, we have

IN

€< d($mk> $mk+1) + d(xnk+1’ xnk) + d<$mk+1v :Bnk'f‘l)

= Qpy, +Qpy + d(xkarl? xnk+1)
1

Qmy, + Qnpy, + §[d(xnk7xmk+l) + d(xmk’ xnk+1)]

_w(d<xnk7 xkarl)a d(xmkv xnk+1>)'

Taking k — oo in the above inequality, by (5.2.7), (5.2.11), (5.2.12) and the conti-

IN

nuity of ¢, we get

1
e < §(€+5)—¢(5,5) <e

Therefore, ¥ (e,e) = 0. By the property of ¢, we have that ¢ = 0, which is a
contradiction. Thus {z,} is a Cauchy sequence. Since A is a closed subset of the

complete metric space X, there exist x € A such that

lim z, = x. (5.2.15)

n—o0

Letting n — oo in (5.2.3) , by (5.2.15) and the continuity of 7', it follows that
d(z,Tz) = d(A, B).

This completes the proof. O

Corollary 5.2.4. Let X be a nonempty set such that (X, <) is a partially ordered

set and (X, d) be a complete metric space. Let A and B be nonempty closed subsets

of X such that Ag and By are nonempty. Let T : A — B satisfy the following

conditions:
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(i) T is a continuous, increasing such that T(Ay) C By and

z =Xy
d(u,Tx) = d(A, B) = d(u,v) < ald(z,v) + d(y,u)), (5.2.16)
d(v,Ty) = d(A, B)

where a € (0,3);
(ii) there ezist xg,x1 € Ay such that xy < x1 and

d(x1,Tx) = d(A, B).

Then there exists a point x € A and such that
d(xz,Tz) = d(A, B).
Moreover, for any fived xq € Ay, the sequence {x,} defined by
d(xpy1, Tz,) = d(A, B)

converges to the point x.

Proof. Let a € (0,3) and the function ¢ in Theorem 5.2.3 be defined by

W(a,b) = (% —a)(a+b).

Obviously, it follows that ¢ (a,b) = 0 if and only if a = b = 0 and (5.2.2) become
0 (5.2.16). Hence we obtain the Corollary 5.2.4. O

For a self-mapping, the condition (ii) implies that o < Txy and so Theorem

5.2.3 includes the results of Harjani et al. [59] as follows:

Corollary 5.2.5. [59] Let X be a nonempty set such that (X, =) is a partially
ordered set and (X, d) be a complete metric space. Let T : X — X be a continuous

and nondecreasing mapping such that, for all x,y € X,

1

forx <y, where v : [0,00)? — [0,00) is a continuous function such that ¥ (z,y) = 0
if and only if x =y = 0. If there exists vy € X with xqg =X Txy, then T has a fized

point.
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Now, we give an example to illustrate Theorem 5.2.3.

Example 5.2.6. Consider the complete metric space R? with Euclidean metric,

define the partial order < on R? in the following way:

(21,y1) 2 (22,2) <= 21 < 22, Y1 < Y2

for all (z1,y1), (T2, y2) € R?. Let
A={(z,0):2eR}, B={(0y):yeR,y>1}

Then d(A,B) =1, Ay = {(0,0)} and By = {(0,1)}. Define a mapping 7' : A — B
as follows:

T((2,0)) = (0,1 + [x])

for all (z,0) € A. Clearly, T is continuous and T'(Ag) C By. If 21 < x5 and
d(uy, Txy) =d(A,B) =1, d(ug,Txy) =d(A,B)=1
for some uy, us, 1,9 € A, then we have
up =up = (0,0), x1 =x9=1(0,0).

Therefore, T is a generalized proximal C-contraction with ¢ : [0,00)* — [0, 0)

defined by
1
P(a,b) = Z(G +b).

Further, observe that (0,0) € A such that

d((0,0), T(0,0)) = d(A, B) = 1.

In Theorem 5.2.7, we don’t need the condition that 7T is continuous. Now,
we improve the condition in Theorem 5.2.3 to prove the new best proximity point

theorem as follows:

Theorem 5.2.7. Let X be a nonempty set such that (X, <) is a partially ordered
set and (X, d) be a complete metric space. Let A and B be nonempty closed subsets
of X such that Ag and By are nonempty. Let T : A — B satisfy the following

conditions:
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(i) T is a prozimally order-preserving and generalized proximal C'-contraction such

that T(Ao) g BO;'

(ii) there exist element xq,x1 € Ay such that xy < x1 and
d(l‘l, TI()) = d(A, B),

(iii) of {x,} is an increasing sequence in A converges to x, then x, =< x for all

n € N.

Then there exists a point x € A and such that

d(z,Tz) = d(A, B).

Proof. As in the proof of Theorem 5.2.3, we have
d(xpy1, Tz,) = d(A, B) (5.2.17)

for all n > 0. Moreover, {z,} is a Cauchy sequence and so it converges to some

point x € A. Observe that, for each n €> 1,

d(A,B) = d(xps1, Txy)

IN

d(xpi1, ) + d(z, Txy,)
d(ﬂ?, xn+1) + d(l’, anrl) + d(xn+17 Txn)
d(@, Tps1) + d(z,2011) + d(A, B).

IN

IN

Taking n — oo in the above inequality, we obtain lim,, . d(z,Tz,) = d(A, B) and

hence x € Ay. Since T'(Ag) C By, there exists v € A such that
d(v,Tz) = d(A, B). (5.2.18)

Next, we prove that z = v. By the condition (c¢), we have z,, < x for all n > 1.

Using (5.2.17), (5.2.18) and the generalized proximal C-contraction of 7', we have

1
d(rni1,v) < §[d(:xn,v) +d(z, 2py1)] — Y(d(2y,0), d(2, Tp41)). (5.2.19)

Letting n — oo in (5.2.19), we get

d(xﬂj) < d(xvv> - 1/1(d(x,v),0),

[N
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which implies that d(z,v) = 0, that is, x = v. If we replace v by z in (5.2.18), we
have

d(z,Tz) = d(A, B).

This completes the proof. O

Corollary 5.2.8. Let X be a nonempty set such that (X, =) is a partially ordered
set and (X, d) be a complete metric space. Let A and B be nonempty closed subsets

of X such that Ag and By are nonempty. Let T : A — B satisfy the following

conditions:
(i) T is an increasing mapping such that T(Ag) C By and

T2y
d(u, Tl’) = d(A, B) = d(u’ U) S Oz(d(:E, U) + d(ya u))v (5'2'20)
d(v,Ty) = d(A, B)

where o € (0, 3);

(i) there exist xo, 1 € Ay such that xo < x1 and
d(l’l, TiL’o) = d(A, B),

(iil) if {x,} is an increasing sequence in A converges to a point x € X, then x, < x

foralln > 1.

Then there exists a point x € A and such that

d(xz,Tx) =d(A, B).

Corollary 5.2.9. [59] Let X be a nonempty set such that (X, =) is a partially
ordered set and (X,d) be a complete metric space. Assume that, if {x,} C X is a
nondecreasing sequence such that x, — x in X, then x, =< x for all n > 1. Let

T:X — X be a nondecreasing mapping such that

1
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for x <y, where v : [0,00)? — [0,00) is a continuous function such that ¥ (z,y) = 0
if and only if x =y = 0. If there exists xqg € X with xo < Txq, then T has a fixed

point.

Now, we recall the condition defined by Nieto and Rodriguez-Ldpez [60] for the

uniqueness of the best proximity point in Theorems 5.2.3 and Theorems 5.2.7.
For all z,y € X, there exists z € X which is comparable to  and y. (5.2.21)

Theorem 5.2.10. Let X be a nonempty set such that (X, <) is a partially ordered
set and (X, d) be a complete metric space. Let A and B be nonempty closed subsets
of X and Ay and By are nonempty such that Ay satisfies the condition (5.2.21). Let

T : A — B satisfy the following conditions:

(i) T is a continuous, proximally order-preserving and generalized proximal C'-

contraction such that T(Ay) C By;

(ii) there exist element xg,x1 € Ay such that xy < x1 and

d(I17 TIL’()) = d(A, B)

Then there exists a unique point x € A and such that

d(xz,Tx) =d(A, B).

Proof. We shall only proof the part of uniqueness part. Suppose that there exist x

and x* in A which are best proximity point, that is

d(z,Tz) = d(A,B), d(z*,Tz")=d(A,B).

Case I: =z is comparable to z*, that is, x < x* (or z* < x ). By the generalized

proximal C-contraction of 7', we have

d(z,z*) < Z[d(x,z*) +d(z*, x)] —Y(d(z,z*),d(z*, z)) < d(z* z),

|

which implies that ¥(d(z,x*),d(z*,x)) = 0. Using the property of 1, we get

d(z*,z) = 0 and hence z = z*.
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Case II: =z is not comparable to z*. Since Ay satisfies the condition (5.2.21), there
exist z € Ay such that z comparable to x and z*, that is, z < z (or z =< z) and
x* <Xz (or z < x*). Suppose that < z and x* < z. Since T'(Ag) C By, there exists
a point vy € Ap such that

d(vo, Tz) = d(A, B).

By proximally order-preserving, we get x < vy and x* < vy. Since T'(Ag) C By, there

exists a point v; € Ag such that
d(Ul, TU()) = d(A, B)

Again, by proximally order-preserving, we get x < v; and * < v;. One can proceed

further in a similar fashion to find v, € Ay with v,,; € Ap such that
d(Vps1, Tv,) = d(A, B).

Hence x < v, and z* < v, for all n > 1. By the generalized proximal C-contraction

of T', we have

1

d(Vns1,7) < §[d(vn,:v) + d(z,vn41)] — (d(vy, ), d(x,v511)), (5.2.22)

1
Altns1,7%) < Sld(on, %) + (o vsn)] = V(w2 da*, o). 0P
It follow from (5.2.22), we get d(v,i1,2) < d(vn,z). This mean that the sequence
{d(v,,x)} is nonincreasing and converges to some nonnegative real number r. Let-

ting n — oo in (5.2.22), we have

1

r < §(T+7")_w(7”a7") ST,

(5.2.24)

which implies that ¢ (r,r) = 0, that is r = 0 and thus lim,,_, d(v,, ) = 0. There-
fore, v, — x as n — oo. Similarly, we can show that v, — z* as n — oco. By the

uniqueness of limit, we conclude that x = z*. This completes the proof. O]

Theorem 5.2.11. Let X be a nonempty set such that (X, <) is a partially ordered
set and (X, d) be a complete metric space. Let A and B be nonempty closed subsets
of X and Ay and By are nonempty such that Ay satisfies the condition (5.2.21). Let
T : A — B satisfy the following conditions:
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(i) T s an prozimally order-preserving and generalized proximal C-contraction

such that T'(Ag) C Bo;
(i) there exist element xg, x1 € Ao such that xg < x1 and d(x1,Tz) = d(A, B);

(iii) if {x,} is an increasing sequence in A converges to x, then x, =< z for all

n>1.
Then there exists a unique point x € A and such that

d(z,Tx) =d(A, B).

Proof. Combining the proofs of Theorem 5.2.7 and Theorem 5.2.11, we have the

conclusion.

5.3 Best proximity point theorems for generalized cyclic

contractions mappings

In this section, we prove the existence of a best proximity point for a generalized

cyclic contraction mapping. First, we recall the notion and result in [61] as follows:

Definition 5.3.1. [61] Let A and B be nonempty subsets of a metric space (X, d).
Then (A, B) is said to be satisfy the property (UC) if and only if {z,} and {£,} are

the sequences in A and {y,} is a sequence in B such that
limy, 00 d(2y, yp) = d(A, B) and lim,, o, d(Z,,,y,) = d(A, B),
then lim,, o d(z,, Z,) = 0.

Lemma 5.3.2. [61] Let A and B be subsets of a metric space (X,d). Assume that
(A, B) has the property (UC). Let {z,} and {y,} be the sequences in A and B,
respectively, such that either of the following holds:

lim sup d(wm, yn) = d(A, B)

m—ro0 n>m

or

lim sup d(zm,yn) = d(A, B).

n—oo mzn

Then {x,} is a Cauchy sequence.
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Theorem 5.3.3. Let A and B be nonempty closed subsets of a partially ordered
metric space (X, =) and d be a metric on X. Let T : AUB — AU B be a cyclic

mapping such that T and T? are nondecreasing on A such that
d(T#,T?z) < ad(t,Tx) + fd(z, T+) + (1 — a — B)d(A, B)
and
d(Ty, T?y) < ad(yj, Ty) + Bd(y, T) + (1 — o — B)d(A, B)

for some o, € [0,1) with a+ 5 < 1 and for all (x,%) € AX A, (y,9) € B x B with
x 2%,y < 1. Assume that there exits vy € A with xg = T?x¢ and define x4, = Tx,
for alln > 1. If T|4 is continuous and {xa,} has convergent subsequence in A, then

T has best proximity point p € A.

Proof. Let {2, } be a subsequence of {zy,} converging to some p € A. By the
continuity of T', we get xo,,+1 = T2, — T as n — oo. Since T' and T? are
nondecreasing on A and xy < T?%xg, it follows that {T?*"zy} and {T%" 'zy} are

nondecreasing. Indeed,

d(A,B) < d(xon,,Ton,+1)
< ad(Txop—2, T*Tan,—2) + Bd(Txn,—2, T?x2p,—2) + (1 — a — B)d(A, B)
< &?d(zon, 9, TTon,—2) + 208d(T2n, 2, T2, 2)
+B82d(xan, 2, TTon, —2) + (1 — a® — 2a8 — $%)d(A, B)
< aPd(wan, 3, Twon, 3) + 30*Bd(x2n, 3, TTon, 3)
+3a8%d(wan, -3, TT2n,—3) + B2d(T2p,—3, TTon,—3)
+(1 — a® = 308 — 3a8* — 3*)d(A, B)
< a®™d(zg, Txo) + (271%) " Bd(xg, Twg) + -+ + B2 d(xg, Txo)
(1—a® - <2”’€) QPlg ( 21 )aﬁml — B*™)d(A, B).
1 2ng, — 1

Taking k£ — oo in the above equality, we obtain

d(p,Tp) = lim, e d(xp,, TT2,, ) = d(A, B).
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Corollary 5.3.4. Let A and B be nonempty closed subsets of a partially ordered
metric space (X, =) and d be a metric on X. Let T : AUB — AU B be a cyclic

mapping such that T and T? are nondecreasing on A such that
d(Tt,T%r) < ad(f,Tz) + (1 — a)d(A, B)

and

for some a € [0,1) and for all (z,2) € AX A, (y,9) € Bx B withx <&, y < 1.
Assume that there exits xq € A with o < T?x¢ and define x,.1 = Tx,, for alln > 1.
If T|4 is continuous and {xa,} has convergent subsequence in A, then T has best

prozimity point p € A.

Corollary 5.3.5. Let A and B be nonempty closed subsets of a partially ordered
metric space (X, =) and d be a metric on X. Let T : AUB — AU B be a cyclic

mapping such that T and T? are nondecreasing on A such that
A(T#,T2x) < fd(z, T#) + (1 — B)d(A, B)

and

for some B € [0,1) and for all (x,%) € A X A, (y,9) € Bx B withx <&, y < 1.
Assume that there exits xq € A with o < T?x¢ and define x,.1 = Tx, for alln > 1.
If T|4 is continuous and {xa,} has convergent subsequence in A, then T has best

prozimity point p € A.

Lemma 5.3.6. Let A and B be nonempty subsets of a partially ordered metric space
(X,=) and d be a metric on X. Let T : AUB — AU B be a cyclic mapping such
that

d(Tt,T%r) < ad(, Tz) + Bd(z,T%) + (1 — a — B)d(A, B) (5.3.1)

and

d(Ty.T%) < ad(4, Ty) + Bd(y, Tj) + (1 — o — B)d(A, B) (5.3.2)

for some «, € [0,1) with a+ 5 < 1 and for all (x,%) € AX A, (y,9) € B x B with
r =z, y=1vy. Then
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d*(T¢,T%r) < ad*(£,Tz) + Bd*(x, T't)
and
d*(Ty, T?y) < ad"(§, Ty) + Bd*(y, T),
where d*(a,b) = d(a,b) — d(A, B) for (a,b) € A x B.
Proof. By the definition of d* and (5.3.1), we have

d*(T# T?*c) = d(T#, T%x)— d(A, B)
< ad(z,Tx) + fd(x,T%) + (1 — a — B)d(A, B) — d(A, B)
= ad(#,Tz) + Bd(x, T#) — ad(A, B) — Bd(A, B) (5.3.3)
= a(d(¢,Tz) — d(A, B)) + B(d(z, T%) — d(A, B))
= ad'(¢,Tz) + Bd*(x,TT).

Similarly, we see that d*(Ty, T?%y) < ad*(y, Ty) + Bd*(y, T7). O

Theorem 5.3.7. Let (X, =) be a partially ordered set and d be a metric on X. Let
A and B be two nonempty subsets of X such that (A, B) satisfies the property (UC)
and A is complete. Let T : AUB — AU B be a cyclic mapping such that T and T*

are nondecreasing on A. Suppose that

d(T%,T?*r) < ad(#,Tx) + fd(z,T%) + (1 —a — 8)d(A, B)
and

d(Ty,T%y) < ad(y, Ty) + Bd(y, T9) + (1 — o = B)d(A, B)

for some o, € [0,1) with a+ 5 < 1 and for all (x,%) € Ax A, (y,9) € B x B with
xR &,y Y. If T|a is continuous and that there exits xog € A such that xo < T?z,

and Tp1 = Tz, for alln > 1, then T has a best prozimity point p € A and x9, — p.

Proof. Since T and T? are nondecreasing on A and zy =< 1%z, it follows that

{T*zy} and {T*" 'z} are nondecreasing. Let n > 1 with n > m.
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By Lemma 5.3.6, we have

& (T, T )
= d*(T(T*"x0), T*(T*" 1))
< ad* (T(T*" ), T (T %xo)) + Bd* (T(T*"xo), T*(T*"*10))
< Q2d* (T (T 2ay), T*H(T?™ *10))
+2aBd* (T(T*" " ao), T*(T*" Px)) + B2d* (T (T xo), T* (T )
< aBd (T 3ag, T* 2x0) + 302 Bd* (T Hxg, T* Lay)

+30¢ﬁ2d* (T2mf5x07 T2n$0) 4 Bgd* (sziﬁl’o, T2n+1m0)

m

)aﬁm_ld*(Txo, %)

+ (T;) B2 d (TP wg, T 2ag) + - - -

+a™d* (T2m—mx07 T(Qn—H)_(m)I‘()).
Since a, § € [0,1), it follows from the above inequality that

lim sup d*(T*"zg, T*"*'a) = 0. (5.3.4)

m—0o0 n>m

Since (A, B) satisfies the property (UC), it follows from Lemma 5.3.2 that {zs,} is

a Cauchy sequence and since A is complete, there exists p € A such that
T % = X, — p.

By the continuity of T" on A, we get T%""'zg = T(T?*"xy) — Tp as n — co. Since

{T?* 2y} and {T?" 12y} are nondecreasing, we have

d(A, B)
< d(T(T* tay), T*(T* ')
< ad(T* Yoy, T* o) + Bd(T* 2, T*20) + (1 — a — B)d(A, B)
< aPd(T*" o, T(T*"10)) + 2a8d(T*" 2 wo, T(T*" 1))

+B2d(T* 2, T(T**210)) + (1 — o — 208 — 5*)d(A, B)
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IN

agd(TQ"_Sxo, T(T2n_3x0)) + 3a25d(T2"_3x0, T(TQ”_?’QZO))
+3aB2d(T* 2o, T(T?* 3x0)) + BPd(T*" 3xg, T(T*"3x0))

+(1 — a® — 308 — 3a8* — 3)d(A, B)

IA

2
a2”d(x0, Tzo) + ( 171) a2"_15d(x0, Txo) + -

n—1

+(1 a2 (2171) P . (2?122 1) ap*—l — ﬁ%)d(A, B).

2
+ (2 " )aﬁzn_ld(xo, Txo) + 52"61(:50, Txy)

Since a, § € [0,1), letting n — oo in the above inequality, we obtain
d(p, Tp) = lim,, o0 d((T?"xg, T*"2¢) = d(A, B).
This completes the proof. O]

Corollary 5.3.8. Let (X, X) be a partially ordered set and d be a metric on X.
Let A and B be two nonempty subsets of X satisfies the property (UC), and A is
complete. Let T : AUB — AU B be a cyclic mapping such that T and T? are

nondecreasing on A. Suppose that

d(T#,T°r) < ad(f,Tz) + (1 — a)d(A, B)
and

d(Ty, T?y) < ad(y, Ty) + (1 — a)d(A, B)

for some o € [0,1) and for all (x,2) € Ax A, (y,9) € BX B withx <&,y =<49. If
T4 is continuous and that there exits xo € A such that xo < T?xy and x,p1 = Ty,

for all n > 1, then T has best proximity point p € A and x9, — p.

Corollary 5.3.9. Let (X, =) be a partially ordered set and d be a metric on X. Let
A and B be two nonempty subsets of X such that (A, B) satisfies the property (UC),
and A is complete. Let T : AUB — AU B be a cyclic mapping such that T and T?

are nondecreasing on A. Suppose that
d(T#,T%r) < Bd(x, T%) + (1 — B)d(A, B)

and

d(Ty,T?y) < Bd(y,Ty) + (1 — B)d(A, B)
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for some B € [0,1) and for all (x,%) € Ax A, (y,9) € Bx Bwithx <&,y =19. If
T is continuous and that there exits vy € A such that vg < T?xy and v, = T,

for all n > 1, then T has best proximity point p € A and x9, — p.

Now, we give an example to illustrate the Theorems 5.3.7.

Example 4.1 Consider X = R? with the usual metric and define the partial

order < on R? in the following way:

(21,91) 2 (22,12) <= 21 < 2o, Y1 < Yo

for all (z1,y1), (z2,y2) € R% Set A = {(1,a) : a > 0}, B = {(—=1,b) : b > 0} and
define a mapping T: AUB — AU B by

T(1,a) = (—1,2), T(-1,b) = (1, %)

2 2

for all a,b > 0. Then d(A, B) = 2. We show that A and B satisfies the property
(UC). Let {(1,a,)},{(1,al,)} be two sequences in A and {(1,b,)} be a sequence in
B such that

lim,, oo d((1,ay,),(—1,b,)) = 2, lim,, o, d((1,al), (=1,b,)) = 2.

Thus lim,, o |a, — by| = 0 and lim,,_,, |a!, — b,| = 0. Since
lim, o0 |a, —al| < lim, oo |an — bp| + limy, 00 |, — @] =0,

lim d((1,a,),(1,d,)) =0 <= lim |a, — a,| = 0.
n—oo

n—roo
Hence A and B satisfies the property (UC). Simple computations show that T’
satisfies the conditions of Theorem 5.3.7 for a = 2/3, § = 1/4. Since z( := (1,0) €
A, if define x,,1 = Tz, for all n > 1, then zy <X T?zy and {xs,}, {72,_1} are
nondecreasing. Therefore, T" has a best proximity point. Clearly, this point is z

itself. ]
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5.4 Common best proximity points for proximity

commuting mappings

In this section, we prove new common best proximity point theorems for a prox-
imity commuting mapping in a complete metric space. Moreover, we also give an

illustrative example for support our main Theorem.

Theorem 5.4.1. Let A and B be nonempty closed subsets of a complete metric
space X such that A is approximatively compact with respect to B. Also, assume
that Ag and Bg are nonempty. Let S : A — B, T : A — B be nonself-mappings

satisfying the following conditions:
(i) For each x and y are elements in A,

where, ¢ : [0,00) — [0,00) is a continuous and nondecreasing function such

that o(t) = 0 if and only if t = 0;
(ii) T is continuous;
(iii) S and T commute proximally;

(iv) S and T can be swapped prozimally;

(V) S(Ao) - BO and S(Ao) - T(Ao) .

Then there exists an element x € A such that
d(z,Tx) = d(A, B), d(z,Sx) = d(A, B).

Moreover, if x* is another common best proximity point of the mappings S and T,

then
d(xz,z*) < 2d(A, B).

Proof. Let xy a fixed element in Ay. In view of the fact that S(Ag) C T(Ay), it

follows that there exists an element x; € Ag such that Sxqg = Tx;. Again, since
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S(Ag) € T(Ap), there exists an element x5 € Ay such that Sx; = Txe. By the

similar fashion, we can find z,, € Ag such that
Stp_1=Tx, (5.4.1)

for all n > 1. It follows that

d(Sxy,, STpi1)

IN

ATz, Trp) — @(d(Txy, Txne))
= d(anflv an) - @(d(5$n,1, an)) (542)
< d(anfly an)a

which mean that the sequence {d(Sz,_1,Sz,)} is non-increasing and bounded be-

low. Hence there exists » > 0 such that

lim d(Sz,_1,Sz,) =1 (5.4.3)
If r > 0, then
d(Sxp, Stpi1) < d(Sxp—1,S,) — @(d(SxH_1,5T,)). (5.4.4)

Taking n — oo in (5.4.4), by the continuities of ¢, we get r < r — ¢(r) < r, which

is a contradiction and hence r = 0. Therefore,

lim d(Sz,_1,Sz,) = 0. (5.4.5)

n—o0

Next, we will prove that {Sz,} is a Cauchy sequence. We have two cases.
Case I: Suppose that there exits a positive integer n such that Sz, = Sx,;.

Observe that

d(5$n+17 an+2) S d<Txn+17 Txn+2) - QO(d(TJ?n_;,_l, Tmn+2))
= d(Szp, Styui1) — p(d(Sxy, STpyit))

which implies that Sz, .1 = S,.2. So, for all m > n, we conclude that Sx,, = Sz,.
Hence {Sx,} is a Cauchy sequence in B.

Case II: The successive terms of {Sz,} are different. Suppose that {Sxz,} is not
a Cauchy sequence. Then there exists ¢ > 0 and subsequences {Sz,,, }, {Sz,,} of

{Sz,} with n; > my, > k such that

(ST, ,Stp,) >, d(STpm,, STp,—1) < €. (5.4.6)
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By using (5.4.6) and the triangular inequality, we get

™
IN

d(Sxm,, Stp,)
< d(S%Tm,, Stp,—1) + d(Sxp,—1, STp,) (5.4.7)
< e4+d(Sxp,—1,5Ty,).

Using (5.4.7) and (5.4.5), we have
d(Sxy,, Stp,) — € (5.4.8)

as k — 0o. Again, by the triangular inequality, we get

d(STm,, Stp,)

(5.4.9)
< d(STmy, STmy+1) + A(STmy 41, SThypt1) + A(STpy 41, ST, )
and
d(Sxmk+175$nk+1) (54 10)
< d(STmyt1, STm,) + A(Stp,, Sty ) + d(SThy, STpy+1)-
From (5.4.5), (5.4.8), (5.4.9) and (5.4.10), we obtain
d(STpmy4+1, STnyt1) = € (5.4.11)
as k — oo. In view of the fact that
d(Sxmk-i-l? ank+1> S d(T'rmk"l‘l?Txnk"Fl) - ¢(d(Txmk+17 Tmmﬁ-l)) (5 4 12)

= d(Szp,,Sty,) — @(d(Sp,, Sty,)),

letting, k — oo in (5.4.12), we obtain
€ S € — W(é‘),

which is a contradiction by the property of ¢. Then we deduce that {Sx,} is a
Cauchy sequence in B. Since B is a closed subset of a complete metric space X,
then there exists y € B such that Sz, — y as n — oco. Consequently, it follows that
the sequence {T'z,} also converges to y. From S(Ag) C By, there exists an element
u, € A such that

d(Szp,u,) =d(A, B) (5.4.13)

for all n > 1. So, it follows from (5.4.1) and (5.4.13) that

d(Txp, up—1) = d(STp—1,un—1) = d(A, B) (5.4.14)
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for all n > 1. By (5.4.13), (5.4.14) and the fact that the mappings S and T are

commuting proximally, we obtain

Tu, = Su,_1 (5.4.15)
for all n > 1. Moreover, we have
d(y, A) < d(y,un)
< d(y,Sz, ST, U,
< dly, 52u) - d(Son, wn) (5.4.16)
= d(y,Sz,) +d(A,B)
< d(y, Sw,) +d(y, A).

Therefore, d(y, u,) — d(y, A) as n — oo. Since A is approximatively compact with
respect to B, there exists a subsequence {u,, } of the sequence {u, } such that {u,, }
converges to some element u € A. Further, since d(y, u,,—1) — d(y,A) and A is
approximatively compact with respect to B, there exists a subsequence {Unkj—1} of
the sequence {u,,_1} such that {unkj_l} converges to some element v € A. By the

continuity of the mappings S and T', we have

Tu= hmTunk = lim Sunk 1 =358v (5.4.17)
and
d(y,u) = limd(Szy,,,u,,)=d(A,B),
hreo (5.4.18)
d(y,v) = lim d(Ta;nk ) Uny,, 1) =d(A, B).
j—00

Since S and T can be swapped proximally, we get
Tv = Su. (5.4.19)

Next, we prove that Su = Sv. Suppose the contrary. Then, by (5.4.17), (5.4.18),
(5.4.19) and the property of ¢, we have

d(Su, Sv) < d(Tu,Tv) — p(d(Tu,Tv))
= d(Sv, Su) — p(d(Sv, Su))
< d(Sv, Su),
which is a contradiction. Thus Su = Sv and also Tu = Su. Since S(Ay) is contained

in By, there exists an element z € A such that

d(z,Tu) = d(A, B), d(z, Su) = d(A, B).
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Since S and T" are commuting proximally, we have Sx = T'x. Consequently, we have

d(Su,Sz) < d(Tu,Tz)— p(d(Tu,Tx))
= d(Su,Sz) — ¢(d(Su, Sx)).

(5.4.20)

In (5.4.20), if Su # Sz, then
d(Su, Sx) < d(Su,Sz) — ¢(d(Su, Sx)) < d(Su, Sx),
which is impossible. So, we have Su = Sx and hence T'u = T'z. It follows that
d(z,Tz) =d(z,Tu) =d(A,B)
and

d(z,Sz) =d(xz,Su) =d(A,B).

Therefore, x is a common best proximity point of S and 7.
Suppose that x* is another common best proximity point of the mappings S and
T. Then we have
d(z*,Tz*) = d(A,B)

and

d(z*,S2*) = d(A,B).

Since S and T are commuting proximally, we have Sx = Tz and Sx* = Tx*.

Consequently, we have

d(Sz*,Sz) < d(Tz*,Tx)— p(d(Tz*,Tx))
= d(Sz*,Sz) — (d(Sz*, Sx)).

(5.4.21)

In (5.4.21), if Sz* # Sz, then we have
d(Sz*, Sx) < d(Sz*,Sz) — o(d(Sz*, Sx)) < d(Sz*, Sz),

which is impossible. So, we have Sz = Sz*. Moreover, it follows that

d(z,z*) < d(z,Sz)+d(Sz,Sz*) + d(Sz*, x*)
= d(A,B)+d(A,B)
— 2d(A, B).

This completes the proof. m
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If take ¢(t) = (1 — a)t, where 0 < o < 1 in Theorem 5.4.1, we obtain following :

Corollary 5.4.2. [54, Theorem 3.1] Let A and B be nonempty closed subsets of a
complete metric space X such that A is approrimatively compact with respect to B.
Also, assume that Ag and By are nonempty. Let S : A — B, T : A — B be the

nonself -mapping satisfying the following conditions.
(i) Thereexists a non-negative real number o < 1 such that
d(Swzy, Sxo) < ad(Txy, Txs)
for all z1,x9 € A;
(ii) T is continuous;
(iii) S and T commute proximally;

(iv) S and T can be swapped prozimally;

(V) S(A()) Q BO and S(Ao) Q T(Ao)

Then there exists an element x € A such that
d(z,Tx) =d(A,B), d(z,Sz)=d(A,B).

Further, if x* is another common best prozimity point of the mappings S and T,

then
d(xz,xz*) < 2d(A, B).

For a self-mapping, Theorem 5.4.1 contains the following common fixed point
theorems of Jungck [52] for commuting self-mappings, which in turn generalizes

Banach’s contraction principle.

Corollary 5.4.3. [52] Let (X, d) be a complete metric space. Let S and T be

self-mappings on X satisfying the following conditions:
(i) T is continuous;

(i) S(X) € T(X);
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(iii) S and T commute.
Suppose that there exists o € [0,1) such that
d(Sxz,Sy) < ad(Tx,Ty)
for all x,y € X. Then there exists a unique common fized point of S and T .
Now, we give an example to illustrate Theorem 5.4.1.

Example 5.4.4. Consider the complete metric space R? with Euclidean metric. Let

and

Define two mappings S: A — B, T : A — B as follows:

Sty (o2 1)

T((z,1)) = (x,—-1).

It is easy to see that d(A,B) = 2, Ay = A and By = B. Further, S and T are

and

continuous and A is approximatively compact with respect to B.

First, we show that S and T satisfy the condition (i) of of Theorem 5.4.1 with a

t2
function ¢ : [0,00) — [0, 00) defined by ¢(t) = Efor allt € [0,00). Let (z,1), (y,1) €

A. Without a loss generality, we can take that x > y. Then we have
2

-9)-6-3

d(S((L’, 1)7 S(yv 1)) =

|
= (z-y) = 5(=*—v)
|
= (r=y) —5(@ =)z +y))
1

< (z—y) = 5lr—v)

= d(T(x,1),T(y,1)) — o(d(T(x,1), T(y,1))).
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Next, we show that S and 7" are commuting proximally. Let (u, 1), (v, 1), (z,1) €

A are satisfying
d((u,1),8(x,1)) =d(A,B) =2, d((v,1),T(x,1)) =d(A,B)=2.

It follows that

and hence

2 2

v x
S(v,1) = (v — E,—l) = <:v - ?,—1) = (u,—1) =T(u,1).
Finally, we show that S and T" can be swapped proximally. If it is true that
d((u, 1), (y, 1)) = d((v, 1), (y, =1)) = d(A, B) = 2, S(u,1) = T(v,1)
for some (u, 1), (v,1) € A and (y,—1) € B. Then we get u = v = 0 and thus
S(v,1) = T(u,1).

Therefore, all the hypothesis of Theorem 5.4.1 are satisfied.

Furthermore, (0,1) € A is a common best proximity point of S and 7', because
On the other hand, suppose that there exists k € [0,1) such that

d(S(x,1),5(y,1)) < kd(T'(x,1), T(y, 1)),

that is,
72 y?
(o=3) - (=3) sl
Putting y = 0 and x > 0, it follow that
x
1= lim (1——) <k<1,
z—07t 2

which is a contradiction. Therefore, the results of Sadiq Basha in [54] can not be

applied to this example and our main result Theorem 5.4.1.





