
CHAPTER 5 BEST PROXIMITY POINTS FOR

GENERALIZED CONTRACTION MAPPINGS IN

METRIC SPACES

The aim of this chapter is to introduce new mappings which is generalize con-

traction non-self mappings and prove some best proximity point and common best

proximity point theorems for these class in metric spaces.

5.1 Best proximity points for Geraghty’s proximal

contraction mappings

In this section, we introduce the new class of proximal contractions, so called

Geraghty’s proximal contraction mappings, and prove best proximity theorems for

these classes and also give some examples to illustrate our main Theorems. Let G be

the family of functions from [0,∞) into [0, 1) which satisfies the condition: if β ∈ G,

then we have

β(tn) → 1 =⇒ tn → 0.

Definition 5.1.1. A mapping T : A→ B is called Geraghty’s proximal contraction

of the first kind if, there exists β ∈ G such that

d(u, Tx) = d(A,B)

d(v, Ty) = d(A,B)

 =⇒ d(u, v) ≤ β(d(x, y))d(x, y)

for all u, v, x, y ∈ A.

Definition 5.1.2. A mapping T : A→ B is called Geraghty’s proximal contraction

of the second kind if there exists β ∈ G such that

d(u, Tx) = d(A,B))

d(v, Ty) = d(A,B)

 =⇒ d(Tu, Tv) ≤ β(d(Tx, Ty))d(Tx, Ty)

for all u, v, x, y ∈ A.
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It is easy to see that, if we take β(t) = k, where k ∈ [0, 1), then Geraghty’s

proximal contraction of the first kind and Geraghty’s proximal contraction of the

second kind reduce to a proximal contraction of the first kind (Definition 2.6.8) and

a proximal contraction of the second kind (Definition 2.6.9), respectively.

Next, we extend the result of Sadiq Basha [54] and Banach’s fixed point the-

orem to the class of nonself-mappings satisfying Geraghty’s proximal contraction

condition.

Theorem 5.1.3. Let (X, d) be a complete metric space and A, B be nonempty closed

subsets of X such that A0 and B0 are nonempty. Let S : A → B, T : B → A and

g : A ∪B → A ∪B satisfy the following conditions:

(i) S and T are Geraghty’s proximal contractions of the first kind;

(ii) g is an isometry;

(iii) the pair (S, T ) is a proximal cyclic contraction;

(iv) S(A0) ⊆ B0, T (B0) ⊆ A0;

(v) A0 ⊆ g(A0) and B0 ⊆ g(B0).

Then there exists a unique point x ∈ A and there exists a unique point y ∈ B such

that

d(gx, Sx) = d(gy, Ty) = d(x, y) = d(A,B).

Moreover, for any fixed x0 ∈ A0, the sequence {xn} defined by

d(gxn+1, Sxn) = d(A,B)

converges to the element x. For any fixed y0 ∈ B0, the sequence {yn} defined by

d(gyn+1, T yn) = d(A,B)

converges to the element y.

Proof. Let x0 be a fixed element in A0. In view of the fact that S(A0) ⊆ B0 and

A0 ⊆ g(A0), it follows that there exists an element x1 ∈ A0 such that

d(gx1, Sx0) = d(A,B).
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Again, since S(A0) ⊆ B0 and A0 ⊆ g(A0), there exists an element x2 ∈ A0 such that

d(gx2, Sx1) = d(A,B).

By the same method, we can find xn ∈ A0 such that

d(gxn, Sxn−1) = d(A,B).

So, inductively, one can determine an element xn+1 ∈ A0 such that

d(gxn+1, Sxn) = d(A,B). (5.1.1)

Since S is Geraghty’s proximal contraction of the first kind, g is an isometry and

β ∈ G, it follows that for each n ≥ 1,

d(xn+1, xn) = d(gxn+1, gxn)

≤ β(d(xn, xn−1))d(xn, xn−1)

≤ d(xn, xn−1),

which implies that the sequence {d(xn+1, xn)} is non-increasing and bounded below.

Hence there exists r ≥ 0 such that limn→∞ d(xn+1, xn) = r. Suppose that r > 0.

Observe that
d(xn+1, xn)

d(xn, xn−1)
≤ β(d(xn, xn−1)),

which implies that limn→∞ β(d(xn, xn−1)) = 1. Since β ∈ G, we have r = 0, which

is a contradiction and hence

lim
n→∞

d(xn−1, xn) = 0. (5.1.2)

Now, we claim that {xn} is a Cauchy sequence. Suppose that {xn} is not a

Cauchy sequence. Then there exists ε > 0 and the subsequences {xmk
}, {xnk

} of

{xn} such that, for any nk > mk ≥ k,

rk := d(xmk
, xnk

) ≥ ε, d(xmk
, xnk−1) < ε

for any k ≥ 1. For each n ≥ 1, let αn := d(xn+1, xn). Then we have

ε ≤ rk ≤ d(xmk
, xnk−1) + d(xnk−1, xnk

)

< ε+ αnk−1

(5.1.3)
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and so it follows from (5.1.2) and (5.1.3) that

lim
k→∞

rk = ε. (5.1.4)

Notice also that

ε ≤ rk

≤ d(xmk
, xmk+1) + d(xnk+1, xnk

) + d(xmk+1, xnk+1)

= αmk
+ αnk

+ d(xmk+1, xnk+1)

≤ αmk
+ αnk

+ β(d(xmk
, xnk

))d(xmk
, xnk

)

and so

rk − αmk
− αnk

d(xmk
, xnk

)
≤ β(d(xmk

, xnk
)).

Taking k → ∞ in the above inequality, by (5.1.2), (5.1.4) and β ∈ G, we get ε = 0,

which is a contradiction. So we know that the sequence {xn} is a Cauchy sequence.

Hence {xn} converges to some element x ∈ A.

Similarly, in view of the fact that T (B0) ⊆ A0 and B0 ⊆ g(B0), we can conclude

that there exists a sequence {yn} such that converges to some element y ∈ B. Since

the pair (S, T ) is a proximal cyclic contraction and g is an isometry, we have

d(xn+1, yn+1) = d(gxn+1, gyn+1) ≤ kd(xn, yn) + (1− k)d(A,B). (5.1.5)

Taking n→ ∞ in (5.1.5), it follows that

d(x, y) = d(A,B) (5.1.6)

and so x ∈ A0 and y ∈ B0. Since S(A0) ⊆ B0 and T (B0) ⊆ A0, there exist u ∈ A

and v ∈ B such that

d(u, Sx) = d(A,B), d(v, Ty) = d(A,B). (5.1.7)

From (5.1.1) and (5.1.7), since S is Geraghty’s proximal contraction of the first kind

of S, we get

d(u, gxn+1) ≤ β(d(x, xn))d(x, xn). (5.1.8)
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Letting n→ ∞ in the above inequality, we get d(u, gx) ≤ 0 and so u = gx. Therefore,

d(gx, Sx) = d(A,B). (5.1.9)

Similarly, we can show that v = gy and so

d(gy, Ty) = d(A,B). (5.1.10)

From (5.1.6), (5.1.9) and (5.1.10), we get

d(x, y) = d(gx, Sx) = d(gy, Ty) = d(A,B).

Next, to prove the uniqueness, suppose that there exist x∗ ∈ A and y∗ ∈ B with

x ̸= x∗ and y ̸= y∗ such that

d(gx∗, Sx∗) = d(A,B), d(gy∗, T y∗) = d(A,B).

Since g is an isometry and S is Geraghty’s proximal contraction of the first kind, it

follows that

d(x, x∗) = d(gx, gx∗) ≤ β(d(x, x∗))d(x, x∗)

and hence

1 =
d(x, x∗)

d(x, x∗)
≤ β(d(x, x∗)) < 1,

which is a contradiction. Thus we have x = x∗. Similarly, we can prove that y = y∗.

This completes the proof.

If g is the identity mapping in Theorem 5.1.3, then we obtain the following:

Corollary 5.1.4. Let (X, d) be a complete metric space and A, B be nonempty

closed subsets of X. Further, suppose that A0 and B0 are nonempty. Let S : A→ B,

T : B → A be the mappings satisfying the following conditions:

(i) S and T are Geraghty’s proximal contractions of the first kind;

(ii) S(A0) ⊆ B0, T (B0) ⊆ A0;

(iii) the pair (S, T ) is a proximal cyclic contraction.

Then there exists a unique point x ∈ A and there exists a unique point y ∈ B such

that

d(x, Sx) = d(y, Ty) = d(x, y) = d(A,B).
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If we take β(t) = k, where 0 ≤ k < 1, we obtain the following:

Corollary 5.1.5. [55] Let (X, d) be a complete metric space and A, B be nonempty

closed subsets of X. Further, suppose that A0 and B0 are nonempty. Let S : A→ B,

T : B → A and g : A∪B → A∪B be the mappings satisfying the following conditions:

(i) S and T are proximal contractions of the first kind;

(ii) g is an isometry;

(iii) the pair (S, T ) is a proximal cyclic contraction;

(iv) S(A0) ⊆ B0, T (B0) ⊆ A0;

(v) A0 ⊆ g(A0) and B0 ⊆ g(B0).

Then there exists a unique point x ∈ A and there exists a unique point y ∈ B such

that

d(gx, Sx) = d(gy, Ty) = d(x, y) = d(A,B).

Moreover, for any fixed x0 ∈ A0, the sequence {xn} defined by

d(gxn+1, Sxn) = d(A,B)

converges to the element x. For any fixed y0 ∈ B0, the sequence {yn} defined by

d(gyn+1, T yn) = d(A,B)

converges to the element y.

If g is the identity mapping in Corollary 5.1.5, we obtain the following:

Corollary 5.1.6. Let (X, d) be a complete metric space and A, B be nonempty

closed subsets of X. Further, suppose that A0 and B0 are nonempty. Let S : A→ B,

T : B → A be the mappings satisfying the following conditions:

(i) S and T are proximal contraction of first kind;

(ii) S(A0) ⊆ B0, T (B0) ⊆ A0;

(iii) the pair (S, T ) is a proximal cyclic contraction.
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Then there exists a unique point x ∈ A and there exists a unique point y ∈ B such

that

d(x, Sx) = d(y, Ty) = d(x, y) = d(A,B).

Next, we establish a best proximity point theorem for nonself-mappings which

are Geraghty’s proximal contractions of the first kind and the second kind.

Theorem 5.1.7. Let (X, d) be a complete metric space and A, B be nonempty closed

subsets of X. Further, suppose that A0 and B0 are nonempty. Let S : A → B and

g : A→ A be the mappings satisfying the following conditions:

(i) S is Geraghty’s proximal contractions of the first and second kinds;

(ii) g is an isometry;

(iii) S preserves isometric distance with respect to g;

(iv) S(A0) ⊆ B0;

(v) A0 ⊆ g(A0).

Then there exists a unique point x ∈ A such that

d(gx, Sx) = d(A,B).

Moreover, for any fixed x0 ∈ A0, the sequence {xn} defined by

d(gxn+1, Sxn) = d(A,B)

converges to the element x.

Proof. Since S(A0) ⊆ B0 and A0 ⊆ g(A0), as in the proof of Theorem 5.1.3, we can

construct the sequence {xn} in A0 such that

d(gxn+1, Sxn) = d(A,B) (5.1.11)

for each n ≥ 1. Since g is an isometry and S is Geraghty’s proximal contraction of

the first kind, we see that

d(xn, xn+1) = d(gxn, gxn+1) ≤ β(d(xn, xn−1))d(xn, xn−1)
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for all n ≥ 1. Again, similarly, we can show that the sequence {xn} is a Cauchy

sequence and so it converges to some x ∈ A. Since S is Geraghty’s proximal con-

traction of the second kind and preserves the isometric distance with respect to g,

we have

d(Sxn, Sxn+1) = d(Sgxn, Sgxn+1)

≤ β(d(Sxn−1, Sxn))d(Sxn−1, Sxn)

≤ d(Sxn−1, Sxn),

which means that the sequence {d(Sxn+1, Sxn)} is non-increasing and bounded be-

low. Hence there exists r ≥ 0 such that

lim
n→∞

d(Sxn+1, Sxn) = r.

Suppose that r > 0. Observe that

d(Sxn, Sxn+1)

d(Sxn−1, Sxn)
≤ β(d(Sxn−1, Sxn)).

Taking n→ ∞ in the above inequality, we get β(d(Sxn−1, Sxn)) → 1. Since β ∈ G,

we have r = 0 which is a contradiction and thus

lim
n→∞

d(Sxn+1, Sxn) = 0. (5.1.12)

Now, we claim that {Sxn} is a Cauchy sequence. Suppose that {Sxn} is not a

Cauchy sequence. Then there exists ε > 0 and the subsequences {Sxmk
}, {Sxnk

} of

{Sxn} such that, for any nk > mk ≥ k,

rk := d(Sxmk
, Sxnk

) ≥ ε, d(Sxmk
, Sxnk−1) < ε

for any k ≥ 1. For each n ≥ 1, let γn := d(Sxn+1, Sxn). Then we have

ε ≤ rk ≤ d(Sxmk
, Sxnk−1) + d(Sxnk−1, Sxnk

)

< ε+ γnk−1

(5.1.13)

and so it follows from (5.1.12) and (5.1.13) that

lim
k→∞

rk = ε.
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Notice also that

ε ≤ rk

≤ d(Sxmk
, Sxmk+1) + d(Sxnk+1, Sxnk

) + d(Sxmk+1, Sxnk+1)

= γmk
+ γnk

+ d(Sxmk+1, Sxnk+1)

≤ γmk
+ γnk

+ β(d(Sxmk
, Sxnk

))d(Sxmk
, Sxnk

).

So, it follows that

1 = lim
k→∞

rk − γmk
− γnk

d(Sxmk
, Sxnk

)
≤ lim

k→∞
β(d(Sxmk

, Sxnk
)) < 1

and so limk→∞ β(d(Sxmk
, Sxnk

)) = 1. Since β ∈ G, we have limk→∞ d(Sxmk
, Sxnk

) =

0, that is, ε = 0, which is a contradiction. So, we obtain the claim and then it

converges to some y ∈ B. Therefore, we can conclude that

d(gx, y) = lim
n→∞

d(gxn+1, Sxn) = d(A,B),

which implies that gx ∈ A0. Since A0 ⊆ g(A0), we have gx = gz for some z ∈ A0 and

then d(gx, gz) = 0. By the fact that g is an isometry, we have d(x, z) = d(gx, gz) =

0. Hence x = z and so x ∈ A0. Since S(A0) ⊆ B0, there exists u ∈ A such that

d(u, Sx) = d(A,B). (5.1.14)

Since S is Geraghty’s proximal contraction of the first kind, it follows from (5.1.11)

and (5.1.14) that

d(u, gxn+1) ≤ β(d(x, xn))d(x, xn) (5.1.15)

for all n ≥ 1. Taking n→ ∞ in (5.1.15), it follows that the sequence {gxn} converges

to a point u. Since g is continuous and limn→∞ xn = x, we have gxn → gx as n→ ∞.

By the uniqueness of the limit, we conclude that u = gx. Therefore, it follows that

d(gx, Sx) = d(u, Sx) = d(A,B). The proof of uniqueness follow from the proof of

Theorem 5.1.3. This completes the proof.

If g is the identity mapping in Theorem 5.1.7, then we obtain the following:

Corollary 5.1.8. Let (X, d) be a complete metric space and A, B be nonempty

closed subsets of X. Further, suppose that A0 and B0 are nonempty. Let S : A→ B

be the mappings satisfying the following conditions:
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(i) S is Geraghty’s proximal contraction of the first and second kinds;

(ii) S(A0) ⊆ B0.

Then there exists a unique point x ∈ A such that

d(x, Sx) = d(A,B).

Moreover, for any fixed x0 ∈ A0, the sequence {xn} defined by

d(xn+1, Sxn) = d(A,B)

converges to the best proximity point x of S.

If we take β(t) = k in Theorem 5.1.7, where 0 ≤ k < 1, we obtain the following:

Corollary 5.1.9. [55] Let (X, d) be a complete metric space and let A, B be nonempty

closed subsets of X. Further, suppose that A0 and B0 are nonempty. Let S : A→ B

and g : A→ A be the mappings satisfying the following conditions:

(i) S is a proximal contraction of the first and second kinds;

(ii) g is an isometry;

(iii) S preserves isometric distance with respect to g;

(iv) S(A0) ⊆ B0;

(v) A0 ⊆ g(A0).

Then there exists a unique point x ∈ A such that

d(gx, Sx) = d(A,B).

Moreover, for any fixed x0 ∈ A0, the sequence {xn} defined by

d(gxn+1, Sxn) = d(A,B)

converges to the element x.

If g is the identity mapping in Corollary 5.1.9, then we obtain the following:
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Corollary 5.1.10. Let (X, d) be a complete metric space and A, B be nonempty

closed subsets of X. Further, suppose that A0 and B0 are nonempty. Let S : A→ B

be a mapping satisfying the following conditions:

(i) S is a proximal contraction of the first and second kinds;

(ii) S(A0) ⊆ B0 .

Then there exists a unique point x ∈ A such that

d(x, Sx) = d(A,B).

Moreover, for any fixed x0 ∈ A0, the sequence {xn} defined by

d(xn+1, Sxn) = d(A,B)

converges to the best proximity point x of S.

Next, we give an example to show that Definition 5.1.1 is different form Definition

2.6.8. Moreover, we give an example which supports Theorem 5.1.3. First, we give

some proposition for our example.

Proposition 5.1.11. Let f : [0,∞) → [0,∞) be a function defined by f(t) =

ln(1 + t). Then we have the following inequality:

f(a)− f(b) ≤ f(|a− b|) (5.1.16)

for all a, b ∈ [0,∞).

Proof. If x = y, we have done. Suppose that x > y. Then since we have

1 + x

1 + y
=

1 + x+ y − y

1 + y
= 1 +

x− y

1 + y
< 1 + |x− y|,

it follows that ln(1+ x)− ln(1+ y) < ln(1+ |x− y|). In the case x < y, by a similar

argument, we can prove that inequality (5.1.16) holds.

Proposition 5.1.12. For each x, y ∈ R, we have that the following inequality holds:

1

(1 + |x|)(1 + |y|)
≤

1

1 + |x− y|
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Proof. Since

1 + |x− y| ≤ 1 + |x|+ |y|

≤ 1 + |x|+ |y|+ |x||y|

= (1 + |x|)(1 + |y|),

so that

1

(1 + |x|)(1 + |y|)
≤

1

1 + |x− y|
.

Example 5.1.13. Consider the complete metric space R2 with Euclidean metric.

Let

A = {(0, x) : x ∈ R}, B = {(2, y) : y ∈ R}.

Then d(A,B) = 2. Define the mappings S : A→ B as follows:

S((0, x)) =
(
2, ln(1 + |x|)

)
.

First, we show that S is Geraghty’s proximal contractions the first kind with β ∈ G

defined by

β(t) =


1, t = 0,

ln(1 + t)

t
, t > 0.

Let (0, x1), (0, x2), (0, a1) and (0, a2) be elements in A satisfying

d((0, a1), S(0, x1)) = d(A,B) = 2, d((0, a2), S(0, x2)) = d(A,B) = 2.

Then we have ai = ln(1 + |xi|) for i = 1, 2. If x1 = x2, we have done. Assume that

x1 ̸= x2. Then, by Proposition 5.1.11 and the fact that the function f(x) = ln(1+ t)
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is increasing, we have

d((0, a1), (0, a2)) = d((0, ln(1 + |x1|)), (0, ln(1 + |x2|)))

= | ln(1 + |x1|)− ln(1 + |x2|)|

≤ | ln(1 + ||x1| − |x2||)|

≤ | ln(1 + |x1 − x2|)|

=
| ln(1 + |x1 − x2|)|

|x1 − x2|
|x1 − x2|

= β(d((0, x1), (0, x2))d((0, x1), (0, x2).

Thus S is Geraghty’s proximal contraction of the first kind.

Next, we prove that S is not a proximal contraction of the first kind. Suppose S is

proximal contraction of the first kind, then for each (0, x∗), (0, y∗), (0, a∗), (0, b∗) ∈ A

satisfying

d((0, x∗), S(0, a∗)) = d(A,B) = 2 and d((0, y∗), S(0, b∗)) = d(A,B) = 2, (5.1.17)

there exists k ∈ [0, 1) such that

d((0, x∗), (0, y∗)) ≤ kd((0, a∗), (0, b∗)).

From (5.1.17), we get x∗ = ln(1 + |a∗|) and y∗ = ln(1 + |b∗|) and so∣∣ ln(1 + |a∗|)− ln(1 + |b∗|)
∣∣ = d((0, x∗), (0, y∗))

≤ kd((0, a∗), (0, b∗))

= k|a∗ − b∗|.

Letting b∗ = 0, we get

1 = lim
|a∗|→0+

∣∣ ln(1 + |a∗|)
∣∣

|a∗|
≤ k < 1,

which is a contradiction. Thus S is not a proximal contraction of the first kind.

Example 5.1.14. Consider the complete metric space R2 with metric defined by

d((x1, x2), (y1, y2)) = |x1 − y1|+ |x2 − y2|,
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for all (x1, x2), (y1, y2) ∈ R2. Let

A = {(0, x) : x ∈ R}, B = {(2, y) : y ∈ R}.

Define two mappings S : A→ B, T : B → A and g : A ∪B → A ∪B as follows:

S((0, x)) =

(
2,

|x|
2(1 + |x|)

)
, T ((2, y)) =

(
0,

|y|
2(1 + |y|)

)
, g((x, y)) = (x,−y).

Then d(A,B) = 2, A0 = A, B0 = B and the mapping g is an isometry.

Next, we show that S and T are Geraghty’s proximal contractions the first kind

with β ∈ G defined by

β(t) =
1

1 + t

for all t ≥ 0. Let (0, x1), (0, x2), (0, a1) and (0, a2) be elements in A satisfying

d((0, a1), S(0, x1)) = d(A,B) = 2, d((0, a2), S(0, x2)) = d(A,B) = 2.

Then we have

ai =
|xi|

2(1 + |xi|)

for i = 1, 2. If x1 = x2, we have done. Assume that x1 ̸= x2, Then, by Proposition

5.1.12, we have

d((0, a1), (0, a2)) = d

((
0,

|x1|
2(1 + |x1|)

)
,

(
0,

|x2|
2(1 + |x2|)

))

=

∣∣∣∣ |x1|
2(1 + |x1|)

−
|x2|

2(1 + |x2|)

∣∣∣∣
=

∣∣∣∣ |x1| − |x2|
2(1 + |x1|)(1 + |x2|)

∣∣∣∣
≤

∣∣∣∣ x1 − x2

(1 + |x1|)(1 + |x2|)

∣∣∣∣
≤

1

1 + |x1 − x2|
∣∣x1 − x2

∣∣
= β(d((0, x1), (0, x2))d((0, x1), (0, x2)).
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Thus S is Geraghty’s proximal contraction of the first kind. Similarly, we can see that

T is Geraghty’s proximal contraction of the first kind. Next, we show that the pair

(S, T ) is a proximal cyclic contraction. Let (0, u), (0, x) ∈ A and (2, v), (2, y) ∈ B

be such that

d((0, u), S(0, x)) = d(A,B) = 2, d((2, v), T (2, y)) = d(A,B) = 2.

Then we get

u =
|x|

2(1 + |x|)
, v =

|y|
2(1 + |y|)

.

In case x = y, clear. Suppose that x ̸= y, then we have

d((0, u), (2, v)) = |u− v|+ 2

=

∣∣∣∣ |x|
2(1 + |x|)

−
|y|

2(1 + |y|)

∣∣∣∣+ 2

=

∣∣∣∣ |x| − |y|
2(1 + |x|)(1 + |y|)

∣∣∣∣+ 2

≤
|x− y|

2(1 + |x|)(1 + |y|)
+ 2

≤ 1

2

∣∣x− y
∣∣+ 2

≤ k
(∣∣x− y

∣∣+ 2
)
+ (1− k)2

= kd((0, x), (2, y)) + (1− k)d(A,B),

where k = [1
2
, 1). Hence the pair (S, T ) is a proximal cyclic contraction. Therefore,

all the hypotheses of Theorem 5.1.3 are satisfied. Further, it is easy to see that

(0, 0) ∈ A and (2, 0) ∈ B are the unique elements such that

d(g(0, 0), S(0, 0)) = d(g(2, 0), T (2, 0)) = d((0, 0), (2, 0)) = d(A,B).

5.2 Best proximity points for generalized proximal

C-contraction mappings

In this section, we first introduce the notion of generalized proximal C-contraction

mapping which is a generalization of C-contraction for non-self mappings and es-

tablish the best proximity point theorems. Recall a generalization of C-contraction

given by the following definition:
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Definition 5.2.1. [58] Let (X, d) be a metric space. A mapping T : X → X is

called a weakly C-contraction if,

d(Tx, Ty) ≤
1

2
[d(x, Ty) + d(y, Tx)]− ψ(d(x, Ty), d(y, Tx)) (5.2.1)

for all x, y ∈ X, where ψ : [0,∞)2 → [0,∞) is a continuous function such that

ψ(a, b) = 0 if and only if a = b = 0.

Later, Harjani et al. [59] presented some fixed point result for weakly C con-

traction mapping incomplete matric spaces endowed with partial order. Now, we

extend the notion of weakly C-contraction to non-self mapping with partial order,

which called generalized proximal C-contraction mapping as follow:

Definition 5.2.2. Let X be a nonempty set such that (X,≼) is a partially ordered

set and (X, d) be a metric space. Let A and B be nonempty subsets of X. A

mapping T : A→ B is said to be a generalized proximal C-contraction if satisfies

x ≼ y

d(u, Tx) = d(A,B)

d(v, Ty) = d(A,B)

 =⇒ d(u, v) ≤ 1

2
(d(x, v) + d(y, u))− ψ(d(x, v), d(y, u))

(5.2.2)

for all u, v, x, y ∈ A, where ψ : [0,∞)2 → [0,∞) is continuous function such that

ψ(x, y) = 0 if and only if x = y = 0.

For a self-mapping, it is easy to see that (5.2.2) reduces to (5.2.1).

Theorem 5.2.3. Let X be a nonempty set such that (X,≼) is a partially ordered

set and (X, d) be a complete metric space. Let A and B be nonempty closed subsets

of X such that A0 and B0 are nonempty. Let T : A → B satisfy the following

conditions:

(i) T is a continuous, proximally order-preserving and generalized proximal C-

contraction such that T (A0) ⊆ B0;

(ii) there exist element x0 and x1 in A0 such that x0 ≼ x1 and

d(x1, Tx0) = d(A,B).
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Then there exists a point x ∈ A and such that

d(x, Tx) = d(A,B).

Moreover, for any fixed x0 ∈ A0, the sequence {xn} defined by

d(xn+1, Txn) = d(A,B)

converges to the point x.

Proof. By the hypothesis (ii), there exist x0, x1 ∈ A0 such that x0 ≼ x1 and

d(x1, Tx0) = d(A,B).

Since T (A0) ⊆ B0, there exists a point x2 ∈ A0 such that

d(x2, Tx1) = d(A,B).

By the proximally order-preserving of T , we get x1 ≼ x2. Continuing this process,

we can find a sequence {xn} in A0 such that xn−1 ≼ xn and

d(xn, Txn−1) = d(A,B).

Having found the point xn, one can choose a point xn+1 ∈ A0 such that xn ≼ xn+1

and

d(xn+1, Txn) = d(A,B). (5.2.3)

Since T is a generalized proximal C-contraction, for each n ≥ 1, we have

d(xn, xn+1) ≤
1

2
(d(xn−1, xn+1) + d(xn, xn))− ψ(d(xn−1, xn+1), d(xn, xn))

=
1

2
d(xn−1, xn+1)− ψ(d(xn−1, xn+1), 0)

≤
1

2
d(xn−1, xn+1)

≤
1

2
(d(xn−1, xn) + d(xn, xn+1))

(5.2.4)

and so it follow that d(xn, xn+1) ≤ d(xn−1, xn), that is, the sequence {d(xn+1, xn)}

is nonincreasing and bounded below. Then there exists r ≥ 0 such that

lim
n→∞

d(xn+1, xn) = r. (5.2.5)
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Taking n→ ∞ in (5.2.4), we have

r ≤ lim
n→∞

1

2
d(xn−1, xn+1) ≤

1

2
(r + r) = r

and so

lim
n→∞

d(xn−1, xn+1) = 2r. (5.2.6)

Again, taking n → ∞ in (5.2.4), using (5.2.5), (5.2.6) and the continuity of ψ, we

get

r ≤
1

2
(2r) = r − ψ(2r, 0) ≤ r

and hence ψ(2r, 0) = 0. So, by the property of ψ, we have r = 0, which implies that

lim
n→∞

d(xn+1, xn) = 0. (5.2.7)

Next, we prove that {xn} is a Cauchy sequence. Suppose that {xn} is not a

Cauchy sequence. Then there exists ε > 0 and subsequence {xmk
}, {xnk

} of {xn}

such that nk > mk ≥ k with

rk := d(xmk
, xnk

) ≥ ε, d(xmk
, xnk−1) < ε (5.2.8)

for each k ≥ 1. For each n ≥ 1, let αn := d(xn+1, xn). So, we have

ε ≤ rk ≤ d(xmk
, xnk−1) + d(xnk−1, xnk

)

< ε+ αnk−1,

it follows from (5.2.7) that

lim
k→∞

rk = ε. (5.2.9)

Notice also that

rk = d(xnk
, xmk

)

≤ d(xnk
, xmk+1) + d(xmk+1, xmk

)

= d(xnk
, xmk+1) + αmk

≤ d(xnk
, xmk

) + d(xmk
, xmk+1) + αmk

= rk + αmk
+ αmk

.

(5.2.10)

Taking k → ∞ in (5.2.10), by (5.2.7) and (5.2.9), we conclude that

lim
k→∞

d(xnk
, xmk+1) = ε. (5.2.11)
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Similarly, we can show that

lim
k→∞

d(xmk
, xnk+1) = ε. (5.2.12)

On the other hand, by the construction of {xn}, we may assume that xmk
≼ xnk

such that

d(xnk+1, Txnk
) = d(A,B) (5.2.13)

and

d(xmk+1, Txmk
) = d(A,B). (5.2.14)

By the triangle inequality, (5.2.13), (5.2.14) and the generalized proximal C-contraction

of T , we have

ε ≤ rk ≤ d(xmk
, xmk+1) + d(xnk+1, xnk

) + d(xmk+1, xnk+1)

= αmk
+ αnk

+ d(xmk+1, xnk+1)

≤ αmk
+ αnk

+
1

2
[d(xnk

, xmk+1) + d(xmk
, xnk+1)]

−ψ(d(xnk
, xmk+1), d(xmk

, xnk+1)).

Taking k → ∞ in the above inequality, by (5.2.7), (5.2.11), (5.2.12) and the conti-

nuity of ψ, we get

ε ≤
1

2
(ε+ ε)− ψ(ε, ε) ≤ ε.

Therefore, ψ(ε, ε) = 0. By the property of ψ, we have that ε = 0, which is a

contradiction. Thus {xn} is a Cauchy sequence. Since A is a closed subset of the

complete metric space X, there exist x ∈ A such that

lim
n→∞

xn = x. (5.2.15)

Letting n→ ∞ in (5.2.3) , by (5.2.15) and the continuity of T , it follows that

d(x, Tx) = d(A,B).

This completes the proof.

Corollary 5.2.4. Let X be a nonempty set such that (X,≼) is a partially ordered

set and (X, d) be a complete metric space. Let A and B be nonempty closed subsets

of X such that A0 and B0 are nonempty. Let T : A → B satisfy the following

conditions:
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(i) T is a continuous, increasing such that T (A0) ⊆ B0 and

x ≼ y

d(u, Tx) = d(A,B)

d(v, Ty) = d(A,B)

 =⇒ d(u, v) ≤ α(d(x, v) + d(y, u)), (5.2.16)

where α ∈ (0, 1
2
);

(ii) there exist x0, x1 ∈ A0 such that x0 ≼ x1 and

d(x1, Tx0) = d(A,B).

Then there exists a point x ∈ A and such that

d(x, Tx) = d(A,B).

Moreover, for any fixed x0 ∈ A0, the sequence {xn} defined by

d(xn+1, Txn) = d(A,B)

converges to the point x.

Proof. Let α ∈ (0, 1
2
) and the function ψ in Theorem 5.2.3 be defined by

ψ(a, b) = (
1

2
− α)(a+ b).

Obviously, it follows that ψ(a, b) = 0 if and only if a = b = 0 and (5.2.2) become

to (5.2.16). Hence we obtain the Corollary 5.2.4.

For a self-mapping, the condition (ii) implies that x0 ≼ Tx0 and so Theorem

5.2.3 includes the results of Harjani et al. [59] as follows:

Corollary 5.2.5. [59] Let X be a nonempty set such that (X,≼) is a partially

ordered set and (X, d) be a complete metric space. Let T : X → X be a continuous

and nondecreasing mapping such that, for all x, y ∈ X,

d(Tx, Ty) ≤
1

2
[d(x, Ty) + d(y, Tx)]− ψ(d(x, Ty), d(y, Tx))

for x ≼ y, where ψ : [0,∞)2 → [0,∞) is a continuous function such that ψ(x, y) = 0

if and only if x = y = 0. If there exists x0 ∈ X with x0 ≼ Tx0, then T has a fixed

point.
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Now, we give an example to illustrate Theorem 5.2.3.

Example 5.2.6. Consider the complete metric space R2 with Euclidean metric,

define the partial order ≼ on R2 in the following way:

(x1, y1) ≼ (x2, y2) ⇐⇒ x1 ≤ x2, y1 ≤ y2

for all (x1, y1), (x2, y2) ∈ R2. Let

A = {(x, 0) : x ∈ R}, B = {(0, y) : y ∈ R , y ≥ 1}.

Then d(A,B) = 1, A0 = {(0, 0)} and B0 = {(0, 1)}. Define a mapping T : A → B

as follows:

T ((x, 0)) = (0, 1 + |x|)

for all (x, 0) ∈ A. Clearly, T is continuous and T (A0) ⊆ B0. If x1 ≼ x2 and

d(u1, Tx1) = d(A,B) = 1, d(u2, Tx2) = d(A,B) = 1

for some u1, u2, x1, x2 ∈ A, then we have

u1 = u2 = (0, 0), x1 = x2 = (0, 0).

Therefore, T is a generalized proximal C-contraction with ψ : [0,∞)2 → [0,∞)

defined by

ψ(a, b) =
1

4
(a+ b).

Further, observe that (0, 0) ∈ A such that

d((0, 0), T (0, 0)) = d(A,B) = 1.

In Theorem 5.2.7, we don’t need the condition that T is continuous. Now,

we improve the condition in Theorem 5.2.3 to prove the new best proximity point

theorem as follows:

Theorem 5.2.7. Let X be a nonempty set such that (X,≼) is a partially ordered

set and (X, d) be a complete metric space. Let A and B be nonempty closed subsets

of X such that A0 and B0 are nonempty. Let T : A → B satisfy the following

conditions:



68

(i) T is a proximally order-preserving and generalized proximal C-contraction such

that T (A0) ⊆ B0;

(ii) there exist element x0, x1 ∈ A0 such that x0 ≼ x1 and

d(x1, Tx0) = d(A,B);

(iii) if {xn} is an increasing sequence in A converges to x, then xn ≼ x for all

n ∈ N.

Then there exists a point x ∈ A and such that

d(x, Tx) = d(A,B).

Proof. As in the proof of Theorem 5.2.3, we have

d(xn+1, Txn) = d(A,B) (5.2.17)

for all n ≥ 0. Moreover, {xn} is a Cauchy sequence and so it converges to some

point x ∈ A. Observe that, for each n ∈≥ 1,

d(A,B) = d(xn+1, Txn) ≤ d(xn+1, x) + d(x, Txn)

≤ d(x, xn+1) + d(x, xn+1) + d(xn+1, Txn)

≤ d(x, xn+1) + d(x, xn+1) + d(A,B).

Taking n → ∞ in the above inequality, we obtain limn→∞ d(x, Txn) = d(A,B) and

hence x ∈ A0. Since T (A0) ⊆ B0, there exists v ∈ A such that

d(v, Tx) = d(A,B). (5.2.18)

Next, we prove that x = v. By the condition (c), we have xn ≼ x for all n ≥ 1.

Using (5.2.17), (5.2.18) and the generalized proximal C-contraction of T , we have

d(xn+1, v) ≤
1

2
[d(xn, v) + d(x, xn+1)]− ψ(d(xn, v), d(x, xn+1)).

(5.2.19)

Letting n→ ∞ in (5.2.19), we get

d(x, v) ≤
1

2
d(x, v)− ψ(d(x, v), 0),
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which implies that d(x, v) = 0, that is, x = v. If we replace v by x in (5.2.18), we

have

d(x, Tx) = d(A,B).

This completes the proof.

Corollary 5.2.8. Let X be a nonempty set such that (X,≼) is a partially ordered

set and (X, d) be a complete metric space. Let A and B be nonempty closed subsets

of X such that A0 and B0 are nonempty. Let T : A → B satisfy the following

conditions:

(i) T is an increasing mapping such that T (A0) ⊆ B0 and

x ≼ y

d(u, Tx) = d(A,B)

d(v, Ty) = d(A,B)

 =⇒ d(u, v) ≤ α(d(x, v) + d(y, u)), (5.2.20)

where α ∈ (0, 1
2
);

(ii) there exist x0, x1 ∈ A0 such that x0 ≼ x1 and

d(x1, Tx0) = d(A,B);

(iii) if {xn} is an increasing sequence in A converges to a point x ∈ X, then xn ≼ x

for all n ≥ 1.

Then there exists a point x ∈ A and such that

d(x, Tx) = d(A,B).

Corollary 5.2.9. [59] Let X be a nonempty set such that (X,≼) is a partially

ordered set and (X, d) be a complete metric space. Assume that, if {xn} ⊆ X is a

nondecreasing sequence such that xn → x in X, then xn ≼ x for all n ≥ 1. Let

T : X → X be a nondecreasing mapping such that

d(Tx, Ty) ≤
1

2
[d(x, Ty) + d(y, Tx)]− ψ(d(x, Ty), d(y, Tx))
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for x ≼ y, where ψ : [0,∞)2 → [0,∞) is a continuous function such that ψ(x, y) = 0

if and only if x = y = 0. If there exists x0 ∈ X with x0 ≼ Tx0, then T has a fixed

point.

Now, we recall the condition defined by Nieto and Rodŕiguez-López [60] for the

uniqueness of the best proximity point in Theorems 5.2.3 and Theorems 5.2.7.

For all x, y ∈ X, there exists z ∈ X which is comparable to x and y. (5.2.21)

Theorem 5.2.10. Let X be a nonempty set such that (X,≼) is a partially ordered

set and (X, d) be a complete metric space. Let A and B be nonempty closed subsets

of X and A0 and B0 are nonempty such that A0 satisfies the condition (5.2.21). Let

T : A→ B satisfy the following conditions:

(i) T is a continuous, proximally order-preserving and generalized proximal C-

contraction such that T (A0) ⊆ B0;

(ii) there exist element x0, x1 ∈ A0 such that x0 ≼ x1 and

d(x1, Tx0) = d(A,B).

Then there exists a unique point x ∈ A and such that

d(x, Tx) = d(A,B).

Proof. We shall only proof the part of uniqueness part. Suppose that there exist x

and x∗ in A which are best proximity point, that is

d(x, Tx) = d(A,B), d(x∗, Tx∗) = d(A,B).

Case I: x is comparable to x∗, that is, x ≼ x∗ (or x∗ ≼ x ). By the generalized

proximal C-contraction of T , we have

d(x, x∗) ≤
1

2
[d(x, x∗) + d(x∗, x)]− ψ(d(x, x∗), d(x∗, x)) ≤ d(x∗, x),

which implies that ψ(d(x, x∗), d(x∗, x)) = 0. Using the property of ψ, we get

d(x∗, x) = 0 and hence x = x∗.
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Case II: x is not comparable to x∗. Since A0 satisfies the condition (5.2.21), there

exist z ∈ A0 such that z comparable to x and x∗, that is, x ≼ z (or z ≼ x) and

x∗ ≼ z (or z ≼ x∗). Suppose that x ≼ z and x∗ ≼ z. Since T (A0) ⊆ B0, there exists

a point v0 ∈ A0 such that

d(v0, T z) = d(A,B).

By proximally order-preserving, we get x ≼ v0 and x
∗ ≼ v0. Since T (A0) ⊆ B0, there

exists a point v1 ∈ A0 such that

d(v1, T v0) = d(A,B).

Again, by proximally order-preserving, we get x ≼ v1 and x
∗ ≼ v1. One can proceed

further in a similar fashion to find vn ∈ A0 with vn+1 ∈ A0 such that

d(vn+1, T vn) = d(A,B).

Hence x ≼ vn and x∗ ≼ vn for all n ≥ 1. By the generalized proximal C-contraction

of T , we have

d(vn+1, x) ≤
1

2
[d(vn, x) + d(x, vn+1)]− ψ(d(vn, x), d(x, vn+1)),

(5.2.22)

d(vn+1, x
∗) ≤

1

2
[d(vn, x

∗) + d(x∗, vn+1)]− ψ(d(vn, x
∗), d(x∗, vn+1)).

(5.2.23)

It follow from (5.2.22), we get d(vn+1, x) ≤ d(vn, x). This mean that the sequence

{d(vn, x)} is nonincreasing and converges to some nonnegative real number r. Let-

ting n→ ∞ in (5.2.22), we have

r ≤
1

2
(r + r)− ψ(r, r) ≤ r,

(5.2.24)

which implies that ψ(r, r) = 0, that is r = 0 and thus limn→∞ d(vn, x) = 0. There-

fore, vn → x as n → ∞. Similarly, we can show that vn → x∗ as n → ∞. By the

uniqueness of limit, we conclude that x = x∗. This completes the proof.

Theorem 5.2.11. Let X be a nonempty set such that (X,≼) is a partially ordered

set and (X, d) be a complete metric space. Let A and B be nonempty closed subsets

of X and A0 and B0 are nonempty such that A0 satisfies the condition (5.2.21). Let

T : A→ B satisfy the following conditions:
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(i) T is an proximally order-preserving and generalized proximal C-contraction

such that T (A0) ⊆ B0;

(ii) there exist element x0, x1 ∈ A0 such that x0 ≼ x1 and d(x1, Tx0) = d(A,B);

(iii) if {xn} is an increasing sequence in A converges to x, then xn ≼ x for all

n ≥ 1.

Then there exists a unique point x ∈ A and such that

d(x, Tx) = d(A,B).

Proof. Combining the proofs of Theorem 5.2.7 and Theorem 5.2.11, we have the

conclusion.

5.3 Best proximity point theorems for generalized cyclic

contractions mappings

In this section, we prove the existence of a best proximity point for a generalized

cyclic contraction mapping. First, we recall the notion and result in [61] as follows:

Definition 5.3.1. [61] Let A and B be nonempty subsets of a metric space (X, d).

Then (A,B) is said to be satisfy the property (UC) if and only if {xn} and {x́n} are

the sequences in A and {yn} is a sequence in B such that

limn→∞ d(xn, yn) = d(A,B) and limn→∞ d(x́n, yn) = d(A,B),

then limn→∞ d(xn, x́n) = 0.

Lemma 5.3.2. [61] Let A and B be subsets of a metric space (X,d). Assume that

(A,B) has the property (UC). Let {xn} and {yn} be the sequences in A and B,

respectively, such that either of the following holds:

lim
m→∞

sup
n≥m

d(xm, yn) = d(A,B)

or

lim
n→∞

sup
m≥n

d(xm, yn) = d(A,B).

Then {xn} is a Cauchy sequence.
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Theorem 5.3.3. Let A and B be nonempty closed subsets of a partially ordered

metric space (X,≼) and d be a metric on X. Let T : A ∪ B → A ∪ B be a cyclic

mapping such that T and T 2 are nondecreasing on A such that

d(T x́, T 2x) ≤ αd(x́, Tx) + βd(x, T x́) + (1− α− β)d(A,B)

and

d(T ý, T 2y) ≤ αd(ý, T y) + βd(y, T ý) + (1− α− β)d(A,B)

for some α, β ∈ [0, 1) with α+β < 1 and for all (x, x́) ∈ A×A, (y, ý) ∈ B×B with

x ≼ x́, y ≼ ý. Assume that there exits x0 ∈ A with x0 ≼ T 2x0 and define xn+1 = Txn

for all n ≥ 1. If T |A is continuous and {x2n} has convergent subsequence in A, then

T has best proximity point p ∈ A.

Proof. Let {x2nk
} be a subsequence of {x2n} converging to some p ∈ A. By the

continuity of T , we get x2nk+1 = Tx2nk
→ Tp as n → ∞. Since T and T 2 are

nondecreasing on A and x0 ≼ T 2x0, it follows that {T 2nx0} and {T 2n−1x0} are

nondecreasing. Indeed,

d(A,B) ≤ d(x2nk
, x2nk+1)

≤ αd(Tx2nk−2, T
2x2nk−2) + βd(Tx2nk−2, T

2x2nk−2) + (1− α− β)d(A,B)

≤ α2d(x2nk−2, Tx2nk−2) + 2αβd(x2nk−2, Tx2nk−2)

+β2d(x2nk−2, Tx2nk−2) + (1− α2 − 2αβ − β2)d(A,B)

≤ α3d(x2nk−3, Tx2nk−3) + 3α2βd(x2nk−3, Tx2nk−3)

+3αβ2d(x2nk−3, Tx2nk−3) + β3d(x2nk−3, Tx2nk−3)

+(1− α3 − 3α2β − 3αβ2 − β3)d(A,B)

...

≤ α2nkd(x0, Tx0) +

(
2nk

1

)
α2nk−1βd(x0, Tx0) + · · ·+ β2nkd(x0, Tx0)

(1− α2nk −
(
2nk

1

)
α2nk−1β − · · · −

(
2nk

2nk − 1

)
αβ2nk−1 − β2nk)d(A,B).

Taking k → ∞ in the above equality, we obtain

d(p, Tp) = limn→∞ d(x2nk
, Tx2nk

) = d(A,B).
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Corollary 5.3.4. Let A and B be nonempty closed subsets of a partially ordered

metric space (X,≼) and d be a metric on X. Let T : A ∪ B → A ∪ B be a cyclic

mapping such that T and T 2 are nondecreasing on A such that

d(T x́, T 2x) ≤ αd(x́, Tx) + (1− α)d(A,B)

and

d(T ý, T 2y) ≤ αd(ý, T y) + (1− α)d(A,B)

for some α ∈ [0, 1) and for all (x, x́) ∈ A × A, (y, ý) ∈ B × B with x ≼ x́, y ≼ ý.

Assume that there exits x0 ∈ A with x0 ≼ T 2x0 and define xn+1 = Txn for all n ≥ 1.

If T |A is continuous and {x2n} has convergent subsequence in A, then T has best

proximity point p ∈ A.

Corollary 5.3.5. Let A and B be nonempty closed subsets of a partially ordered

metric space (X,≼) and d be a metric on X. Let T : A ∪ B → A ∪ B be a cyclic

mapping such that T and T 2 are nondecreasing on A such that

d(T x́, T 2x) ≤ βd(x, T x́) + (1− β)d(A,B)

and

d(T ý, T 2y) ≤ βd(y, T ý) + (1− β)d(A,B)

for some β ∈ [0, 1) and for all (x, x́) ∈ A × A, (y, ý) ∈ B × B with x ≼ x́, y ≼ ý.

Assume that there exits x0 ∈ A with x0 ≼ T 2x0 and define xn+1 = Txn for all n ≥ 1.

If T |A is continuous and {x2n} has convergent subsequence in A, then T has best

proximity point p ∈ A.

Lemma 5.3.6. Let A and B be nonempty subsets of a partially ordered metric space

(X,≼) and d be a metric on X. Let T : A ∪ B → A ∪ B be a cyclic mapping such

that

d(T x́, T 2x) ≤ αd(x́, Tx) + βd(x, T x́) + (1− α− β)d(A,B) (5.3.1)

and

d(T ý, T 2y) ≤ αd(ý, T y) + βd(y, T ý) + (1− α− β)d(A,B) (5.3.2)

for some α, β ∈ [0, 1) with α+β < 1 and for all (x, x́) ∈ A×A, (y, ý) ∈ B×B with

x ≼ x́, y ≼ ý. Then
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d∗(T x́, T 2x) ≤ αd∗(x́, Tx) + βd∗(x, T x́)

and

d∗(T ý, T 2y) ≤ αd∗(ý, T y) + βd∗(y, T ý),

where d∗(a, b) = d(a, b)− d(A,B) for (a, b) ∈ A×B.

Proof. By the definition of d∗ and (5.3.1), we have

d∗(T x́, T 2x) = d(T x́, T 2x)− d(A,B)

≤ αd(x́, Tx) + βd(x, T x́) + (1− α− β)d(A,B)− d(A,B)

= αd(x́, Tx) + βd(x, T x́)− αd(A,B)− βd(A,B)

= α
(
d(x́, Tx)− d(A,B)

)
+ β

(
d(x, T x́)− d(A,B)

)
= αd∗(x́, Tx) + βd∗(x, T x́).

(5.3.3)

Similarly, we see that d∗(T ý, T 2y) ≤ αd∗(ý, T y) + βd∗(y, T ý).

Theorem 5.3.7. Let (X,≼) be a partially ordered set and d be a metric on X. Let

A and B be two nonempty subsets of X such that (A,B) satisfies the property (UC)

and A is complete. Let T : A∪B → A∪B be a cyclic mapping such that T and T 2

are nondecreasing on A. Suppose that

d(T x́, T 2x) ≤ αd(x́, Tx) + βd(x, T x́) + (1− α− β)d(A,B)

and

d(T ý, T 2y) ≤ αd(ý, T y) + βd(y, T ý) + (1− α− β)d(A,B)

for some α, β ∈ [0, 1) with α+β < 1 and for all (x, x́) ∈ A×A, (y, ý) ∈ B×B with

x ≼ x́, y ≼ ý. If T |A is continuous and that there exits x0 ∈ A such that x0 ≼ T 2x0

and xn+1 = Txn for all n ≥ 1, then T has a best proximity point p ∈ A and x2n → p.

Proof. Since T and T 2 are nondecreasing on A and x0 ≼ T 2x0, it follows that

{T 2nx0} and {T 2n−1x0} are nondecreasing. Let n ≥ 1 with n ≥ m.
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By Lemma 5.3.6, we have

d∗(T 2mx0, T
2n+1x0)

= d∗(T (T 2nx0), T
2(T 2m−2x0))

≤ αd∗(T (T 2n−1x0), T
2(T 2m−3x0)) + βd∗(T (T 2nx0), T

2(T 2m−4x0))

≤ α2d∗(T (T 2n−2x0), T
2(T 2m−4x0))

+2αβd∗(T (T 2n−1x0), T
2(T 2m−5x0)) + β2d∗(T (T 2nx0), T

2(T 2m−6x0))

≤ α3d∗(T 2m−3x0, T
2n−2x0) + 3α2βd∗(T 2m−4x0, T

2n−1x0)

+3αβ2d∗(T 2m−5x0, T
2nx0) + β3d∗(T 2m−6x0, T

2n+1x0)

...

≤ βmd∗(x0, T
2n+1x0) +

(
m

1

)
αβm−1d∗(Tx0, T

2nx0)

+

(
m

2

)
α2βm−2d∗(T 2x0, T

2n−2x0) + · · ·

+αmd∗(T 2m−mx0, T
(2n+1)−(m)x0).

Since α, β ∈ [0, 1), it follows from the above inequality that

lim
m→∞

sup
n≥m

d∗(T 2mx0, T
2n+1x0) = 0. (5.3.4)

Since (A,B) satisfies the property (UC), it follows from Lemma 5.3.2 that {x2n} is

a Cauchy sequence and since A is complete, there exists p ∈ A such that

T 2nx0 = x2n → p.

By the continuity of T on A, we get T 2n+1x0 = T (T 2nx0) → Tp as n → ∞. Since

{T 2nx0} and {T 2n−1x0} are nondecreasing, we have

d(A,B)

≤ d(T (T 2n−1x0), T
2(T 2n−1x0))

≤ αd(T 2n−1x0, T
2nx0) + βd(T 2n−1x0, T

2nx0) + (1− α− β)d(A,B)

≤ α2d(T 2n−2x0, T (T
2n−2x0)) + 2αβd(T 2n−2x0, T (T

2n−2x0))

+β2d(T 2n−2x0, T (T
2n−2x0)) + (1− α2 − 2αβ − β2)d(A,B)
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≤ α3d(T 2n−3x0, T (T
2n−3x0)) + 3α2βd(T 2n−3x0, T (T

2n−3x0))

+3αβ2d(T 2n−3x0, T (T
2n−3x0)) + β3d(T 2n−3x0, T (T

2n−3x0))

+(1− α3 − 3α2β − 3αβ2 − β3)d(A,B)

...

≤ α2nd(x0, Tx0) +

(
2n

1

)
α2n−1βd(x0, Tx0) + · · ·

+

(
2n

2n− 1

)
αβ2n−1d(x0, Tx0) + β2nd(x0, Tx0)

+
(
1− α2n −

(
2n

1

)
α2n−1β − · · · −

(
2n

2n− 1

)
αβ2n−1 − β2n

)
d(A,B).

Since α, β ∈ [0, 1), letting n→ ∞ in the above inequality, we obtain

d(p, Tp) = limn→∞ d((T 2nx0, T
2n+1x0) = d(A,B).

This completes the proof.

Corollary 5.3.8. Let (X,≼) be a partially ordered set and d be a metric on X.

Let A and B be two nonempty subsets of X satisfies the property (UC), and A is

complete. Let T : A ∪ B → A ∪ B be a cyclic mapping such that T and T 2 are

nondecreasing on A. Suppose that

d(T x́, T 2x) ≤ αd(x́, Tx) + (1− α)d(A,B)

and

d(T ý, T 2y) ≤ αd(ý, T y) + (1− α)d(A,B)

for some α ∈ [0, 1) and for all (x, x́) ∈ A×A, (y, ý) ∈ B ×B with x ≼ x́, y ≼ ý. If

T |A is continuous and that there exits x0 ∈ A such that x0 ≼ T 2x0 and xn+1 = Txn

for all n ≥ 1, then T has best proximity point p ∈ A and x2n → p.

Corollary 5.3.9. Let (X,≼) be a partially ordered set and d be a metric on X. Let

A and B be two nonempty subsets of X such that (A,B) satisfies the property (UC),

and A is complete. Let T : A∪B → A∪B be a cyclic mapping such that T and T 2

are nondecreasing on A. Suppose that

d(T x́, T 2x) ≤ βd(x, T x́) + (1− β)d(A,B)

and

d(T ý, T 2y) ≤ βd(y, T ý) + (1− β)d(A,B)
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for some β ∈ [0, 1) and for all (x, x́) ∈ A×A, (y, ý) ∈ B ×B with x ≼ x́, y ≼ ý. If

T is continuous and that there exits x0 ∈ A such that x0 ≼ T 2x0 and xn+1 = Txn

for all n ≥ 1, then T has best proximity point p ∈ A and x2n → p.

Now, we give an example to illustrate the Theorems 5.3.7.

Example 4.1 Consider X = R2 with the usual metric and define the partial

order ≼ on R2 in the following way:

(x1, y1) ≼ (x2, y2) ⇐⇒ x1 ≤ x2, y1 ≤ y2

for all (x1, y1), (x2, y2) ∈ R2. Set A = {(1, a) : a ≥ 0}, B = {(−1, b) : b ≥ 0} and

define a mapping T : A ∪B → A ∪B by

T (1, a) = (−1, a
2
), T (−1, b) = (1, b

2
)

for all a, b ≥ 0. Then d(A,B) = 2. We show that A and B satisfies the property

(UC). Let {(1, an)}, {(1, a′n)} be two sequences in A and {(1, bn)} be a sequence in

B such that

limn→∞ d((1, an), (−1, bn)) = 2, limn→∞ d((1, a′n), (−1, bn)) = 2.

Thus limn→∞ |an − bn| = 0 and limn→∞ |a′n − bn| = 0. Since

limn→∞ |an − a′n| ≤ limn→∞ |an − bn|+ limn→∞ |bn − a′n| = 0,

lim
n→∞

d((1, an), (1, a
′
n)) = 0 ⇐⇒ lim

n→∞
|an − a′n| = 0.

Hence A and B satisfies the property (UC). Simple computations show that T

satisfies the conditions of Theorem 5.3.7 for α = 2/3, β = 1/4. Since x0 := (1, 0) ∈

A, if define xn+1 = Txn for all n ≥ 1, then x0 ≼ T 2x0 and {x2n}, {x2n−1} are

nondecreasing. Therefore, T has a best proximity point. Clearly, this point is x0

itself.
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5.4 Common best proximity points for proximity

commuting mappings

In this section, we prove new common best proximity point theorems for a prox-

imity commuting mapping in a complete metric space. Moreover, we also give an

illustrative example for support our main Theorem.

Theorem 5.4.1. Let A and B be nonempty closed subsets of a complete metric

space X such that A is approximatively compact with respect to B. Also, assume

that A0 and B0 are nonempty. Let S : A → B, T : A → B be nonself-mappings

satisfying the following conditions:

(i) For each x and y are elements in A,

d(Sx, Sy) ≤ d(Tx, Ty)− φ(d(Tx, Ty)),

where, φ : [0,∞) → [0,∞) is a continuous and nondecreasing function such

that φ(t) = 0 if and only if t = 0;

(ii) T is continuous;

(iii) S and T commute proximally;

(iv) S and T can be swapped proximally;

(v) S(A0) ⊆ B0 and S(A0) ⊆ T (A0) .

Then there exists an element x ∈ A such that

d(x, Tx) = d(A,B), d(x, Sx) = d(A,B).

Moreover, if x∗ is another common best proximity point of the mappings S and T ,

then

d(x, x∗) ≤ 2d(A,B).

Proof. Let x0 a fixed element in A0. In view of the fact that S(A0) ⊆ T (A0), it

follows that there exists an element x1 ∈ A0 such that Sx0 = Tx1. Again, since
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S(A0) ⊆ T (A0), there exists an element x2 ∈ A0 such that Sx1 = Tx2. By the

similar fashion, we can find xn ∈ A0 such that

Sxn−1 = Txn (5.4.1)

for all n ≥ 1. It follows that

d(Sxn, Sxn+1) ≤ d(Txn, Txn+1)− φ(d(Txn, Txn+1))

= d(Sxn−1, Sxn)− φ(d(Sxn−1, Sxn))

≤ d(Sxn−1, Sxn),

(5.4.2)

which mean that the sequence {d(Sxn−1, Sxn)} is non-increasing and bounded be-

low. Hence there exists r ≥ 0 such that

lim
n→∞

d(Sxn−1, Sxn) = r. (5.4.3)

If r > 0, then

d(Sxn, Sxn+1) ≤ d(Sxn−1, Sxn)− φ(d(Sxn−1, Sxn)). (5.4.4)

Taking n → ∞ in (5.4.4), by the continuities of φ, we get r ≤ r − φ(r) < r, which

is a contradiction and hence r = 0. Therefore,

lim
n→∞

d(Sxn−1, Sxn) = 0. (5.4.5)

Next, we will prove that {Sxn} is a Cauchy sequence. We have two cases.

Case I: Suppose that there exits a positive integer n such that Sxn = Sxn+1.

Observe that

d(Sxn+1, Sxn+2) ≤ d(Txn+1, Txn+2)− φ(d(Txn+1, Txn+2))

= d(Sxn, Sxn+1)− φ(d(Sxn, Sxn+1))

= 0,

which implies that Sxn+1 = Sxn+2. So, for all m > n, we conclude that Sxm = Sxn.

Hence {Sxn} is a Cauchy sequence in B.

Case II: The successive terms of {Sxn} are different. Suppose that {Sxn} is not

a Cauchy sequence. Then there exists ε > 0 and subsequences {Sxmk
}, {Sxnk

} of

{Sxn} with nk > mk ≥ k such that

d(Sxmk
, Sxnk

) ≥ ε, d(Sxmk
, Sxnk−1) < ε. (5.4.6)
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By using (5.4.6) and the triangular inequality, we get

ε ≤ d(Sxmk
, Sxnk

)

≤ d(Sxmk
, Sxnk−1) + d(Sxnk−1, Sxnk

)

< ε+ d(Sxnk−1, Sxnk
).

(5.4.7)

Using (5.4.7) and (5.4.5), we have

d(Sxmk
, Sxnk

) → ε (5.4.8)

as k → ∞. Again, by the triangular inequality, we get

d(Sxmk
, Sxnk

)

≤ d(Sxmk
, Sxmk+1) + d(Sxmk+1, Sxnk+1) + d(Sxnk+1, Sxnk

)
(5.4.9)

and

d(Sxmk+1, Sxnk+1)

≤ d(Sxmk+1, Sxmk
) + d(Sxmk

, Sxnk
) + d(Sxnk

, Sxnk+1).
(5.4.10)

From (5.4.5), (5.4.8), (5.4.9) and (5.4.10), we obtain

d(Sxmk+1, Sxnk+1) → ε (5.4.11)

as k → ∞. In view of the fact that

d(Sxmk+1, Sxnk+1) ≤ d(Txmk+1, Txnk+1)− φ(d(Txmk+1, Txnk+1))

= d(Sxmk
, Sxnk

)− φ(d(Sxmk
, Sxnk

)),
(5.4.12)

letting, k → ∞ in (5.4.12), we obtain

ε ≤ ε− φ(ε),

which is a contradiction by the property of φ. Then we deduce that {Sxn} is a

Cauchy sequence in B. Since B is a closed subset of a complete metric space X,

then there exists y ∈ B such that Sxn → y as n→ ∞. Consequently, it follows that

the sequence {Txn} also converges to y. From S(A0) ⊆ B0, there exists an element

un ∈ A such that

d(Sxn, un) = d(A,B) (5.4.13)

for all n ≥ 1. So, it follows from (5.4.1) and (5.4.13) that

d(Txn, un−1) = d(Sxn−1, un−1) = d(A,B) (5.4.14)



82

for all n ≥ 1. By (5.4.13), (5.4.14) and the fact that the mappings S and T are

commuting proximally, we obtain

Tun = Sun−1 (5.4.15)

for all n ≥ 1. Moreover, we have

d(y, A) ≤ d(y, un)

≤ d(y, Sxn) + d(Sxn, un)

= d(y, Sxn) + d(A,B)

≤ d(y, Sxn) + d(y,A).

(5.4.16)

Therefore, d(y, un) → d(y,A) as n → ∞. Since A is approximatively compact with

respect to B, there exists a subsequence {unk
} of the sequence {un} such that {unk

}

converges to some element u ∈ A. Further, since d(y, unk−1) → d(y, A) and A is

approximatively compact with respect to B, there exists a subsequence {unkj
−1} of

the sequence {unk−1} such that {unkj
−1} converges to some element v ∈ A. By the

continuity of the mappings S and T , we have

Tu = lim
j→∞

Tunkj
= lim

j→∞
Sunkj

−1 = Sv (5.4.17)

and

d(y, u) = lim
k→∞

d(Sxnk
, unk

) = d(A,B),

d(y, v) = lim
j→∞

d(Txnkj
, unkj

−1) = d(A,B).
(5.4.18)

Since S and T can be swapped proximally, we get

Tv = Su. (5.4.19)

Next, we prove that Su = Sv. Suppose the contrary. Then, by (5.4.17), (5.4.18),

(5.4.19) and the property of φ, we have

d(Su, Sv) ≤ d(Tu, Tv)− φ(d(Tu, Tv))

= d(Sv, Su)− φ(d(Sv, Su))

< d(Sv, Su),

which is a contradiction. Thus Su = Sv and also Tu = Su. Since S(A0) is contained

in B0, there exists an element x ∈ A such that

d(x, Tu) = d(A,B), d(x, Su) = d(A,B).
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Since S and T are commuting proximally, we have Sx = Tx. Consequently, we have

d(Su, Sx) ≤ d(Tu, Tx)− φ(d(Tu, Tx))

= d(Su, Sx)− φ(d(Su, Sx)).
(5.4.20)

In (5.4.20), if Su ̸= Sx, then

d(Su, Sx) ≤ d(Su, Sx)− φ(d(Su, Sx)) < d(Su, Sx),

which is impossible. So, we have Su = Sx and hence Tu = Tx. It follows that

d(x, Tx) = d(x, Tu) = d(A,B)

and

d(x, Sx) = d(x, Su) = d(A,B).

Therefore, x is a common best proximity point of S and T .

Suppose that x∗ is another common best proximity point of the mappings S and

T . Then we have

d(x∗, Tx∗) = d(A,B)

and

d(x∗, Sx∗) = d(A,B).

Since S and T are commuting proximally, we have Sx = Tx and Sx∗ = Tx∗.

Consequently, we have

d(Sx∗, Sx) ≤ d(Tx∗, Tx)− φ(d(Tx∗, Tx))

= d(Sx∗, Sx)− φ(d(Sx∗, Sx)).
(5.4.21)

In (5.4.21), if Sx∗ ̸= Sx, then we have

d(Sx∗, Sx) ≤ d(Sx∗, Sx)− φ(d(Sx∗, Sx)) < d(Sx∗, Sx),

which is impossible. So, we have Sx = Sx∗. Moreover, it follows that

d(x, x∗) ≤ d(x, Sx) + d(Sx, Sx∗) + d(Sx∗, x∗)

= d(A,B) + d(A,B)

= 2d(A,B).

This completes the proof.
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If take φ(t) = (1−α)t, where 0 ≤ α < 1 in Theorem 5.4.1, we obtain following :

Corollary 5.4.2. [54, Theorem 3.1] Let A and B be nonempty closed subsets of a

complete metric space X such that A is approximatively compact with respect to B.

Also, assume that A0 and B0 are nonempty. Let S : A → B, T : A → B be the

nonself -mapping satisfying the following conditions.

(i) Thereexists a non-negative real number α < 1 such that

d(Sx1, Sx2) ≤ αd(Tx1, Tx2)

for all x1, x2 ∈ A;

(ii) T is continuous;

(iii) S and T commute proximally;

(iv) S and T can be swapped proximally;

(v) S(A0) ⊆ B0 and S(A0) ⊆ T (A0).

Then there exists an element x ∈ A such that

d(x, Tx) = d(A,B), d(x, Sx) = d(A,B).

Further, if x∗ is another common best proximity point of the mappings S and T ,

then

d(x, x∗) ≤ 2d(A,B).

For a self-mapping, Theorem 5.4.1 contains the following common fixed point

theorems of Jungck [52] for commuting self-mappings, which in turn generalizes

Banach’s contraction principle.

Corollary 5.4.3. [52] Let (X, d) be a complete metric space. Let S and T be

self-mappings on X satisfying the following conditions:

(i) T is continuous;

(ii) S(X) ⊆ T (X);
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(iii) S and T commute.

Suppose that there exists α ∈ [0, 1) such that

d(Sx, Sy) ≤ αd(Tx, Ty)

for all x, y ∈ X. Then there exists a unique common fixed point of S and T .

Now, we give an example to illustrate Theorem 5.4.1.

Example 5.4.4. Consider the complete metric space R2 with Euclidean metric. Let

A = {(x, 1) : 0 ≤ x ≤ 1}

and

B = {(x,−1) : 0 ≤ x ≤ 1}.

Define two mappings S : A→ B, T : A→ B as follows:

S(x, 1) =

(
x− x2

2
,−1

)
and

T ((x, 1)) =
(
x,−1

)
.

It is easy to see that d(A,B) = 2, A0 = A and B0 = B. Further, S and T are

continuous and A is approximatively compact with respect to B.

First, we show that S and T satisfy the condition (i) of of Theorem 5.4.1 with a

function φ : [0,∞) → [0,∞) defined by φ(t) =
t2

2
for all t ∈ [0,∞). Let (x, 1), (y, 1) ∈

A. Without a loss generality, we can take that x > y. Then we have

d(S(x, 1), S(y, 1)) =

∣∣∣∣(x− x2

2

)
−
(
y −

y2

2

)∣∣∣∣
=

(
x− y

)
−

1

2

(
x2 − y2

)

=
(
x− y

)
−

1

2

(
(x− y)(x+ y)

)

≤
(
x− y

)
−

1

2

(
x− y

)2
= d(T (x, 1), T (y, 1))− φ(d(T (x, 1), T (y, 1))).
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Next, we show that S and T are commuting proximally. Let (u, 1), (v, 1), (x, 1) ∈

A are satisfying

d((u, 1), S(x, 1)) = d(A,B) = 2, d((v, 1), T (x, 1)) = d(A,B) = 2.

It follows that

u = x−
x2

2
, v = x

and hence

S(v, 1) =

(
v −

v2

2
,−1

)
=

(
x−

x2

2
,−1

)
= (u,−1) = T (u, 1).

Finally, we show that S and T can be swapped proximally. If it is true that

d((u, 1), (y,−1)) = d((v, 1), (y,−1)) = d(A,B) = 2, S(u, 1) = T (v, 1)

for some (u, 1), (v, 1) ∈ A and (y,−1) ∈ B. Then we get u = v = 0 and thus

S(v, 1) = T (u, 1).

Therefore, all the hypothesis of Theorem 5.4.1 are satisfied.

Furthermore, (0, 1) ∈ A is a common best proximity point of S and T , because

d((0, 1), S(0, 1)) = d((0, 1), (0,−1)) = d((0, 1), T ((0, 1)) = d(A,B).

On the other hand, suppose that there exists k ∈ [0, 1) such that

d(S(x, 1), S(y, 1)) ≤ kd(T (x, 1), T (y, 1)),

that is, ∣∣∣∣(x− x2

2

)
−
(
y −

y2

2

)∣∣∣∣ ≤ k
∣∣x− y

∣∣.
Putting y = 0 and x > 0, it follow that

1 = lim
x→0+

∣∣∣∣(1− x

2

)∣∣∣∣ ≤ k < 1,

which is a contradiction. Therefore, the results of Sadiq Basha in [54] can not be

applied to this example and our main result Theorem 5.4.1.




