
CHAPTER 4 FIXED POINT THEOREMS FOR

GENERALIZED CONTRACTION MAPPINGS IN

MODULAR SPACES

The aim of this chapter is to prove the existence of fixed point and common

fixed point for generalized contractions in modular spaces and also prove fixed points

theorems for contraction mapping in modular metric spaces.

4.1 Fixed point theorems for generalized contraction

mappings in modular spaces

In this section, we prove the existence theorem of fixed points for a generalized

weak contractive mapping which is a generalized contraction mappings in modular

spaces.

Proposition 4.1.1. Let ρ be a modular space on X. If a, b ∈ R+ with a ≤ b, then

ρ(ax) ≤ ρ(bx).

Proof. In case a = b, clearly. Suppose b > a. Then we have a
b
< 1 and

ρ(ax) = ρ(a
b
bx)

= ρ(a
b
bx+ (1− a

b
)(0))

≤ ρ(bx) + ρ(0)

= ρ(bx).

This completes the proof.

Proposition 4.1.2. Let Xρ be a modular space which ρ satisfies the ∆2-condition

and {xn} be a sequence in Xp. If ρ(c(xn − xn−1)) → 0 as n→ ∞, then

ρ(αl(xn − xn−1)) → 0

as n→ ∞, where c, l, α ∈ R+ with l
c
+ 1

α
= 1.
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Proof. Since ρ(c(xn − xn−1)) → 0 as n→ ∞, by the ∆2-condition, we get

ρ(2c(xn − xn−1)) → 0. (4.1.1)

Again, by the ∆2-condition, we get

ρ(22c(xn − xn−1)) → 0. (4.1.2)

By the same method, we can conclude that for each integer m ∈ N,

ρ(2mc(xn − xn−1)) → 0 (4.1.3)

as n → ∞. From the fact that l
c
+ 1

α
= 1, we get αl = (α − 1)c ≥ c, and so there

exists a positive integer mα such that

(α− 1)c ≤ 2mαc.

By Proposition 4.1.1, we get

ρ((α− 1)c(xn − xn−1)) ≤ ρ(2mαc(xn − xn−1)). (4.1.4)

Using (4.1.3) and (4.1.4), we obtain

lim
n→∞

ρ(αl(xn − xn−1)) = lim
n→∞

ρ((α− 1)c(xn − xn−1)) = 0. (4.1.5)

This completes the proof.

Theorem 4.1.3. Let Xρ be a ρ−complete bounded modular space, where ρ satisfies

the ∆2-condition. Let c, l ∈ R+, c > l and T : Xρ → Xρ be a mapping such that, for

all x, y ∈ Xρ,

ψ(ρ(c(Tx− Ty))) ≤ ψ(ρ(l(x− y)))− ϕ(ρ(l(x− y))), (4.1.6)

where ψ, ϕ : [0,∞) → [0,∞) are continuous and nondecreasing functions with ψ(t) =

ϕ(t) = 0 if and only if t = 0. Then T has a unique fixed point.

Proof. Let x0 ∈ Xρ. Now, we construct the sequence {xn} by xn = Txn−1 for all

n ≥ 1. First, we prove that the sequence {ρ(c(Txn − Txn+1))} converges to 0. Note

that

ψ(ρ(c(xn − xn+1))) ≤ ψ(ρ(l(xn−1 − xn)))− ϕ(ρ(l(xn−1 − xn)))

≤ ψ(ρ(l(xn−1 − xn))).
(4.1.7)
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Since ψ is nondecreasing, by Proposition 4.1.1, we have

ρ(c(xn − xn+1)) ≤ ρ(l(xn−1 − xn))

≤ ρ(c(xn−1 − xn)).

This means that the sequence {ρ(c(xn − xn+1))} is decreasing and bounded below.

Hence there exists r ≥ 0 such that

lim
n→∞

ρ(c(xn − xn+1)) = r.

If r > 0 and take n→ ∞ in the inequality (4.1.7), then we get

ψ(r) ≤ ψ(r)− ϕ(r) < ψ(r),

which is a contradiction. Thus r = 0. So, we have

ρ(c(xn − xn+1)) → 0 (4.1.8)

as n→ ∞.

Next, we prove that the sequence {cxn} is a ρ-Cauchy sequence. Suppose

that {cxn} is not ρ-Cauchy sequence. Then there exist ε > 0 and a subsequence

{xmk
}, {xnk

} with mk > nk ≥ k such that

ρ(c(xmk
− xnk

)) ≥ ε, ρ(c(xmk−1 − xnk
)) < ε. (4.1.9)

Now, let α ∈ R+ such that l
c
+ 1

α
= 1. Then we get

ψ(ρ(c(xmk
− xnk

))) ≤ ψ(ρ(l(xmk−1 − xnk−1)))− ϕ(ρ(l(xmk−1 − xnk−1)))

≤ ψ(ρ(l(xmk−1 − xnk−1))),

(4.1.10)

which implies that

ρ(c(xmk
− xnk

)) ≤ ρ(l(xmk−1 − xnk−1)). (4.1.11)

Observe that

ρ(l(xmk−1 − xnk−1)) = ρ(l(xmk−1 − xnk
+ xnk

− xnk−1)

= ρ( l
c
c(xmk−1 − xnk

) + 1
α
αl(xnk

− xnk−1))

≤ ρ(c(xmk−1 − xnk
)) + ρ(αl(xnk

− xnk−1))

< ε+ ρ(αl(xnk
− xnk−1)).

(4.1.12)
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By (4.1.9), (4.1.11) and (4.1.12), we get

ε ≤ ρ(c(xmk
− xnk

)) ≤ ρ(l(xmk−1 − xnk−1)) < ε+ ρ(αl(xnk
− xnk−1)). (4.1.13)

On the other hand, using (4.1.8) and Proposition 4.1.2, we have

lim
k→∞

ρ(αl(xnk
− xnk−1)) = 0. (4.1.14)

From (4.1.13) and (4.1.14), we obtain

lim
k→∞

ρ(c(xmk
− xnk

)) = lim
k→∞

ρ(l(xmk−1 − xnk−1)) = ε. (4.1.15)

Letting k → ∞ in (4.1.10), by the property of ψ and (4.1.15), we get

ψ(ε) ≤ ψ(ε)− ϕ(ε) < ψ(ε),

which is a contradiction. Therefore, {cxn} is a ρ-Cauchy sequence. Since Xρ is

ρ − complete, there exists a point u ∈ Xρ such that ρ(c(xn − u)) → 0 as n → ∞.

Consequently, ρ(l(xn − u)) → 0 as n→ ∞.

Next, we prove that u is a unique fixed point of T . Putting x = xn−1 and y = u

in (4.1.6), we obtain

ψ(ρ(c(xn − Tu))) ≤ ψ(ρ(l(xn−1 − u)))− ϕ(ρ(l(xn−1 − u))). (4.1.16)

Taking n→ ∞ in the inequality (4.1.16), we have

ψ(ρ(c(u− Tu))) ≤ ψ(0)− ϕ(0) = 0,

which implies that ρ(c(Tu− u)) = 0 and Tu = u. Suppose that there exists v ∈ Xρ

such that Tv = v and v ̸= u, we have

ψ(ρ(c(u− v))) = ψ(ρ(c(Tu− Tv)))

≤ ψ(ρ(l(u− v)))− ϕ(ρ(l(u− v)))

< ψ(ρ(l(u− v)))

≤ ψ(ρ(c(u− v))),

which is a contradiction. Hence u = v. This completes the proof.

Corollary 4.1.4. Let Xρ be a ρ−complete bounded modular space, where ρ satisfies

the ∆2- condition. Let c, l ∈ R+, c > l and T : Xρ → Xρ be a mapping such that,

for all x, y ∈ Xρ,

ρ(c(Tx− Ty)) ≤ ρ(l(x− y))− ϕ(ρ(l(x− y))),



38

where ϕ : [0,∞) → [0,∞) is continuous and nondecreasing function with ϕ(t) = 0 if

and only if t = 0. Then T has a unique fixed point.

Proof. Take ψ(t) = t, we obtain Corollary 4.1.4.

Next, we prove some existence theorems of common fixed points for a generalized

weak contractive mapping which is a generalized contraction mappings in modular

spaces.

Theorem 4.1.5. Let Xρ be a ρ−complete bounded modular space, where ρ satisfies

the ∆2-condition. Let c, l ∈ R+, c > l and T, f : Xρ → Xρ be two ρ − compatible

mappings such that T (Xρ) ⊆ f(Xρ) and

ψ(ρ(c(Tx− Ty))) ≤ ψ(ρ(l(fx− fy)))− ϕ(ρ(l(fx− fy))) (4.1.17)

for all x, y ∈ Xρ, where ψ, ϕ : [0,∞) → [0,∞) are continuous and nondecreasing

functions with ψ(t) = ϕ(t) = 0 if and only if t = 0. If one of T or f is continuous,

then there exists a unique common fixed point of T and f .

Proof. Let x ∈ Xρ and generate inductively the sequence {Txn} as follow: Txn =

fxn+1 for all n ≥ 1 First, we prove that the sequence {ρ(c(Txn−Txn−1))} converges

to 0. By (4.1.17), we have

ψ(ρ(c(Txn − Txn−1))) ≤ ψ(ρ(l(fxn − fxn−1)))− ϕ(ρ(l(fxn − fxn−1)))

≤ ψ(ρ(l(fxn − fxn−1))).

(4.1.18)

Since ψ is nondecreasing, by Proposition 4.1.1 with c > l,

ρ(c(Txn − Txn−1)) ≤ ρ(l(fxn − fxn−1))

= ρ(l(Txn−1 − Txn−2))

≤ ρ(c(Txn−1 − Txn−2)).

(4.1.19)

This means that the sequence {ρ(c(Txn − Txn−1))} is nonincreasing and bounded

below. Hence there exists r ≥ 0 such that

lim
n→∞

ρ(c(Txn − Txn−1)) = r. (4.1.20)

If r > 0 and take n→ ∞ in the inequality (4.1.19), we get

lim
n→∞

ρ(l(fxn − fxn−1)) = r. (4.1.21)
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Since

ψ(ρ(c(Txn − Txn−1))) ≤ ψ(ρ(l(fxn − fxn−1)))− ϕ(ρ(l(fxn − fxn−1))) (4.1.22)

it follows from (4.1.20), (4.1.21) and (4.1.22) that ψ(r) ≤ ψ(r)−ϕ(r) < ψ(r), which

is a contradiction and so r = 0. That is,

limn→∞ ρ(c(Txn − Txn−1)) = 0. (4.1.23)

Next, we prove that the sequence {cTxn} is a ρ-Cauchy sequence. Suppose that

{cTxn} is not a ρ-Cauchy sequence. Then there exist ε > 0 and subsequences

{Txmk
}, {Txnk

} of {cTxn} with mk > nk ≥ k such that

ρ(c(Txmk
− Txnk

)) ≥ ε, ρ(c(Txmk−1 − Txnk
)) < ε. (4.1.24)

Now, let α ∈ R+ such that l
c
+ 1

α
= 1. Then we have

ψ(ρ(c(Txmk
− Txnk

))) ≤ ψ(ρ(l(fxmk
− fxnk

)))− ϕ(ρ(l(fxmk
− fxnk

)))

≤ ψ(ρ(l(fxmk
− fxnk

)))

= ψ(ρ(l(Txmk−1 − Txnk−1)))

(4.1.25)

and hence

ρ(c(Txmk
− Txnk

)) ≤ ρ(l(Txmk−1 − Txnk−1)).

Since

ρ(l(Txmk−1 − Txnk−1)) = ρ(l(Txmk−1 − Txnk
+ Txnk

− Txnk−1))

= ρ( l
c
c(Txmk−1 − Txnk

) + 1
α
αl(Txnk

− Txnk−1)))

≤ ρ(c(Txmk−1 − Txnk
)) + ρ(αl(Txnk

− Txnk−1))

< ε+ ρ(αl(Txnk
− Txnk−1)),

(4.1.26)

it follow from (4.1.23) and Proposition 4.1.2 that

limk→∞ ρ(αl(Txnk
− Txnk−1)) = 0.

Therefore, we have

limk→∞ ρ(c(Txmk
− Txnk

)) = limk→∞ ρ(l(Txmk−1 − Txnk−1)) = ε. (4.1.27)
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Taking k → ∞ in (4.1.25), it follow from (4.1.27) and the continuity of ψ that

ψ(ε) ≤ ψ(ε)− ϕ(ε) < ψ(ε) (4.1.28)

which is a contradiction. Hence {cTxn} is a ρ-Cauchy sequence and, by the ∆2-

condition, {Txn} is a ρ-Cauchy sequence. Since Xρ is ρ-complete, there exists a

point u ∈ Xρ such that ρ(Txn − u) → 0 as n → ∞, that is, Txn → u, further

fxn → u as n → ∞. If T is continuous, then T 2xn → Tu and Tfxn → Tu as

n → ∞. Since f and T are ρ -compatible, ρ((fTxn − Tfxn)) → 0 as n → ∞ and

so fTxn → Tu as n→ ∞.

Next, we prove that u is a fixed point of T . Suppose that Tu ̸= u. Since

ψ(ρ(c(T 2xn − Txn))) = ψ(ρ(c(T (Txn)− Txn))).

≤ ψ(ρ(l(fTxn − fxn)))− ϕ(ρ(l(fTxn − fxn))),

(4.1.29)

taking n→ ∞ in the inequality (4.1.29) and using Proposition 4.1.1 with c > l, we

have

ψ(ρ(c(Tu− u))) ≤ ψ(ρ(l(Tu− u)))− ϕ(ρ(l(Tu− u)))

< ψ(ρ(l(Tu− u)))

≤ ψ(ρ(c(Tu− u))),

which is a contradiction and hence Tu = u. Since T (Xρ) ⊆ f(Xρ), there exists a

point u1 ∈ Xρ such that u = Tu = fu1. From

ψ(ρ(c(T 2xn − Tu1))) ≤ ψ(ρ(l(fTxn − fu1)))− ϕ(ρ(l(fTxn − fu1))),

letting n→ ∞ yields

ψ(ρ(c(Tu− Tu1))) ≤ ψ(ρ(l(Tu− fu1)))− ϕ(ρ(l(Tu− fu1))).

Therefore, we have

ψ(ρ(c(u− Tu1))) ≤ ψ(ρ(l(u− fu1)))− ϕ(ρ(l(u− fu1)))

≤ ψ(ρ(l(u− fu1)))

= ψ(ρ(l(u− u)))

= 0,
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which implies that u = Tu1 = fu1. Since f and T are ρ -compatible, we get

fu = fTu1 = Tfu1 = Tu = u. If f is continuous, then, by a similar argument, one

can prove Tu = fu = u.

Finally, suppose that there exists v ∈ Xρ such that Tv = v = fv and v ̸= u.

Then we have

ψ(ρ(c(u− v))) = ψ(ρ(c(Tu− Tv)))

≤ ψ(ρ(l(fu− fv)))− ϕ(ρ(l(fu− fv)))

< ψ(ρ(l(u− v)))

≤ ψ(ρ(c(u− v))),

(4.1.30)

which is a contradiction. Hence u = v. This completes the proof.

Corollary 4.1.6. Let Xρ be a ρ−complete bounded modular space, where ρ satisfies

the ∆2- condition. Let c, l ∈ R+, c > l and T, f : Xρ → Xρ be ρ − compatible

mappings such that T (Xρ) ⊆ f(Xρ) and satisfying the inequality

ρ(c(Tx− Ty)) ≤ ρ(l(fx− fy))− ϕ(ρ(l(fx− fy))) (4.1.31)

for all x, y ∈ Xρ, where ϕ : [0,∞) → [0,∞) is a continuous and nondecreasing

function with ϕ(t) = 0 if and only if t = 0. If one of T or f is continuous, then

there exists a unique common fixed point of T and f .

Proof. Take ψ(t) = t, we obtain Corollary 4.1.6.

4.2 Fixed point theorems for contraction mappings

in modular metric spaces

In this section, we prove new existence theorems of fixed points for contraction

mappings in modular metric spaces.

Definition 4.2.1. Let ω be a metric modular on X, Xω be a modular metric space

induced by ω and T : Xω → Xω be an arbitrary mapping. A mapping T is called a

contraction if, for all x, y ∈ Xω and λ > 0, there exists 0 ≤ k < 1 such that

ωλ(Tx, Ty) ≤ kωλ(x, y). (4.2.1)
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Theorem 4.2.2. Let Xω be a complete modular metric space and T : Xω → Xω be

a contraction mapping. Assume that there exists x0 ∈ X such that ωλ(x0, Tx0) <∞

for all λ > 0. Then T has a fixed point in x∗ ∈ Xω and the sequence {T nx0}

converges to x∗. Moreover, if, z ∈ F (Xω), where F (Xω) is a set of fixed point of T

such that ωλ(x∗, z) <∞ for all λ > 0, then x∗ = z.

Proof. Let x0 be an element in Xω such that ωλ(x0, Tx0) <∞ for all λ > 0 and we

write x1 = Tx0, x2 = Tx1 = T 2x0 and, in general, xn = Txn−1 = T nx0 for all n ≥ 1.

Observe that

ωλ(T
nx0, T

n+1x0) ≤ kωλ(T
n−1x0, T

nx0) ≤ · · · ≤ knωλ(x0, Tx0) <∞

for all n ≥ 1. Assume that n and m are two positive integers with m > n. Then we

have

ωλ(T
nx0, T

mx0) ≤ ω λ
m−n

(T nx0, T
n+1x0) + ω λ

m−n
(T n+1x0, T

n+2x0)

+ · · ·+ ω λ
m−n

(Tm−1x0, T
mx0)

≤ (kn + kn+1 + · · ·+ km−1)ω λ
m−n

(x0, Tx0)

≤ (kn + kn+1 + · · · )ω λ
m
(x0, Tx0)

= kn

1−k
ωλ(x0, Tx0).

Since ωλ(x0, Tx0) < ∞, we deduce that, for any ϵ > 0, ωλ(T
nx0, T

mx0) < ϵ for all

m > n > N with sufficiently large. Thus {T nx0} is a Cauchy sequence and hence it

converges to some x∗ ∈ Xω by the completeness of Xω. Observe further that

ωλ(x∗, Tx∗) ≤ ωλ
2
(x∗, T

nx0) + kωλ
2
(T n−1x0, x∗).

Letting n → ∞, we have ωλ(x∗, Tx∗) = 0 for all λ > 0. Therefore, x∗ is a fixed

point of f .

Let z be another fixed points of T such that ωλ(x∗, z) < ∞ for all λ > 0, then

we get

ωλ(x∗, z) = ωλ(Tx∗, T z) ≤ kωλ(x∗, z)

for all λ > 0. Since 0 ≤ k < 1, we get ωλ(x, z) = 0 for all λ > 0, which implies that

x∗ = z. This completes the proof.
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Theorem 4.2.3. Let Xω be a complete modular metric space and T : Xω → Xω

be a contraction mapping. Suppose that x∗ ∈ Xω is a fixed point of T , {εn} is a

sequence of positive numbers for which lim
n→∞

εn = 0 and {yn} ⊆ Xω satisfies

ωλ(yn+1, T yn) ≤ εn

for all λ > 0. Then lim
n→∞

yn = x∗.

Proof. Let y0 = x ∈ Xω. Then we observe that, for all m ≥ 1,

ωλ(T
m+1x, ym+1) = ωλ·m

m
(Tm+1x, ym+1)

≤ ωλ·(m−1)
m

(Tm+1x, Tym) + ω λ
m
(Tym, ym+1)

≤ kωλ·(m−1)
m

(Tmx, ym) + εm

≤ kωλ·(m−2)
m

(Tmx, Tym−1) + kw λ
m
(Tym−1x, ym) + εm

≤ k2ωλ·(m−2)
m

(Tm−1x, ym−1) + kεm−1 + εm
...

≤
m∑
i=0

km−iεi

(4.2.2)

for all λ > 0. Thus we get

ωλ(ym+1, x
∗) ≤ ωλ

2
(ym+1, T

m+1x) + ωλ
2
(Tm+1x, x∗)

≤
m∑
i=0

km−iεi + ωλ
2
(Tm+1x, x∗).

(4.2.3)

Next, we claim that lim
m→∞

ωλ(ym+1, x
∗) = 0 for all λ > 0. Now, let ε > 0. Since

lim
n→∞

εn = 0, there exists a positive integer N such that, for all m ≥ N , εm ≤ ε. Thus

we have
m∑
i=0

km−iεi =
N∑
i=0

km−iεi +
m∑

i=N+1

km−iεi

≤ km−N
N∑
i=0

kN−iεi + ε
m∑

i=N+1

km−i.

(4.2.4)

Taking limit as m→ ∞ in (4.2.4), we have

lim
m→∞

m∑
i=0

km−iεi = 0. (4.2.5)

Since x∗ is a fixed point of T , using Theorem 4.2.2, it follows that the sequence

{T nx} converge to x∗. This implies that

lim
m→∞

ωλ
2
(Tm+1x, x∗) = 0 (4.2.6)
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for all λ > 0. Therefore, from (4.2.3), (4.2.5) and (4.2.6), we have

lim
m→∞

ωλ(ym+1, x
∗) = 0 (4.2.7)

for all λ > 0, which implies that lim
n→∞

yn = x∗. This completes the proof.

Theorem 4.2.4. Let Xω be a complete modular metric space and, for any x∗ ∈ Xω,

define

Bω(x
∗, γ) := {x ∈ Xω : ωλ(x, x

∗) ≤ γ, ∀λ > 0}.

If T : Bω(x
∗, γ) → Xω is a contraction mapping with

ωλ
2
(Tx∗, x∗) ≤ (1− k)γ (4.2.8)

for all λ > 0, where 0 ≤ k < 1, then T has a fixed point in Bω(x
∗, γ).

Proof. By Theorem 4.2.2, we only prove that Bω(x
∗, γ) is complete and Tx ∈

Bω(x
∗, γ) for all x ∈ Bω(x

∗, γ). Suppose that {xn} is a Cauchy sequence in Bω(x
∗, γ),

and then also {xn} is a Cauchy sequence in Xω. Since Xω is complete, there exists

x ∈ Xω such that

lim
n→∞

ωλ
2
(xn, x) = 0 (4.2.9)

for all λ > 0. Since, for each n ≥ 1, xn ∈ Bω(x
∗, γ), using the property of a metric

modular, we get

ωλ(x
∗, x) ≤ ωλ

2
(x∗, xn) + ωλ

2
(xn, x)

≤ γ + ωλ
2
(xn, x

∗)
(4.2.10)

for all λ > 0. It follows the inequalities (4.2.9) and (4.2.10) that wλ(x
∗, x) ≤ γ, which

implies that x ∈ Bω(x
∗, γ). Therefore, {xn} is a convergent sequence in Bω(x

∗, γ)

and also Bω(x
∗, γ) is complete.

Next, we prove that Tx ∈ Bω(x
∗, γ) for all x ∈ Bω(x

∗, γ). Let x ∈ Bω(x
∗, γ).

From the inequalities (4.2.8), the contraction of T and the notion of a metric mod-

ular, we have

ωλ(x
∗, Tx) ≤ ωλ

2
(x∗, Tx∗) + ωλ

2
(Tx∗, Tx)

≤ (1− k)γ + kωλ
2
(x∗, x)

≤ (1− k)γ + kγ

= γ.

Therefore, Tx ∈ Bω(x
∗, γ). This completes the proof.
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Theorem 4.2.5. Let Xω be a complete modular metric space and T be a self-

mapping on Xω satisfying

ωλ(Tx, Ty) ≤ k(ω2λ(Tx, x) + ω2λ(Ty, y)) (4.2.11)

for all x, y ∈ Xω, where k ∈
[
0, 1

2

)
. Assume that there exists x0 ∈ X such that

ωλ(x0, Tx0) < ∞ for all λ > 0. Then T has a fixed point in x ∈ Xω and the

sequence {T nx0} converges to x. Moreover, if, z ∈ F (Xω), where F (Xω) is a set of

fixed point of T such that ωλ(x∗, z) <∞ for all λ > 0, then x∗ = z.

Proof. Let x0 be an element in Xω such that ωλ(x0, Tx0) < ∞ for all λ > 0. We

write x1 = Tx0, x2 = Tx1 = T 2x0 and, in general, xn = Txn−1 = T nx0 for all n ≥ 1.

If Txn0−1 = Txn0 for some n0 ≥ 1, then Txn0 = xn0 . Thus xn0 is a fixed point of T .

Suppose that Txn−1 ̸= Txn for all n ≥ 1. For any k ∈ [0, 1
2
), we have

ωλ(xn+1, xn) = ωλ(Txn, Txn−1)

≤ k(ω2λ(Txn, xn) + ω2λ(Txn−1, xn−1))

≤ k(ωλ(xn+1, xn) + ωλ(xn, xn−1))

(4.2.12)

for all λ > 0 and n ≥ 1. Hence we have

ωλ(xn+1, xn) ≤ k
1−k

ωλ(xn, xn−1) (4.2.13)

for all λ > 0 and n ≥ 1. Put β := k
1−k

. Since k ∈ (0, 1
2
), we get β ∈ (0, 1) and hence

ωλ(xn+1, xn) ≤ βωλ(xn, xn−1)

≤ β2ωλ(xn−1, xn−2)
...

≤ βnωλ(x1, x0)

(4.2.14)

for all λ > 0 and n ≥ 1. Similar to the proof of Theorem 4.2.2, we can conclude

that {xn} is a Cauchy sequence and, by the completeness of Xω there exists a point

x ∈ Xω such that xn → x as n→ ∞. By the property of a metric modular and the

inequality (4.2.11), we have

ωλ(Tx, x) ≤ ωλ
2
(Tx, Txn) + ωλ

2
(Txn, x)

≤ k(ωλ(Tx, x) + ωλ(Txn, xn)) + ωλ
2
(Txn, x)

≤ k(ωλ(Tx, x) + ωλ
2
(Txn, x) + ωλ

2
(x, xn)) + ωλ

2
(Txn, x)

= k(ωλ(Tx, x) + ωλ
2
(xn+1, x) + ωλ

2
(x, xn)) + ωλ

2
(xn+1, x)

(4.2.15)
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for all λ > 0 and n ≥ 1. Taking n→ ∞ in the inequality (4.2.15), we obtain

ωλ(Tx, x) ≤ kωλ(Tx, x). (4.2.16)

Since k ∈ [0, 1
2
), we have Tx = x. Thus x is a fixed point of T .

Let z be another fixed points of T such that ωλ(x∗, z) < ∞ for all λ > 0, then

we get

ωλ(x, z) = ωλ(Tx, Tz)

≤ k(ω2λ(Tx, x) + ω2λ(Tz, z))

= 0

for all λ > 0, which implies that x = z. This completes the proof.

Now, we give an example to illustrate Theorem 4.2.2.

Example 4.2.6. Let X = {(a, 0) ∈ R2 : 0 ≤ a ≤ 1} ∪ {(0, b) ∈ R2 : 0 ≤ b ≤ 1}.

Defined a mapping ω : (0,∞)×X ×X → [0,∞] by

ωλ((a1, 0), (a2, 0)) =
4|a1 − a2|

3λ
,

ωλ((0, b1), (0, b2)) =
|b1 − b2|

λ

and

ωλ((a, 0), (0, b)) =
4a

3λ
+
b

λ
= ωλ((0, b), (a, 0)).

We note that , if we take λ → ∞, then we see that X = Xω and also Xω is a

complete modular metric space. Define a mapping T : Xω → Xω by

T ((a, 0)) = (0, a), T ((0, b)) =

(
b

2
, 0

)
.

Simple computations show that

ωλ(T ((a1, b1)), T ((a2, b2))) ≤ 3

4
ωλ((a1, b1), (a2, b2))

for all (a1, b1), (a2, b2) ∈ Xω. Thus T is a contraction mapping with constant k = 3
4
.

Therefore, T has a unique fixed point (0, 0) ∈ Xω. In the Euclidean metric d on Xω,

we see that

d(T ((0, 0)), T ((1, 0))) = d((0, 0), (0, 1)) = 1 > k = kd((0, 0), (1, 0))

for all k ∈ [0, 1). Thus T is not a contraction mapping and then Banach’s contraction

mapping cannot be applied to this example.




