CHAPTER 4 FIXED POINT THEOREMS FOR
GENERALIZED CONTRACTION MAPPINGS IN
MODULAR SPACES

The aim of this chapter is to prove the existence of fixed point and common
fixed point for generalized contractions in modular spaces and also prove fixed points

theorems for contraction mapping in modular metric spaces.

4.1 Fixed point theorems for generalized contraction

mappings in modular spaces

In this section, we prove the existence theorem of fixed points for a generalized
weak contractive mapping which is a generalized contraction mappings in modular

spaces.

Proposition 4.1.1. Let p be a modular space on X. If a,b € RT with a < b, then

plaz) < p(ba).

Proof. In case a = b, clearly. Suppose b > a. Then we have § < 1 and

plaz) = p(5bx)
= p(gbe + (1= 3)(0))
< p(bx) + p(0)
= p(bz).
This completes the proof. O

Proposition 4.1.2. Let X, be a modular space which p satisfies the Ay-condition

and {z,} be a sequence in X,. If p(c(x, —x,_1)) = 0 as n — oo, then
plal(z, —xp_q1)) — 0

as n — oo, where ¢,l,a € Rt withé—l—i:l.
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Proof. Since p(c(x, — x,—1)) = 0 as n — oo, by the Ay-condition, we get
p(2¢(xy — xp-1)) — 0. (4.1.1)
Again, by the As-condition, we get
p(2%c(w, — 1,_1)) — 0. (4.1.2)
By the same method, we can conclude that for each integer m € N,
p(2"c(xy — Tp1)) = 0 (4.1.3)

as n — oo. From the fact that é + i =1, we get ol = (a« — 1)c > ¢, and so there

exists a positive integer m, such that
(a—1)c < 2Mec.
By Proposition 4.1.1, we get
p((a—1)c(xy — xn-1)) < p(2™c(xy — Tp_1)). (4.1.4)

Using (4.1.3) and (4.1.4), we obtain

lim p(al(z, — xp—1)) = lim p((a — 1)c(zy, — p—1)) = 0. (4.1.5)
n—00 n—oo
This completes the proof. O]

Theorem 4.1.3. Let X, be a p—complete bounded modular space, where p satisfies
the Ag-condition. Let c,l € RY, ¢ >1 and T : X, — X, be a mapping such that, for
all z,y € X,,

P(p(c(Te =Ty))) < Pp(l(z —y))) — ¢(p(l(z = y))), (4.1.6)

where 1, ¢ : [0,00) — [0, 00) are continuous and nondecreasing functions with ¥(t) =

¢(t) =0 if and only ift =0. Then T has a unique fized point.

Proof. Let zy € X,. Now, we construct the sequence {z,} by =, = T'z,_; for all
n > 1. First, we prove that the sequence {p(c(Tx,, — Tx,.1))} converges to 0. Note
that

IN

b(ple(zn = znp1))) < (o1 = 20))) = (p(l(xn1 = 24)))

(4.1.7)
V(p(l(zp-1 — 0)))-

IA
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Since v is nondecreasing, by Proposition 4.1.1, we have

p(c(@n — ni1)) < p(l(zn—1 — n))
< p(C(I’n_l - xn))
This means that the sequence {p(c(z,, — z,41))} is decreasing and bounded below.

Hence there exists » > 0 such that

lim p(c(x, — xpe1)) =7
n—oo

If » > 0 and take n — oo in the inequality (4.1.7), then we get

Y(r) <o(r) —o(r) < ¥(r),
which is a contradiction. Thus r = 0. So, we have
Pc(n — Tnpr)) = 0 (4.18)

as n — Q.
Next, we prove that the sequence {cz,} is a p-Cauchy sequence. Suppose
that {cz,} is not p-Cauchy sequence. Then there exist ¢ > 0 and a subsequence

{Zm, }, {xn, } with mg > ny > k such that

p(c(xmk - 'Tnk)) 2 €, p(c(xmk_l - xnk)) <Eé&. (419)

Now, let a € R such that £ + 1 = 1. Then we get

Qﬂ(P(C(ﬂfmk - xnk))) < w(p(l(xmk—l - mnk_l))) - ¢(p(l(xmk_1 o xnk_l)))
< (e (@1 = Tny-1)));
(4.1.10)
which implies that
p(c(xmk - xnk)) < p(l(gjmk_l o xnk_l))‘ (4'1'11>
Observe that
p(l(xmk_l - xnk_l)) = I0<l(xmk—1 = Ty Ty, — xﬂk—l)
= Loy, 1 — Xn, Lol(zy, — Tp 1
= oo =) ol —an))

< p<c<xmk*1 - xnk)) + p(al(xnk - ’%nk*l))
< €+ p<@l<‘rnk - xnkfl))'
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By (4.1.9), (4.1.11) and (4.1.12), we get

& < ple(m, = 30) < PU@mo1 — Ty1)) < &+ (@U@0, — o)) (4113)
On the other hand, using (4.1.8) and Proposition 4.1.2, we have

lim p(al(xy, — zp,—1)) = 0. (4.1.14)

k—o0

From (4.1.13) and (4.1.14), we obtain

lim p( (Imk - xnk)) = kh—>IEo p(l<mmk_1 - xnk_l)) =¢. (4115>

k—o00

Letting £ — oo in (4.1.10), by the property of ¢ and (4.1.15), we get

le) <yle) —dle) <ile),
which is a contradiction. Therefore, {cz,} is a p-Cauchy sequence. Since X, is
p — complete, there exists a point u € X, such that p(c(z, —u)) = 0 as n — oo.
Consequently, p(I(z,, —u)) — 0 as n — 0.

Next, we prove that u is a unique fixed point of T'. Putting xt = x,,_; and y = u

n (4.1.6), we obtain

b(ple(zn —Tu))) < Y(p(l(zn1 — ) — d(p(l(zn-1 — u))). (4.1.16)

Taking n — oo in the inequality (4.1.16), we have

U(p(c(u —Tu))) < ¥(0) — 6(0) = 0,
which implies that p(c(Tw — u)) = 0 and T'w = u. Suppose that there exists v € X,
such that Tv = v and v # u, we have

b(ple(u—))) = d(p(c(Tu—Tv)))

(o
< Y(pl(u=v))) = o(p(l(u = v)))
< Y(p(l(u—w)))
< Y(ple(u —v))),
which is a contradiction. Hence u = v. This completes the proof. O

Corollary 4.1.4. Let X, be a p—complete bounded modular space, where p satisfies
the Ay- condition. Let ¢,l € RY, ¢ > 1 and T : X, — X, be a mapping such that,
for all x,y € X,,

plc(Tz —=Ty)) < p(l(z —y)) — o(p(l(z —y))),
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where ¢ : [0,00) — [0,00) is continuous and nondecreasing function with ¢(t) = 0 if

and only if t =0. Then T has a unique fixed point.
Proof. Take 1 (t) = t, we obtain Corollary 4.1.4. O

Next, we prove some existence theorems of common fixed points for a generalized
weak contractive mapping which is a generalized contraction mappings in modular

spaces.

Theorem 4.1.5. Let X, be a p—complete bounded modular space, where p satisfies
the Ay-condition. Let c,l € RY, ¢ > 1l and T, f : X, — X, be two p — compatible
mappings such that T(X,) C f(X,) and

W(p(c(Tz =Ty))) < (p((fz— fy))) = ¢(p(l(fz = fy))) (4.1.17)

for all x,y € X,, where ¢, ¢ : [0,00) = [0,00) are continuous and nondecreasing
functions with ¥(t) = ¢(t) = 0 if and only if t = 0. If one of T or f is continuous,

then there exists a unique common fixed point of T and f.

Proof. Let x € X, and generate inductively the sequence {1z, } as follow: T'z,, =
fnyq for all n > 1 First, we prove that the sequence {p(c¢(Tx, —Tx,_1))} converges

to 0. By (4.1.17), we have

U(p(c(Ten = Tana))) < P(pU(frn — frn-1))) — dlp(U(fzn — fTn1)))

< Y(p(U(frn = fra-1))).
(4.1.18)

Since v is nondecreasing, by Proposition 4.1.1 with ¢ > [,

p(c(Tx, — Twy1))

IN

p(l(frn — frn_1))
= pU(T s — Tn ) (4.1.19)
< pc(Trp —Trp2)).

This means that the sequence {p(¢(T'z, — Tz,_1))} is nonincreasing and bounded

below. Hence there exists » > 0 such that

lim p(c(Tx, — Txpq)) =1 (4.1.20)

n—oo

If » > 0 and take n — oo in the inequality (4.1.19), we get

lim p(I(fz, — frn_1)) =T (4.1.21)

n—oo
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Since
V(p(e(Try —Trn1))) < (p(U(frn — frn1))) — d(p((frn — frn1))) (4.1.22)

it follows from (4.1.20), (4.1.21) and (4.1.22) that ¢(r) < ¢ (r) — ¢(r) < ¢(r), which

is a contradiction and so r = 0. That is,
lim,, oo p(c(Tx, — Txp_1)) = 0. (4.1.23)

Next, we prove that the sequence {¢Tx,} is a p-Cauchy sequence. Suppose that
{cT'z,} is not a p-Cauchy sequence. Then there exist ¢ > 0 and subsequences

{Tvp, },{Tr,,} of {cTx,} with my > ny > k such that
p(e(Txm, —Txy,)) >e, plc(TTpm—1 —Txy,,)) <e. (4.1.24)

Now, let @ € R such that £ + 2 = 1. Then we have

¢(p(C(TfL’mk - T:L‘nk)))

IN

V(pU(fm, — frn,)) — ¢(pU(fTm, — [Tn,)))
Y(p(UTTmy—1 — Tp,—1)))

IN

(4.1.25)
and hence
p(C(TZL’mk - Txnk)) < P(Z(Txmk—l - Txnk_1>)'
Since
p(l(Txmk—l - Txnk_]-)) = p(l(T:Umk—l - Tl"nk + Tl‘nk - T$nk—1))
p(éC(T‘%mk*l - T:an) + éOzl(T:L‘nk - T$nk,1)))
IO(C<T‘rmk—1 - Txnk)) + p(al(TJ:nk - Txnk—l))
e+ plal(Tz,, — Ty, 1)),

IN

A\

(4.1.26)
it follow from (4.1.23) and Proposition 4.1.2 that

limy, o p(ad(Txy, — Txp,—1)) = 0.

Therefore, we have

limy o0 (T2, — Ty, ) = limgyoo p(L(T ;-1 — Ty 1)) = €. (4.1.27)
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Taking k& — oo in (4.1.25), it follow from (4.1.27) and the continuity of ¢ that

(e) <le) —dle) <) (4.1.28)

which is a contradiction. Hence {cT'z,} is a p-Cauchy sequence and, by the A,-
condition, {T'z,} is a p-Cauchy sequence. Since X, is p-complete, there exists a
point v € X, such that p(Tz, —u) — 0 as n — oo, that is, Tx, — wu, further
fr, — uwasn — oo. If T is continuous, then T2z, — Tu and T fx, — Tu as
n — oo. Since f and T are p -compatible, p((fTz, — T fz,)) — 0 as n — oo and
so fTx, — Tu as n — oc.

Next, we prove that u is a fixed point of T. Suppose that T'u # u. Since

(p(e(T?wn = Tay))) = (p(ce(T(Tay) — Twn))).

< Y(pU(fTon = frn))) — d(pU(f Tz — f2n))),
(4.1.29)

taking n — oo in the inequality (4.1.29) and using Proposition 4.1.1 with ¢ > [, we

have
(p(c(Tu —u))) < Y(p(l(Tu —w))) = o(p(l(Tu — u)))
<Y(p(l(Tu — u)))
< P(ple(Tu —w))),

which is a contradiction and hence Tu = w. Since T'(X,) C f(X,), there exists a

point u; € X, such that u = Tu = fu;. From

Y(p(c(T?zy — Tw))) < Y(p(U(f T2y — fur))) = Sp(U(fTy — fur))),

letting n — oo yields

P(p(ce(Tu — Tur))) < P(p(l(Tu = fur))) — ¢(p(U(Tw — fur))).

Therefore, we have
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which implies that v = Twu; = fu;. Since f and T are p -compatible, we get
fu= fTuy =T fu; =Tu=u. If fis continuous, then, by a similar argument, one
can prove Tu = fu = u.

Finally, suppose that there exists v € X, such that Tv = v = fv and v # w.

Then we have

d(p(c(u —v)))

Y(p(e(Tu —Tv)))

(p(
< Vol fo)) —olplifu o))
< Y(p(l(u—w)))
< ¥(p(c(u —v))),
which is a contradiction. Hence u = v. This completes the proof. O

Corollary 4.1.6. Let X, be a p—complete bounded modular space, where p satisfies
the Ay- condition. Let ¢,l € RT, ¢ > 1l and T, f : X, — X, be p — compatible

mappings such that T'(X,) C f(X,) and satisfying the inequality

p(c(Tz = Ty)) < p(l(fx— fy)) — o(p(l(fz = fy))) (4.1.31)

for all x,y € X,, where ¢ : [0,00) — [0,00) is a continuous and nondecreasing
function with ¢(t) = 0 if and only if t = 0. If one of T or f is continuous, then

there exists a unique common fized point of T' and f.

Proof. Take 1(t) = t, we obtain Corollary 4.1.6. O

4.2 Fixed point theorems for contraction mappings

in modular metric spaces

In this section, we prove new existence theorems of fixed points for contraction

mappings in modular metric spaces.

Definition 4.2.1. Let w be a metric modular on X, X, be a modular metric space
induced by w and T : X, — X, be an arbitrary mapping. A mapping 7" is called a

contraction if, for all z,y € X, and X\ > 0, there exists 0 < k < 1 such that

wr(Tz, Ty) < kwy(z,y). (4.2.1)
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Theorem 4.2.2. Let X, be a complete modular metric space and T : X, — X,, be
a contraction mapping. Assume that there ezists xy € X such that wy(zg, Txo) < 00
for all X\ > 0. Then T has a fized point in x. € X, and the sequence {T"xq}
converges to x.. Moreover, if, z € F(X,), where F(X,) is a set of fized point of T

such that wy(x,, z) < oo for all A > 0, then x, = z.

Proof. Let xg be an element in X, such that wy(xg, Txg) < oo for all A > 0 and we
write 1 = Txg, ©2 = Tz, = T?xy and, in general, z,, = Tx,_; = T"x for all n > 1.

Observe that
W (T"z0, T" M 10) < kwy (T wg, T w0) < -+ < k"wy (20, Tp) < 00

for all n > 1. Assume that n and m are two positive integers with m > n. Then we

have

CU)\(TnxQ,TmLEQ) S W_ (Tnl‘o,Tn+1£lZ'0)—l—WL(Tn—i_lxo,Tn—"_Qﬂfo)

m—n m—n

+-otwoa (Tm_ll‘[), Tml'0>

IA

(K" + k" o+ B Dw s (g, Tg)

m—n

IN

(K™ + k" 4+ - wa (w0, T

lk_—nkw,\(mo, Txgp).

Since wy(xg, Txy) < 0o, we deduce that, for any € > 0, wy(T"xg, T™zq) < € for all
m > n > N with sufficiently large. Thus {7z} is a Cauchy sequence and hence it

converges to some x, € X, by the completeness of X,. Observe further that
WA (s, Txy) < wa(2y, T20) + kws (T g, ).
2 2

Letting n — oo, we have wy(z,, Tz,) = 0 for all A > 0. Therefore, =, is a fixed
point of f.
Let z be another fixed points of 7" such that wy(x,, z) < oo for all A > 0, then

we get

wr(Ty,2) =wn(Tx,,T2) < kwy(z4, 2)

for all A > 0. Since 0 < k < 1, we get wy(x, z) = 0 for all A > 0, which implies that

x, = z. This completes the proof. O]
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Theorem 4.2.3. Let X, be a complete modular metric space and T : X, — X,
be a contraction mapping. Suppose that z* € X, is a fized point of T, {e,} is a

sequence of positive numbers for which lim e, =0 and {y,} C X, satisfies
n—oo

WA(WUnt1, TYn) < €n

for all A > 0. Then lim y, = x*.

n—oo

Proof. Let yo = z € X,,. Then we observe that, for all m > 1,

WA(TmH% Ymt1) = Wim (Tmﬂxa Ym+1)

m

WA (m-1) (Tm—H-Ta Tym) +wx (Tym7 ym-‘rl)

IN

< kwam-1) (Tml‘, ym) +Em

< kwaoneo (T2, TYm-1) + kwr (Tym-12,Ym) + €m  (4.2.2)
< k2WA~(m—2) (Tm_lI, ym_l) + kepm1 +Em

<

Z k‘miiﬁi
i=0
for all A > 0. Thus we get

WA(Ym+1,27) < W%(ymH,Tme)+W%(Tm+1$a$*)

m , (4.2.3)
< SRl 4 wa (T, ).
i=0 ?

Next, we claim that lim wy(ymy1,2*) = 0 for all A > 0. Now, let € > 0. Since
m—0o0
lim g, = 0, there exists a positive integer N such that, for all m > N, €, < e. Thus

n—oo

we have

m N m
Z km_ié’fi = Z km_ié'i + Z km—igi
=0 1=0

NN (4.2.4)
< km_N Z kN—igi +e Z km—i'
i=0 i=N+1
Taking limit as m — oo in (4.2.4), we have
Tim_ ZO kMg, = 0. (4.2.5)

Since z* is a fixed point of T', using Theorem 4.2.2, it follows that the sequence

{T™z} converge to x*. This implies that

lim w%(Tme, 7*) =0 (4.2.6)

m—r0o0
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for all A > 0. Therefore, from (4.2.3), (4.2.5) and (4.2.6), we have

lm wy(Ymy1,2%) =0 (4.2.7)
m—0o0
for all A\ > 0, which implies that lim g, = x*. This completes the proof. O
n—oo

Theorem 4.2.4. Let X, be a complete modular metric space and, for any x* € X,,,
define
B,(x*,7) :={x € X, : wr(z,z") <, VA > 0}.

If T : B,(z*,v) = X, is a contraction mapping with
oy (Ta",2%) < (1~ k) (129
for all A > 0, where 0 < k < 1, then T has a fized point in B, (x*,7).

Proof. By Theorem 4.2.2; we only prove that B,(z*,7) is complete and Tz €
B, (x*,7) for all x € B, (z*,7). Suppose that {z,} is a Cauchy sequence in B, (z*,~),
and then also {x,} is a Cauchy sequence in X,,. Since X, is complete, there exists
z € X, such that

lim wx (z,,2) =0 (4.2.9)

n—oo 2
for all A > 0. Since, for each n > 1, x,, € B, (z*,~), using the property of a metric

modular, we get

*

wy(z*,r) < w%(a:*,xn) +w%(xn,x) (42.10)
< v+ w%(xn, z*)
for all A > 0. It follows the inequalities (4.2.9) and (4.2.10) that w(z*, z) < 7, which
implies that x € B, (x*,7). Therefore, {z,} is a convergent sequence in B, (z*,~)
and also B, (z*,7) is complete.
Next, we prove that Tx € B, (z*,v) for all z € B, (z*,7). Let x € B, (z*,7).

From the inequalities (4.2.8), the contraction of 7" and the notion of a metric mod-

ular, we have

wy(x*, Tx) < w%(as*,T:B*)—i—w%(Tas*,Tx)
< (1—k)fy—|—k:w%(x*,x)
< (I=k)y+ky

Therefore, Tz € B, (z*,7). This completes the proof. O
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Theorem 4.2.5. Let X, be a complete modular metric space and T be a self-

mapping on X,, satisfying

ATz, Ty) < k(wa(T'z,z) +wan(Ty,y)) (4.2.11)

for all x,y € X, where k € {0,%). Assume that there exists xq € X such that
wi(xg, Tzy) < oo for all X\ > 0. Then T has a fived point in x € X, and the
sequence {T"xy} converges to x. Moreover, if, z € F'(X,,), where F(X,) is a set of

fized point of T such that wy(z.,z) < oo for all A > 0, then z, = z.

Proof. Let xy be an element in X, such that wy(xg,Tx¢) < oo for all A > 0. We
write 21 = Txg, v9 = Tx1 = T and, in general, x,, = Tx,_; = T"xq for all n > 1.
It Txypy—1 = T'xy, for some ng > 1, then Tz, = x,,. Thus x,, is a fixed point of T

Suppose that Tz, 1 # Tx, for all n > 1. For any k € [0, %), we have

w)\(xn+17xn) = WA(TxnaTxnfl>

k(w”\(Txm xn) + wax (T$n—17 xn—l)) (4212)

IN

S kf(&))\ ('In—i—ly xn) + W)\(wna xn—l))

for all A > 0 and n > 1. Hence we have

wk(‘rn-‘rl’xn) < ﬁw)\(xmxn—l) (4213)

forall A\ > 0and n > 1. Put §:= ﬁ Since k € (0, %), we get 5 € (0,1) and hence

WA(Tn1,Tn) < Bwr(Tn, Tno1)

S 52WA(xn—laxn—2) (4 9 14>

IN

B wx (71, 70)

for all A > 0 and n > 1. Similar to the proof of Theorem 4.2.2, we can conclude
that {z,} is a Cauchy sequence and, by the completeness of X, there exists a point
x € X, such that x,, — = as n — oo. By the property of a metric modular and the

inequality (4.2.11), we have

W)\(Txa I)

AN
w\§
~
8
~
8
g
+
S
~
8
S
=

INA
ol
&

>

Tx,x) 4+ wy(Tx,,x,)) + wr(Tx,, x
) r(Tans 7)) + 0y (T, 2) -
Tx,,x)+ w%(x, Tn)) + w%(Txn,a:)

VAN
/‘\i/‘\
&
/‘\i\/‘\
~
8
=
+
&

0>

I
o
—~

Tni, LE) + w% (‘7:7 xn)) + W% (anrla $>
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for all A > 0 and n > 1. Taking n — oo in the inequality (4.2.15), we obtain
wr(Tz,z) < kwy(Tx,x). (4.2.16)

Since k € [0,1), we have T = 2. Thus z is a fixed point of T'.

Let z be another fixed points of 7" such that wy(x,, z) < oo for all A > 0, then

we get
wi(z,z) = wa(Tz,Tz)
< k(won(Tx,z) + won(Tz, 2))
=0
for all A > 0, which implies that x = z. This completes the proof. m

Now, we give an example to illustrate Theorem 4.2.2.

Example 4.2.6. Let X = {(a,0) € R? : 0<a <1} U{(0,b) e R? : 0 < b < 1}
Defined a mapping w : (0,00) x X x X — [0, 00| by

wk((a1’0)7 (CL??O)) = Wa
n((0,00), 0.5 = 222
and
4a b
WA((a7 0)7 (07 b)) = 3_/\ + 2\ = WA((O’ b)? ((l, 0))

We note that , if we take A — oo, then we see that X = X, and also X, is a

complete modular metric space. Define a mapping T : X, — X, by

T((a,0)) = (0,a), T((0,b)) = (9 0).

27

Simple computations show that

wA(T((ar,01)), T((az, b2))) < %WA((alabl)»(%bﬂ)

for all (a1,b1), (as,b2) € X,,. Thus T is a contraction mapping with constant k = 3.
Therefore, T has a unique fixed point (0,0) € X,,. In the Euclidean metric d on X,,,

we see that
d(T((()?O))vT((l?O))) = d((0,0), (O’ 1)) =1>k= kd((070)7 (170))

for all k € [0,1). Thus T is not a contraction mapping and then Banach’s contraction

mapping cannot be applied to this example.





