CHAPTER 3 SOME GEOMETRIC PROPERTIES OF
LACUNARY SEQUENCE SPACES AND GENERALIZED
CASARO SEQUENCE SPACES

The aim of this chapter is to prove the property () and the uniform opial
property of Lacunary sequence spaces and prove that generalized Cesaro sequence

spaces ces(p)(q) have the property (H) and the uniform opial property.

3.1 On the property () and the uniform opial property of
Lacunary sequence spaces

In this section, we assume that lim infp, > 1 and lim supp, < oo. First, we
r—>00 T—00
give some results in Lacunary sequence spaces which are very important for our

consideration.

Lemma 3.1.1. For any = € l(p,0), there exist kg € N and A € (0,1) such that
g(%) < 2p(2*) for all k € N with k > ko, where

¥ = (0,0, ,0,2(k),z(k+1),z(k+2),---).

Proof. Let k € N be fixed. So there exists r, € N such that &k is a minimal element
in I,,. Let a be a real number such that 1 < o < lim,_, inf p,. Then there exists
ko € N such that a < p,, for all & > kq. Choose A € (0,1) be a real number such

that (1)* < 152, Then, for each z € I(p,6) and k > ko, we have

< u@(fv'“)
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0
Lemma 3.1.2. For any x € l(p,0) and € € (0,1), there exists 6 € (0,1) such that
o(z) < 1— ¢ implies ||z]| <1 —0.

Proof. Suppose that Lemma does not hold. Then there exist ¢ > 0 and x,, € I(p, 0)
such that o(z,) <1—¢ and § < ||a,] /1. Let a, = m — 1. Then a, — 0 as
n — oco. Let L = sup{o(2z,) : n > 1}. Since o € A3, there exists K > 2 such that

0(2u) < Ko(u) + 1 (3.1.1)

for all u € I(p,0) with o(u) < 1. By (3.1.1), we have o(2z,) < Ko(z,) +1 < K +1

for all n > 1. Hence 0 < L < co. By Lemma 2.3.1 and Lemma 2.3.2(ii), we have

Tn
1= Q(Hx ||) = 0(2apz, + (1 — ay)x,)
< an@<2xn) + (1 - an)@<xn)
<a,L+(1—¢)—=1-—c¢,
which is a contradiction. This completes the proof. O

Theorem 3.1.3. The space l(p,0) is a Banach space with respect to the Luzemburg

norm.

Proof. Let {x,} = {z,(i)} be a Cauchy sequence in [(p,d) and ¢ € (0,1). Thus
there exists a positive integer N such that || z, — z,, [|[< M for all n,m > N. By

Lemma 2.3.2(i), we have
o(zn — ) <|| Tp — 2 ||< M (3.1.2)
for all n,m > N. That is,

r=1

hiZ|xn(¢) —mm(i)|) <eM (3.1.3)

" iel,

for all n,m > N. For fixed r in (3.1.3), we get
|zn (1) — 2 (3)| < €

for all n,m > N. Thus {z,(i)} be a Cauchy sequence in R for all 7 > 1. Since R
is complete, there exists (i) € R such that z,,(i) — x(i) as m — oo for all i > 1.

Thus for fixed r in (3.1.3), we have

|z, (1) — z(1)] < e
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m — oo for all n,m > N. This implies that, for all n > N,

Q(xn - xm) — Q(xn - SL’) (3.1.4)

m — oo. This means that, for all n > N,

Z(%Z\xn@)—xm(z‘)\) N (%Z\xn(i)—m(i)o (3.1.5)

" el

as m — 0o. Hence we have

for all n > N, which implies that x, — x as n — oo. By the linearity of the
sequence space [(p,0), we can write © = (x — zy) + zx € l(p,0). Therefore, the
sequence space [(p, #) is a Banach space with respect to the Luxemburg norm. This

completes the proof. O
Theorem 3.1.4. The space l(p,0) has the property (53).

Proof. Let ¢ > 0 and {z,} C B(l(p,0)) with sep(z,) > €. For each k > 1, there
exist 7, € N such that £ is a minimal element in 7,,. Let
k—1

———
ak = (0,0, ,0, 2, (k), vp(k + 1), 2,(k +2),---).

n

Since, for each i > 1, {z, (i)} is bounded, by using the diagonal method, for each
k > 1, there exists a subsequence {z,,} of {z,} such that {z,, (i)} converges for
eachi > 1. Therefore, for any k > 1, there exists an increasing sequence {t;} such
that sep((xfjj )j>t,) > €. Hence, for each k > 1, there exists a sequence of positive
integers {sg}p2, with s; < sp < s3 < ... such that ||z% || > £ and, since o € A, by

Lemma 2.2.8, we may assume that there exists n > 0 such that Q(:L";k) > n for all

k > 1, that is,

> (hi > Iw'ik(i)!) > 7 (3.1.6)

r=rg r i€l

for all £ > 1. On the other hand, by Lemma 3.1.1, there exist a positive integer kg
and A € (0, 1) such that

g(?) < Tg(uk) (3.1.7)
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for all u € I(p,0) and k > ky. From Lemma 3.1.2, there exist § > 0 such that, for

any y € l(p,0),

A
o) <1-F =yl <1-s (3.1.8)

Again, since p € A, by Lemma 2.2.7, there exists dp such that

lo(u+v) — o(u)| < % (3.1.9)

whenever p(u) < 1 and o(v) < dg. Since x € B(I(p,0)), we have that o(z) < 1. Then

there exits k& > ko such that o(z*) < 8. Putting u = 2% and v = 2*, we have

Pr pr
u ~ (1 T, (1) v ~ (1 x(7) 5
) = — 1, of=)= I ol s .
From (3.1.7) and (3.1.9), we have
e e ))
00 (1) + x5, (2 (u+v>
7 - = 0
r:zrk hriezlr 2 2
o ( A1) (3.1.10)
S 0 5 +Z
1—A AN
< — —
< —5—(e(w) +

By (3.1.6), (3.1.9), (3.1.10) and the convexity of function f(t) = |¢|P" for all r > 1,

we have

(x+x5k> i 1 —1—.735k
0 = T
2 r=1 hr i€l
Pr
rkil 1 —|—33sk (i) 1 3 <>+$5k()
- r—=1 hr icl, r= rk h i€l 2
Dr
1 T‘k—l 1 Te— 1
< S (rxeo) <S55 e
r=1 r i€l rzelr




1 re—1 1
< = — (7
< 3| S (mz ko
1—-) © 1 5
_|_— -
2 r=r hriEIr
Pr
].rk—l 1 ()
= = — (7
3 2\ 2 0
1—) « 1 5
_l’_— -
2 r=ry hriEIT
Pr
1rk—1 1 )
= = — (7
2; h;l (4)]
A oo 1
A
1 1 Axp M
< 44
- 2+2 2 4
An
= 1—-—.
4
So, it follow from (3.1.8) that
T+ Ty,

2

Therefore, the space I(p, #) has the property (5). This completes the proof.
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Pr Pr

rk—l 1 .
+5 T 1w
r=1 r i€l
Pr )\
) n
|x5k(2)’ + Z
Pr
].rk—l 1 )
35 0 2 i)
Pr )\
) n
e |+
Pr
1o (1 .
+ 52 h—g |7, (4)]
Pr A
. n
o+
H <1-5

]

By the facts presented in the section 2.5, the following results are obtained

directly from Theorem 3.1.4.

Corollary 3.1.5. The space l,(0) has the property (3).

Corollary 3.1.6. The space l(p,0) is the nearly uniform convexity and has the drop

property. Also, the spaces l(p,0) is reflezive.

Corollary 3.1.7. The space l(p,0) has the property (UKK).

Corollary 3.1.8. [37, Theorem 2.9] The space l(p,0) has the property (H).

Corollary 3.1.9. The space 1,(0) is the

nearly uniform convexity and has the drop

property. Also, the spaces 1,,(0) is reflexive.
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Corollary 3.1.10. The space 1,(8) has the property (UKK) and the property (H).
Theorem 3.1.11. The space l(p,0) has the uniform Opial property.

Proof. Take any ¢ > 0 and = € [(p,0) with || = ||> €. Let (z,) be a weakly null
sequence in S(I(p,0)). By Tlirilo supp, < oo, i.e., o € A, by Lemma 2.2.8, there
exists § € (0, 1) independent of = such that g(x) > §. Also, by ¢ € Aj and Lemma
2.2.7, there exists d; € (0,0) such that

J

lo(y +2) — oY)l < ; (3.1.11)

whenever o(y) < 1 and p(z) < ;. Choose a positive integer 7y such that

Pr
[o.¢]

1
> h—Z|x(i)| <%. (3.1.12)

r=ro+1 " iel,

So, we have

DPr DPr

70 1 . o 1 .

5< ST kol] + X |+ 3R

r=1 ricl, r=ro+1 r i€l
pr (3.1.13)

o BT -

< — x(i + —,
r=1 hT‘ iEI’r 4
which implies that

Pr

o ' I N 3.1.14

Since z,, — 0, there exists a positive integer ng such that

Pr

1
h—z |2 (1) 4 ()] (3.1.15)

=1 " iel,

30 o
<
4 B T

for all n > ng since the weak convergence implies the coordinatewise convergence.

Again, by x,, — 0, there exists a positive integer n, such that

O\ 7
| 2oy, 1< 1— (1 - Z) (3.1.16)

for all n > ny, where ky is a minimal element in /,,; and a positive integer M with

pr < M for all » > 1. Hence, by the triangle inequality of the norm, we get

6\
w1 (1-7) 5.117
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It follows from Lemma 2.3.2(iii) that

< eli)
i 2 ()]

00 h

i€l
D) ——— (3.1.18)
o | (1= UM

< (ote) S (2xm)

r=ro+1 i€l
implies )
o0 1 )
> ™ Sz (1)] > 1 - 1 (3.1.19)
r=ro+1 ricl,

for all n > ny. By the inequality (3.1.11), (3.1.15) and (3.1.19), it follows that, for

any n > n;
Pr DPr
70 ]_ . . o ]_ . .
o(zn +1) = h—ZI%(z)H(z)I + > h—len(z)H(z)I
r=1 ri€l, r=ro+1 ri€l,
Pr
s iy mel] -2
> —+ — Tn(2 -
4 r=ro+1 hrielr 4
30 ) 0
> —+(1—-)—-
- 4+< 4) 4
)
> 14+ -
> +4

Since p € Aj, by Lemma 2.2.9, there exists 7 depending on 9 only such that
| xn+z||>14+T,
which implies that TLILHOIO inf || z, +x ||> 1 + 7. This completes the proof. O
By the facts presented in section 2.5, we get the following results:
Corollary 3.1.12. The space 1,(0) has the uniform Opial property.

3.2 On the property (H) and the uniform opial property of

generalized Cesaro sequence spaces

In this section, we prove the property (H) and the uniform opial property of
generalized Cesaro sequence space ces(,)(q). Let M = supp, < oo for all k > 1.

The following results are very important for our consideration.
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Proposition 3.2.1. The functional o is a conver modular on ces,)(q).

Proof. Let x,y € cesy)(q). It is obvious that o(x) = 0 if and only if x = 0 and
o(ax) = o(z) for scalar a with || = 1. Let @« > 0 and § > 0 with « + = 1. By

the convexity of the function t — |¢|P for all k£ > 1, we have

k=1 k =1
0o 1 k k Pk
<> (a— > lasw(i)] + o > quy(Z)I)
k=1 k=1 klim1
0o 1 k Pk 00 1 k P
<ad (5> ’%x(l)l) +8) (Q—Zlqzy(Z)O
k=1 k=1 k=1 i=1

This completes the proof. O

Proposition 3.2.2. For all v € cesy(q), the modular o on cesy)(q) satisfies the

following properties:
(i) If0 <a <1, then a™o(%) < o(z) and o(az) < ao(x);
(ii) If a > 1, then o(x) < a™o(%);
(il) Ifa > 1, then o(z) < ao(x) < o(az).

Proof. (i) Let 0 < a < 1. Then, we have

k=1 i=1
= a &gl
-S(axnm?
o) k Pk
1 CJz‘I@
_ are [ —
o (g i)
) k Pk
1 qix(i)
S e
k=1 o - ¢
00 k Pk
1 (i)
M 7
= Qa _—
> (a2 )
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Thus, by convexity of modular o, we have p(az) < ap(z) and so (i) is obtained.

(ii) Let a > 1. Then, we have

Hence (ii) is satisfies. (iii) follows from the convexity of o. This completes the

proof. O]
Proposition 3.2.3. For any x € cesgy(q), we have
() IF lall < 1, then o(z) < |2l
(i) If |=l] > 1, then o(x) > [|||;
(iii) [|z]| =1 if and only if o(x) = 1;
(iv) |lz|| < 1 if and only if o(x) < 1;
(v) [|z]] > 1 if and only if o(x) > 1.

Proof. (i) Let ¢ > 0 be such that 0 < ¢ < 1 — ||z|| and so ||z]| + ¢ < 1. By the
definition of || - ||, there exits A > 0 such that [|z[| +¢ > X and o(5) < 1. By (i) and

(iii) of Proposition 3.2.2, we have

o(z) <o (wx)

T
=o((llz] +2)5)
x
< —
< (2l +9)e (5)
< [lll +e,
which implies that o(x) < ||z||. Hence (i) is satisfies.

(i) Let ¢ > 0 such that 0 < & < L Then 0 < (1 — ¢)|z|| < ||z|. By the

|z

|
definition of || - || and Proposition 3.2.2(i), we have

x 1
LdmToRy < ao o
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llz]|—1
ll]

and so (1 —¢)||z|| < o(z) for all € € (0, ), which implies that ||z| < o(z).
(iii) Assume that [|z|] = 1. Let ¢ > 0. Then there exits A > 0 such that

1+e>X>|z| and o(§) < 1. By Proposition 3.2.2(ii), we have

o(z) < AMQ(% <M < (14 )M,

and so (Q(x))ﬁ < 14 ¢ for all ¢ > 0, which implies that o(x) < 1. If o(z) < 1,
let a € (0,1) such that o(z) < a* < 1. From Proposition 3.2.2(i), we have p(%) <
—ro(x) < 1. Hence ||z|| < a < 1, which is a contradiction. Thus we have o(z) = 1.

Conversely, assume that o(x) = 1. If ||z]| > 1, by (ii), we get o(x) > ||z| > 1,
which is a contradiction. Thus [|z|| < 1. Suppose that ||z|| < 1. Then it follows
from (i) that o(z) < ||z|| < 1, which is a contradiction. Thus we obtain ||z| = 1.
(1v) follows from (i) and (iii), (v) follows from (iii) and (iv). This completes the

proof. O]
Proposition 3.2.4. For any x € cesgy(q), we have

(i) If0<a <1 and ||| > a, then o(x) > a™;

(i) Ifa > 1 and ||z|| < a, then o(z) < a™.

Proof. (i) Let 0 < a < 1 and |[z|| > a. Then ||Z]| > 1. Thus by Proposition 3.2.3(v),
we have o(£) > 1. Hence, by Proposition 3.2.2(i), we have o(z) > a™o(%) > o™
and so we obtain (i).

(ii) Suppose @ > 1 and ||z|| < a. Then [|Z]| < 1. Thus by Proposition 3.2.3(iv),
we have o(£) < 1. If a = 1, it is obvious that o(z) < 1 = a™. If a > 1, then, by

Proposition 3.2.2(ii), we obtain o(z) < a™o(%) < ™. This completes the proof. [
Proposition 3.2.5. Let {z,} be a sequence in cesgy(q).

(i) If ||zn]] = 1 as n — oo, then o(x,) — 1 as n — oo;

(i) If o(x,) — 0 as n — oo, then ||z,|| — 0 as n — oco.

Proof. (i) Assume that ||z, — 1 as n — oo. Let € € (0,1). Then there exists a
positive integer N such that 1 — e < ||z,|| < 1+ ¢ for all n > N. By Proposition
3.2.4, we have (1 — &)™ < p(x,) < (1 + &)™ for all n > N, which implies that

o(z,) = 1 as n — 0.
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(ii) Suppose that ||z,|]| - 0 as n — oo. Then there exists ¢ € (0,1) and a
subsequence (z,, ) of (x,) such that ||z,, || > ¢ for all £ > 1. By Proposition 3.2.4(%)
we obtain o(z,,) > ()™ for all k¥ > 1. This implies that o(z,) - 0 as n — oco. This

completes the proof. O

Lemma 3.2.6. Let x € cesy)(q) and {x,} C cesyy(q). If o(x,) = o(x) as n — oo

and x, (i) — x(i) asn — oo for all i > 1, then x, — x as n — oo.

Proof. Let € > 0 be given. Since p(z) = > o, (é Zle |qix(i)|>pk < o0, there

exists a positive integer kg such that

> (QLZ\W(@‘)O <3_2€—M+1~ (3.2.1)

k=ko+1 i=1
Since
ko 1 k Pk ko 1 k Pk
o(w) =3 [ 5 S law@l | = o) =S (A3 la(i)]
k=1 ¢ i=1 k=1 Q i=1

and x, (i) — x(i) as n — oo for all ¢ > 1, there exists a positive integer ng such that

oo = 3 (& 5@l < o= 3 (& Shaatl) + 557
(3.2.2)

for al n > ng and

; (é ; |qin (i) — qi:v(i)l) < ; (3.2.3)

for al n > ng. It follow from (3.2.1), (3.2.2) and (3.2.3) that, for all n > ny,

o= = 5 (& S o) —as)])
(
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9

= 52 (ot -

M = 1
42 (z (Q_
k=ko+1

3

€ o ko e A\
< 42 g(x)—;(@i;rq@-x(z)\) oo

(2, (5o

£

00 k Pk
- _ M 1 (i
- 3+ & (FXhel) + 37w

<

This show that o(z, — ) — 0 as as — oo. Hence, by Proposition 3.2.5(ii), we have

|z, — x|| = 0 as — oo. This completes the proof. O
Theorem 3.2.7. The space cesgy(q) has the property (H).

Proof. Let x € S(ces(,(q)) and {x,} C ces()(q) such that ||z,| — 1 and z,, = x
as n — 0o. By Proposition 3.2.3(iii), we have g(z) = 1, it follow form Proposition
3.2.5(i) that o(z,) — o(x) as n — oo. Since the mapping 7; : cesp)(¢) — R
defined by 7;(y) = y(7) is a continuous linear functional on ces)(q), it follow that
(i) — x(i) as n — oo for all ¢ > 1. Thus, by Lemma 3.2.6, we obtain z,, — x
as n — oo and hence the space ces((q) has the property (H). This completes the
proof. O]

Corollary 3.2.8. For any 1 < p < 0o, the space ces,(q) has the property (H).
Corollary 3.2.9. [40, Theorem 2.6] The space ces, has the property (H).

Corollary 3.2.10. For any 1 < p < oo, the space ces, has the property (H).
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Theorem 3.2.11. The space ces)(q) has the uniform Opial property.

Proof. Take any € > 0 and & € ces((q) with [|z]| > €. Let {z,} be a weakly null
sequence in S(cesyp)(q)). By sup,s; pr < 00, ie., o € A3, and Lemma 2.2.8, there
exists € (0, 1) independent of x such that o(z) > §. Also, by 0 € A§ and Lemma
2.2.7, there exists d§; € (0,0) such that

J

lo(y +2) — oY)l < ; (3.2.4)

whenver o(y) < 1 and o(z) < d;. Choose a positive integer ky such that
00 Pk 0 1 k Pk 5
> (Q Z i ( ) <Y (Q— S |qix(i)|> <% (3.2.5)
k=ko+1 i=ko+1 k=ko+1 Ly

So, we have

_ ;O (QLf” w(m)pk +%7 (3.2.6)

which implies that

Pr 01 o 30
kZ<Qk2|Qz()|) >5_Z >5_L_LZZ' (3.2.7)

Since x, — 0, there exists a positive integer ng such that

30 ko k Pk
75 (— > lasea(i) + w(z‘)\) 328)

i=1
for all n > ny since the weak convergence implies the coordinatewise convergence.

Again, by x,, — 0, there exists a positive integer n, such that

O\
2w, <1 (1-7) (329)

for all n > ny, where pp < M for all k£ > 1. Hence, by the triangle inequality of the

norm, we get

&\
w1 (1-7) (3:2.10
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It follows from Proposition 3.2.3(v) , that

k Pk
e kz 1|qixn(l)|
1<Q($"N_—kol) = 3 L R
(1_s) ™ h—kot1 (1—9)m (3.2.11)

M [e'e) k Pk
((1—3)1‘14) k:kzo-H (Qk i:%—kl 92 (0]

> k Pk )
2 (@ > !qi:vn(z‘)|) > 1- (3.2.12)

k=ko+1 i=ko+1
for all n > n;. By the inequalities (3.2.4), (3.2.5), (3.2.8), and (3.2.12), it follows

implies

that, for any n > nq,

o(x, + x)
ko k Pk 00 k P
= 2 (&Sm0 +ael) + 5 (&S ) +as])
ko k Pk 00 k P
> 2 (& lan@+ac]) + 5 (& X ) +acli)
= — k=Fko+1 i=ko+1
30 i L i | Pk )
> —+ o Qixni) — 7
4 ko (Q’“ i=7€0+1| " 4
30 ) 0
> - _ ) — =
= 7T
0
> 14+ -

Since p € A3, by Lemma 2.2.9, there exists 7 depending on  only such that
which implies that lim inf || 2, + 2 [[> 1 + 7. This completes the proof. O
n—oo

Corollary 3.2.12. For any 1 < p < oo, the space ces,(q) has the uniform Opial

property.

Corollary 3.2.13. [57, Theorem 2.6] The space ces(,) has the uniform Opial prop-

erty.

Corollary 3.2.14. [6, Theorem 2] For any 1 < p < oo, the space ces, has the

uniform Opial property.





