
CHAPTER 3 SOME GEOMETRIC PROPERTIES OF

LACUNARY SEQUENCE SPACES AND GENERALIZED

CASÀRO SEQUENCE SPACES

The aim of this chapter is to prove the property (β) and the uniform opial

property of Lacunary sequence spaces and prove that generalized Cesàro sequence

spaces ces(p)(q) have the property (H) and the uniform opial property.

3.1 On the property (β) and the uniform opial property of

Lacunary sequence spaces

In this section, we assume that lim
r→∞

inf pr > 1 and lim
r→∞

sup pr < ∞. First, we

give some results in Lacunary sequence spaces which are very important for our

consideration.

Lemma 3.1.1. For any x ∈ l(p, θ), there exist k0 ∈ N and λ ∈ (0, 1) such that

ϱ(x
k

2
) ≤ 1−λ

2
ϱ(xk) for all k ∈ N with k ≥ k0, where

xk = (

k−1︷ ︸︸ ︷
0, 0, · · · , 0, x(k), x(k + 1), x(k + 2), · · · ).

Proof. Let k ∈ N be fixed. So there exists rk ∈ N such that k is a minimal element

in Irk . Let α be a real number such that 1 < α ≤ limr→∞ inf pr. Then there exists

k0 ∈ N such that α < prk for all k ≥ k0. Choose λ ∈ (0, 1) be a real number such

that (1
2
)α ≤ 1−λ

2
. Then, for each x ∈ l(p, θ) and k ≥ k0, we have

ϱ(
xk

2
) =

∞∑
r=rk

(
1

hr

∑
i∈Ir

∣∣∣∣x(i)2
∣∣∣∣
)pr

=
∞∑

r=rk

(
1

2

)pr
(

1

hr

∑
i∈Ir

|x(i)|

)pr

≤
(
1

2

)α ∞∑
r=rk

(
1

hr

∑
i∈Ir

|x(i)|

)pr

≤ 1− λ

2
ϱ(xk).
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Lemma 3.1.2. For any x ∈ l(p, θ) and ε ∈ (0, 1), there exists δ ∈ (0, 1) such that

ϱ(x) ≤ 1− ε implies ∥x∥ ≤ 1− δ.

Proof. Suppose that Lemma does not hold. Then there exist ε > 0 and xn ∈ l(p, θ)

such that ϱ(xn) ≤ 1 − ε and 1
2
≤ ∥xn∥ ↗ 1. Let an = 1

∥xn∥ − 1. Then an → 0 as

n→ ∞. Let L = sup{ϱ(2xn) : n ≥ 1}. Since ϱ ∈ ∆s
2, there exists K ≥ 2 such that

ϱ(2u) ≤ Kϱ(u) + 1 (3.1.1)

for all u ∈ l(p, θ) with ϱ(u) < 1. By (3.1.1), we have ϱ(2xn) ≤ Kϱ(xn) + 1 ≤ K + 1

for all n ≥ 1. Hence 0 < L <∞. By Lemma 2.3.1 and Lemma 2.3.2(ii), we have

1 = ϱ(
xn

∥xn∥
) = ϱ(2anxn + (1− an)xn)

≤ anϱ(2xn) + (1− an)ϱ(xn)

≤ anL+ (1− ε) → 1− ε,

which is a contradiction. This completes the proof.

Theorem 3.1.3. The space l(p, θ) is a Banach space with respect to the Luxemburg

norm.

Proof. Let {xn} = {xn(i)} be a Cauchy sequence in l(p, θ) and ε ∈ (0, 1). Thus

there exists a positive integer N such that ∥ xn − xm ∥< εM for all n,m ≥ N. By

Lemma 2.3.2(i), we have

ϱ(xn − xm) ≤∥ xn − xm ∥< εM (3.1.2)

for all n,m ≥ N . That is,

∞∑
r=1

(
1

hr

∑
i∈Ir

|xn(i)− xm(i)|

)pr

< εM (3.1.3)

for all n,m ≥ N . For fixed r in (3.1.3), we get

|xn(i)− xm(i)| < ε

for all n,m ≥ N . Thus {xn(i)} be a Cauchy sequence in R for all i ≥ 1. Since R

is complete, there exists x(i) ∈ R such that xm(i) → x(i) as m → ∞ for all i ≥ 1.

Thus for fixed r in (3.1.3), we have

|xn(i)− x(i)| < ε
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m→ ∞ for all n,m ≥ N . This implies that, for all n ≥ N ,

ϱ(xn − xm) → ϱ(xn − x) (3.1.4)

m→ ∞. This means that, for all n ≥ N ,

∞∑
r=1

(
1

hr

∑
i∈Ir

|xn(i)− xm(i)|

)pr

→
∞∑
r=1

(
1

hr

∑
i∈Ir

|xn(i)− x(i)|

)pr

(3.1.5)

as m→ ∞. Hence we have

ϱ(xn − x) ≤∥ xn − x ∥< εM ≤ ε

for all n ≥ N , which implies that xn → x as n → ∞. By the linearity of the

sequence space l(p, θ), we can write x = (x − xN) + xN ∈ l(p, θ). Therefore, the

sequence space l(p, θ) is a Banach space with respect to the Luxemburg norm. This

completes the proof.

Theorem 3.1.4. The space l(p, θ) has the property (β).

Proof. Let ε > 0 and {xn} ⊂ B(l(p, θ)) with sep(xn) ≥ ε. For each k ≥ 1, there

exist rk ∈ N such that k is a minimal element in Irk . Let

xkn = (

k−1︷ ︸︸ ︷
0, 0, · · · , 0, xn(k), xn(k + 1), xn(k + 2), · · · ).

Since, for each i ≥ 1, {xn(i)} is bounded, by using the diagonal method, for each

k ≥ 1, there exists a subsequence {xnj
} of {xn} such that {xnj

(i)} converges for

eachi ≥ 1. Therefore, for any k ≥ 1, there exists an increasing sequence {tk} such

that sep((xknj
)j>tk) ≥ ε. Hence, for each k ≥ 1, there exists a sequence of positive

integers {sk}∞k=1 with s1 < s2 < s3 < ... such that ∥xksk∥ ≥ ε
2
and, since ϱ ∈ ∆s

2, by

Lemma 2.2.8, we may assume that there exists η > 0 such that ϱ(xksk) ≥ η for all

k ≥ 1, that is,
∞∑

r=rk

(
1

hr

∑
i∈Ir

|xksk(i)|

)pr

≥ η (3.1.6)

for all k ≥ 1. On the other hand, by Lemma 3.1.1, there exist a positive integer k0

and λ ∈ (0, 1) such that

ϱ

(
uk

2

)
≤ 1− λ

2
ϱ(uk) (3.1.7)
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for all u ∈ l(p, θ) and k ≥ k0. From Lemma 3.1.2, there exist δ > 0 such that, for

any y ∈ l(p, θ),

ϱ(y) ≤ 1− λη

4
=⇒ ∥y∥ ≤ 1− δ. (3.1.8)

Again, since ϱ ∈ ∆s
2, by Lemma 2.2.7, there exists δ0 such that

|ϱ(u+ v)− ϱ(u)| < λη

4
(3.1.9)

whenever ϱ(u) ≤ 1 and ϱ(v) ≤ δ0. Since x ∈ B(l(p, θ)), we have that ϱ(x) ≤ 1. Then

there exits k ≥ k0 such that ϱ(xk) ≤ δ0. Putting u = xksk and v = xk, we have

ϱ

(u
2

)
=

∞∑
r=rk

 1

hr

∑
i∈Ir

∣∣∣∣xsk(i)2

∣∣∣∣
pr

< 1, ϱ

(v
2

)
=

∞∑
r=rk

 1

hr

∑
i∈Ir

∣∣∣∣x(i)2
∣∣∣∣
pr

< δ0.

From (3.1.7) and (3.1.9), we have

∞∑
r=rk

 1

hr

∑
i∈Ir

∣∣∣∣x(i) + xsk(i)

2

∣∣∣∣
pr

= ϱ

(u+ v

2

)

≤ ϱ

(u
2

)
+
λη

4

≤
1− λ

2
(ϱ(u)) +

λη

4
.

(3.1.10)

By (3.1.6), (3.1.9), (3.1.10) and the convexity of function f(t) = |t|pr for all r ≥ 1,

we have

ϱ

(x+ xsk

2

)
=

∞∑
r=1

 1

hr

∑
i∈Ir

∣∣∣∣x(i) + xsk(i)

2

∣∣∣∣
pr

=
rk−1∑
r=1

 1

hr

∑
i∈Ir

∣∣∣∣x(i) + xsk(i)

2

∣∣∣∣
pr

+
∞∑

r=rk

 1

hr

∑
i∈Ir

∣∣∣∣x(i) + xsk(i)

2

∣∣∣∣
pr

≤
1

2

rk−1∑
r=1

 1

hr

∑
i∈Ir

|x(i)|

pr

+
rk−1∑
r=1

 1

hr

∑
i∈Ir

|xsk(i)|

pr
+

∞∑
r=rk

 1

hr

∑
i∈Ir

∣∣∣∣xsk(i)2

∣∣∣∣
pr

+
λη

4
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≤
1

2

rk−1∑
r=1

 1

hr

∑
i∈Ir

|x(i)|

pr

+
rk−1∑
r=1

 1

hr

∑
i∈Ir

|xsk(i)|

pr
+
1− λ

2

∞∑
r=rk

 1

hr

∑
i∈Ir

|xsk(i)|

pr

+
λη

4

=
1

2

rk−1∑
r=1

 1

hr

∑
i∈Ir

|x(i)|

pr

+
1

2

rk−1∑
r=1

 1

hr

∑
i∈Ir

|xsk(i)|

pr

+
1− λ

2

∞∑
r=rk

 1

hr

∑
i∈Ir

|xsk(i)|

pr

+
λη

4

=
1

2

rk−1∑
r=1

 1

hr

∑
i∈Ir

|x(i)|

pr

+
1

2

∞∑
r=1

 1

hr

∑
i∈Ir

|xsk(i)|

pr

−
λ

2

∞∑
r=rk

 1

hr

∑
i∈Ir

|xsk(i)|

pr

+
λη

4

≤
1

2
+

1

2
−
λη

2
+
λη

4

= 1−
λη

4
.

So, it follow from (3.1.8) that

∥∥∥∥x+ xsk

2

∥∥∥∥ ≤ 1− δ.

Therefore, the space l(p, θ) has the property (β). This completes the proof.

By the facts presented in the section 2.5, the following results are obtained

directly from Theorem 3.1.4.

Corollary 3.1.5. The space lp(θ) has the property (β).

Corollary 3.1.6. The space l(p, θ) is the nearly uniform convexity and has the drop

property. Also, the spaces l(p, θ) is reflexive.

Corollary 3.1.7. The space l(p, θ) has the property (UKK).

Corollary 3.1.8. [37, Theorem 2.9] The space l(p, θ) has the property (H).

Corollary 3.1.9. The space lp(θ) is the nearly uniform convexity and has the drop

property. Also, the spaces lp(θ) is reflexive.



25

Corollary 3.1.10. The space lp(θ) has the property (UKK) and the property (H).

Theorem 3.1.11. The space l(p, θ) has the uniform Opial property.

Proof. Take any ε > 0 and x ∈ l(p, θ) with ∥ x ∥≥ ε. Let (xn) be a weakly null

sequence in S(l(p, θ)). By lim
r→∞

sup pr < ∞, i.e., ϱ ∈ ∆s
2, by Lemma 2.2.8, there

exists δ ∈ (0, 1) independent of x such that ϱ(x) > δ. Also, by ϱ ∈ ∆s
2 and Lemma

2.2.7, there exists δ1 ∈ (0, δ) such that

|ϱ(y + z)− ϱ(y)| <
δ

4
(3.1.11)

whenever ϱ(y) ≤ 1 and ϱ(z) ≤ δ1. Choose a positive integer r0 such that

∞∑
r=r0+1

 1

hr

∑
i∈Ir

|x(i)|

pr

<
δ1
4
. (3.1.12)

So, we have

δ <
r0∑
r=1

 1

hr

∑
i∈Ir

|x(i)|

pr

+
∞∑

r=r0+1

 1

hr

∑
i∈Ir

|x(i)|

pr

≤
r0∑
r=1

 1

hr

∑
i∈Ir

|x(i)|

pr

+
δ1

4
,

(3.1.13)

which implies that

r0∑
r=1

 1

hr

∑
i∈Ir

|x(i)|

pr

> δ −
δ1

4
> δ −

δ

4
=

3δ

4
. (3.1.14)

Since xn
w→ 0, there exists a positive integer n0 such that

3δ

4
≤

r0∑
r=1

 1

hr

∑
i∈Ir

|xn(i) + x(i)|

pr

(3.1.15)

for all n > n0 since the weak convergence implies the coordinatewise convergence.

Again, by xn
w→ 0, there exists a positive integer n1 such that

∥ xn|ko ∥< 1−
(
1−

δ

4

) 1
M

(3.1.16)

for all n > n1, where k0 is a minimal element in Ir0+1 and a positive integer M with

pr ≤M for all r ≥ 1. Hence, by the triangle inequality of the norm, we get

∥ xn|N−ko
∥>
(
1−

δ

4

) 1
M

. (3.1.17)
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It follows from Lemma 2.3.2(iii) that

1 < ϱ

(
xn|N−ko(
1− δ

4

)1/M)

=
∞∑

r=r0+1


1
hr

∑
i∈Ir

|xn(i)|

(1− δ
4
)1/M


pr

≤
(

1
(1− δ

4
)1/M

)M ∞∑
r=r0+1

(
1
hr

∑
i∈Ir

|xn(i)|
)pr

(3.1.18)

implies

∞∑
r=r0+1

 1

hr

∑
i∈Ir

|xn(i)|

pr

> 1−
δ

4
(3.1.19)

for all n > n1. By the inequality (3.1.11), (3.1.15) and (3.1.19), it follows that, for

any n > n1

ϱ(xn + x) =
r0∑
r=1

 1

hr

∑
i∈Ir

|xn(i) + x(i)|

pr

+
∞∑

r=r0+1

 1

hr

∑
i∈Ir

|xn(i) + x(i)|

pr

≥
3δ

4
+

∞∑
r=r0+1

 1

hr

∑
i∈Ir

|xn(i)|

pr

−
δ

4

≥
3δ

4
+ (1−

δ

4
)−

δ

4

≥ 1 +
δ

4
.

Since ϱ ∈ ∆s
2, by Lemma 2.2.9, there exists τ depending on δ only such that

∥ xn + x ∥≥ 1 + τ,

which implies that lim
n→∞

inf ∥ xn + x ∥≥ 1 + τ . This completes the proof.

By the facts presented in section 2.5, we get the following results:

Corollary 3.1.12. The space lp(θ) has the uniform Opial property.

3.2 On the property (H) and the uniform opial property of

generalized Cesàro sequence spaces

In this section, we prove the property (H) and the uniform opial property of

generalized Cesàro sequence space ces(p)(q). Let M = sup pk < ∞ for all k ≥ 1.

The following results are very important for our consideration.
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Proposition 3.2.1. The functional ϱ is a convex modular on ces(p)(q).

Proof. Let x, y ∈ ces(p)(q). It is obvious that ϱ(x) = 0 if and only if x = 0 and

ϱ(αx) = ϱ(x) for scalar α with |α| = 1. Let α ≥ 0 and β ≥ 0 with α + β = 1. By

the convexity of the function t 7→ |t|pk for all k ≥ 1, we have

ϱ(αx+ βy) =
∞∑
k=1

(
1

Qk

k∑
i=1

|αqix(i) + βqiy(i)|

)pk

≤
∞∑
k=1

(
α

1

Qk

k∑
i=1

|qix(i)|+ β
1

Qk

k∑
i=1

|qiy(i)|

)pk

≤ α
∞∑
k=1

(
1

Qk

k∑
i=1

|qix(i)|

)pk

+ β
∞∑
k=1

(
1

Qk

k∑
i=1

|qiy(i)|

)pk

= αϱ(x) + βϱ(y).

This completes the proof.

Proposition 3.2.2. For all x ∈ ces(p)(q), the modular ϱ on ces(p)(q) satisfies the

following properties:

(i) If 0 < a < 1, then aMϱ(x
a
) ≤ ϱ(x) and ϱ(ax) ≤ aϱ(x);

(ii) If a > 1, then ϱ(x) ≤ aMϱ(x
a
);

(iii) If a ≥ 1, then ϱ(x) ≤ aϱ(x) ≤ ϱ(ax).

Proof. (i) Let 0 < a < 1. Then, we have

ϱ(x) =
∞∑
k=1

(
1

Qk

k∑
i=1

|qix(i)|

)pk

=
∞∑
k=1

(
a

Qk

k∑
i=1

|qix(i)
a

|

)pk

=
∞∑
k=1

apk

(
1

Qk

k∑
i=1

|qix(i)
a

|

)pk

≥
∞∑
k=1

aM

(
1

Qk

k∑
i=1

|qix(i)
a

|

)pk

= aM
∞∑
k=1

(
1

Qk

k∑
i=1

|qix(i)
a

|

)pk

= aMϱ(
x

a
).
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Thus, by convexity of modular ϱ, we have ϱ(ax) ≤ aϱ(x) and so (i) is obtained.

(ii) Let a > 1. Then, we have

ϱ(x) =
∞∑
k=1

(
1

Qk

k∑
i=1

|qix(i)|

)pk

=
∞∑
k=1

apk

(
1

Qk

k∑
i=1

|qix(i)
a

|

)pk

≤ aM
∞∑
k=1

(
1

Qk

k∑
i=1

|qix(i)
a

|

)pk

= aMϱ

(
x

a

)
.

Hence (ii) is satisfies. (iii) follows from the convexity of ϱ. This completes the

proof.

Proposition 3.2.3. For any x ∈ ces(p)(q), we have

(i) If ∥x∥ < 1, then ϱ(x) ≤ ∥x∥;

(ii) If ∥x∥ > 1, then ϱ(x) ≥ ∥x∥;

(iii) ∥x∥ = 1 if and only if ϱ(x) = 1;

(iv) ∥x∥ < 1 if and only if ϱ(x) < 1;

(v) ∥x∥ > 1 if and only if ϱ(x) > 1.

Proof. (i) Let ε > 0 be such that 0 < ε < 1 − ∥x∥ and so ∥x∥ + ε < 1. By the

definition of ∥ · ∥, there exits λ > 0 such that ∥x∥+ ε > λ and ϱ(x
λ
) ≤ 1. By (i) and

(iii) of Proposition 3.2.2, we have

ϱ(x) ≤ ϱ

(
(∥x∥+ ε)

λ
x

)
= ϱ

(
(∥x∥+ ε)

x

λ

)
≤ (∥x∥+ ε)ϱ

(x
λ

)
≤ ∥x∥+ ε,

which implies that ϱ(x) ≤ ∥x∥. Hence (i) is satisfies.

(ii) Let ε > 0 such that 0 < ε < ∥x∥−1
∥x∥ . Then 0 < (1 − ε)∥x∥ ≤ ∥x∥. By the

definition of ∥ · ∥ and Proposition 3.2.2(i), we have

1 < ϱ(
x

(1− ε)∥x∥
) <

1

(1− ε)∥x∥
ϱ(x),
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and so (1− ε)∥x∥ < ϱ(x) for all ε ∈ (0, ∥x∥−1
∥x∥ ), which implies that ∥x∥ ≤ ϱ(x).

(iii) Assume that ∥x∥ = 1. Let ε > 0. Then there exits λ > 0 such that

1 + ε > λ > ∥x∥ and ϱ(x
λ
) ≤ 1. By Proposition 3.2.2(ii), we have

ϱ(x) ≤ λMϱ(
x

λ
) ≤ λM < (1 + ε)M ,

and so (ϱ(x))
1
M < 1 + ε for all ε > 0, which implies that ϱ(x) ≤ 1. If ϱ(x) < 1,

let a ∈ (0, 1) such that ϱ(x) < aM < 1. From Proposition 3.2.2(i), we have ϱ(x
a
) ≤

1
aM
ϱ(x) < 1. Hence ∥x∥ < a < 1, which is a contradiction. Thus we have ϱ(x) = 1.

Conversely, assume that ϱ(x) = 1. If ∥x∥ > 1, by (ii), we get ϱ(x) ≥ ∥x∥ > 1,

which is a contradiction. Thus ∥x∥ ≤ 1. Suppose that ∥x∥ < 1. Then it follows

from (i) that ϱ(x) ≤ ∥x∥ < 1, which is a contradiction. Thus we obtain ∥x∥ = 1.

(iv) follows from (i) and (iii), (v) follows from (iii) and (iv). This completes the

proof.

Proposition 3.2.4. For any x ∈ ces(p)(q), we have

(i) If 0 < a < 1 and ∥x∥ > a, then ϱ(x) > aM ;

(ii) If a ≥ 1 and ∥x∥ < a, then ϱ(x) < aM .

Proof. (i) Let 0 < a < 1 and ∥x∥ > a. Then ∥x
a
∥ > 1. Thus by Proposition 3.2.3(v),

we have ϱ(x
a
) > 1. Hence, by Proposition 3.2.2(i), we have ϱ(x) ≥ aMϱ(x

a
) > aM

and so we obtain (i).

(ii) Suppose a ≥ 1 and ∥x∥ < a. Then ∥x
a
∥ < 1. Thus by Proposition 3.2.3(iv),

we have ϱ(x
a
) < 1. If a = 1, it is obvious that ϱ(x) < 1 = aM . If a > 1, then, by

Proposition 3.2.2(ii), we obtain ϱ(x) ≤ aMϱ(x
a
) < aM . This completes the proof.

Proposition 3.2.5. Let {xn} be a sequence in ces(p)(q).

(i) If ∥xn∥ → 1 as n→ ∞, then ϱ(xn) → 1 as n→ ∞;

(ii) If ϱ(xn) → 0 as n→ ∞, then ∥xn∥ → 0 as n→ ∞.

Proof. (i) Assume that ∥xn∥ → 1 as n → ∞. Let ε ∈ (0, 1). Then there exists a

positive integer N such that 1 − ε < ∥xn∥ < 1 + ε for all n ≥ N . By Proposition

3.2.4, we have (1 − ε)M < ϱ(xn) < (1 + ε)M for all n ≥ N, which implies that

ϱ(xn) → 1 as n→ ∞.
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(ii) Suppose that ∥xn∥ 9 0 as n → ∞. Then there exists ε ∈ (0, 1) and a

subsequence (xnk
) of (xn) such that ∥xnk

∥ > ε for all k ≥ 1. By Proposition 3.2.4(i)

we obtain ϱ(xnk
) > (ε)M for all k ≥ 1. This implies that ϱ(xn) 9 0 as n→ ∞. This

completes the proof.

Lemma 3.2.6. Let x ∈ ces(p)(q) and {xn} ⊆ ces(p)(q). If ϱ(xn) → ϱ(x) as n → ∞

and xn(i) → x(i) as n→ ∞ for all i ≥ 1, then xn → x as n→ ∞.

Proof. Let ε > 0 be given. Since ϱ(x) =
∑∞

k=1

(
1
Qk

∑k
i=1 |qix(i)|

)pk
< ∞, there

exists a positive integer k0 such that

∞∑
k=k0+1

(
1

Qk

k∑
i=1

|qix(i)|

)pk

<
ε

3 · 2M+1
. (3.2.1)

Since

ϱ(xn)−
k0∑
k=1

(
1

Qk

k∑
i=1

|qixn(i)|

)pk

→ ϱ(x)−
k0∑
k=1

(
1

Qk

k∑
i=1

|qix(i)|

)pk

and xn(i) → x(i) as n→ ∞ for all i ≥ 1, there exists a positive integer n0 such that

ϱ(xn)−
k0∑
k=1

(
1
Qk

k∑
i=1

|qixn(i)|
)pk

< ϱ(x)−
k0∑
k=1

(
1
Qk

k∑
i=1

|qix(i)|
)pk

+
ε

3 · 2M
(3.2.2)

for al n ≥ n0 and
k0∑
k=1

(
1

Qk

k∑
i=1

|qixn(i)− qix(i)|

)pk

<
ε

3
(3.2.3)

for al n ≥ n0. It follow from (3.2.1), (3.2.2) and (3.2.3) that, for all n ≥ n0,

ϱ(xn − x) =
∞∑
k=1

(
1
Qk

k∑
i=1

|qixn(i)− qix(i)|
)pk

=
k0∑
k=1

(
1
Qk

k∑
i=1

|qixn(i)− qix(i)|
)pk

+
∞∑

k=k0+1

(
1
Qk

k∑
i=1

|qixn(i)− qix(i)|
)pk

<
ε

3
+ 2M

(
∞∑

k=k0+1

(
1
Qk

k∑
i=1

|qixn(i))|
)pk)

+2M
(

∞∑
k=k0+1

(
1
Qk

k∑
i=1

|qix(i))|
)pk)
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=
ε

3
+ 2M

(
ϱ(xn)−

k0∑
k=1

(
1
Qk

k∑
i=1

|qixn(i)|
)pk)

+2M
(

∞∑
k=k0+1

(
1
Qk

k∑
i=1

|qix(i))|
)pk)

<
ε

3
+ 2M

ϱ(x)− k0∑
k=1

(
1
Qk

k∑
i=1

|qix(i)|
)pk

+
ε

3 · 2M


+2M

(
∞∑

k=k0+1

(
1
Qk

k∑
i=1

|qix(i))|
)pk)

=
ε

3
+ 2M

 ∞∑
k=k0+1

(
1
Qk

k∑
i=1

|qix(i)|
)pk

+
ε

3 · 2M


+2M

(
∞∑

k=k0+1

(
1
Qk

k∑
i=1

|qix(i))|
)pk)

=
ε

3
+ 2M

2
∞∑

k=k0+1

(
1
Qk

k∑
i=1

|qix(i)|
)pk

+
ε

3 · 2M


<

ε

3
+
ε

3
+
ε

3

= ε.

This show that ϱ(xn − x) → 0 as as→ ∞. Hence, by Proposition 3.2.5(ii), we have

∥xn − x∥ → 0 as → ∞. This completes the proof.

Theorem 3.2.7. The space ces(p)(q) has the property (H).

Proof. Let x ∈ S(ces(p)(q)) and {xn} ⊆ ces(p)(q) such that ∥xn∥ → 1 and xn
w→ x

as n → ∞. By Proposition 3.2.3(iii), we have ϱ(x) = 1, it follow form Proposition

3.2.5(i) that ϱ(xn) → ϱ(x) as n → ∞. Since the mapping πi : ces(p)(q) → R

defined by πi(y) = y(i) is a continuous linear functional on ces(p)(q), it follow that

xn(i) → x(i) as n → ∞ for all i ≥ 1. Thus, by Lemma 3.2.6, we obtain xn → x

as n → ∞ and hence the space ces(p)(q) has the property (H). This completes the

proof.

Corollary 3.2.8. For any 1 < p <∞, the space cesp(q) has the property (H).

Corollary 3.2.9. [40, Theorem 2.6] The space ces(p) has the property (H).

Corollary 3.2.10. For any 1 < p <∞, the space cesp has the property (H).
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Theorem 3.2.11. The space ces(p)(q) has the uniform Opial property.

Proof. Take any ε > 0 and x ∈ ces(p)(q) with ∥x∥ ≥ ε. Let {xn} be a weakly null

sequence in S(ces(p)(q)). By supk≥1 pk < ∞, i.e., ϱ ∈ ∆s
2, and Lemma 2.2.8, there

exists δ ∈ (0, 1) independent of x such that ϱ(x) > δ. Also, by ϱ ∈ ∆s
2 and Lemma

2.2.7, there exists δ1 ∈ (0, δ) such that

|ϱ(y + z)− ϱ(y)| <
δ

4
(3.2.4)

whenver ϱ(y) ≤ 1 and ϱ(z) ≤ δ1. Choose a positive integer k0 such that

∞∑
k=k0+1

(
1

Qk

k∑
i=k0+1

|qix(i)|

)pk

<

∞∑
k=k0+1

(
1

Qk

k∑
i=1

|qix(i)|

)pk

<
δ1
4
. (3.2.5)

So, we have

δ <
k0∑
k=1

(
1
Qk

k∑
i=1

|qix(i)|
)pk

+
∞∑

k=k0+1

(
1
Qk

k∑
i=1

|qix(i)|
)pk

≤
k0∑
k=1

(
1
Qk

k∑
i=1

|qix(i)|
)pk

+
δ1

4
,

(3.2.6)

which implies that

k0∑
k=1

(
1
Qk

k∑
i=1

|qix(i)|
)pk

> δ −
δ1

4
> δ −

δ

4
=

3δ

4
. (3.2.7)

Since xn
w→ 0, there exists a positive integer n0 such that

3δ

4
≤

k0∑
k=1

(
1

Qk

k∑
i=1

|qixn(i) + qix(i)|

)pk

(3.2.8)

for all n > n0 since the weak convergence implies the coordinatewise convergence.

Again, by xn
w→ 0, there exists a positive integer n1 such that

∥ xn|ko ∥< 1−
(
1−

δ

4

) 1
M

(3.2.9)

for all n > n1, where pk ≤M for all k ≥ 1. Hence, by the triangle inequality of the

norm, we get

∥ xn|N−ko
∥>
(
1−

δ

4

) 1
M

. (3.2.10)
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It follows from Proposition 3.2.3(v) , that

1 < ϱ

(
xn|N−ko(
1− δ

4

) 1
M

)
=

∞∑
k=k0+1


1
Qk

k∑
i=k0+1

|qixn(i)|

(1− δ
4
)

1
M


pk

≤
(

1

(1− δ
4
)

1
M

)M ∞∑
k=k0+1

(
1
Qk

k∑
i=k0+1

|qixn(i)|
)pk

(3.2.11)

implies

∞∑
k=k0+1

(
1
Qk

k∑
i=k0+1

|qixn(i)|
)pk

> 1−
δ

4
(3.2.12)

for all n > n1. By the inequalities (3.2.4), (3.2.5), (3.2.8), and (3.2.12), it follows

that, for any n > n1,

ϱ(xn + x)

=
k0∑
k=1

(
1
Qk

k∑
i=1

|qixn(i) + qix(i)|
)pk

+
∞∑

k=k0+1

(
1
Qk

k∑
i=1

|qixn(i) + qix(i)|
)pk

≥
k0∑
k=1

(
1
Qk

k∑
i=1

|qixn(i) + qix(i)|
)pk

+
∞∑

k=k0+1

(
1
Qk

k∑
i=k0+1

|qixn(i) + qix(i)|
)pk

≥
3δ

4
+

∞∑
k=k0+1

(
1
Qk

k∑
i=k0+1

|qixn(i)|
)pk

−
δ

4

≥
3δ

4
+ (1−

δ

4
)−

δ

4

≥ 1 +
δ

4
.

Since ϱ ∈ ∆s
2, by Lemma 2.2.9, there exists τ depending on δ only such that

∥ xn + x ∥≥ 1 + τ,

which implies that lim
n→∞

inf ∥ xn + x ∥≥ 1 + τ . This completes the proof.

Corollary 3.2.12. For any 1 < p < ∞, the space cesp(q) has the uniform Opial

property.

Corollary 3.2.13. [57, Theorem 2.6] The space ces(p) has the uniform Opial prop-

erty.

Corollary 3.2.14. [6, Theorem 2] For any 1 < p < ∞, the space cesp has the

uniform Opial property.




