
CHAPTER 2 PRELIMINARIES

The aim of this chapter is to give some definitions, notations and theorems that

will be used in the later chapters. Throughout this study, we let N and R stand for

the set of natural numbers and set of real numbers, respectively, and CB(X) stand

for the class of all nonempty closed bounded subsets of X. The space of all real

sequences is denoted by w. For x ∈ w, i ∈ N, we denote

ei = (

i−1︷ ︸︸ ︷
0, 0, · · · , 0, 1, 0, 0, 0, · · · ),

x |i= (x(1), x(2), x(3), · · · , x(i), 0, 0, 0, · · · ),

x |N−i= (0, 0, 0, · · · , x(i+ 1), x(i+ 2), · · · ).

2.1 Metric spaces, normed spaces, sequence spaces and

ordered sets

Definition 2.1.1. A metric space is an order pair (X, d), where X is a nonempty set

and d a metric on X, that is, d : X ×X → R is a mapping satisfying the following

conditions:

(i) d(x, y) ≥ 0 for all x, y ∈ X;

(ii) d(x, y) = 0 if and only if x = y;

(iii) d(x, y) = d(y, x) for all x, y ∈ X;

(iv) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Example 2.1.2. Let d : R× R → R be a mapping define by

d(x, y) = |x− y|

for all x, y ∈ R. Then d is a metric on R and d is called a usual metric.

Example 2.1.3. Let X = R2 and define a mapping d : R2 × R2 → R by

d((x1, y1), (x2, y2)) =
√
(x1 − x2)2 + (y1 − y2)2

for all (x1, x2), (y1, y2) ∈ R2. Then d is a metric on R2.
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Example 2.1.4. Let X be an arbitrary set and define a mapping d : X ×X → R

by

d(x, y) =

 0, x = y;

1, x ̸= y.

Then d is a metric on X and we called that discrete metric.

Example 2.1.5. Let X = {f : [a, b] → R : f is continuous on [a, b]} and define a

mapping d : X ×X → R by

d(f, g) = max
x∈[a,b]

|f(x)− g(x)|

for all f, g ∈ X. Then d is a metric on X.

Definition 2.1.6. An ordered set is a relational structure (X,≼) such that the

relation “≼” is an ordering.

Definition 2.1.7. A partial order is a binary relation “≼” over a set X which

satisfies the following conditions : for all a, b, and c in X,

(i) a ≼ a (reflexivity);

(ii) if a ≼ b and b ≼ a then a = b (antisymmetry);

(iii) if a ≼ b and b ≼ c then a ≼ c (transitivity).

Definition 2.1.8. A function of positive integer variable, designated by f(n) or xn,

for all n ≥ 1, is called a sequence. The sequence x1, x2, · · · is also designated briefly

by {xn}.

Definition 2.1.9. A sequence {xn} in a metric space (X, d) is said to convergent

to a point x ∈ X if, for any ε > 0, there exists N ∈ N such that

d(xn, x) < ε

for all n ≥ N . In such case, we write xn → x or lim
n→∞

xn = x and x is called the limit

of the sequence {xn}.

Definition 2.1.10. A sequence {xn} in a metric space (X, d) is called a Cauchy

sequence if, for any ε > 0, there exits N ∈ N such that

d(xn, xm) < ε

for all n,m ≥ N .
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Definition 2.1.11. A metric space (X, d) is said to be complete if every Cauchy

sequence in X converges to a point in X.

Definition 2.1.12. A subset M of metric space (X, d) is said to be closed if, any

sequence {xn} in M such that lim
n→∞

xn = x, we have x ∈M .

Definition 2.1.13. Let (X, d) be a metric space, a ∈ X and B ⊆ X. The distance

from a point a to B ⊆ X is given by

d(a,B) = inf{d(a, b) : b ∈ B}.

Definition 2.1.14. Let X be a vecter space (or linear space). A norm on X is

a nonnegative real-valued function on X, written as ∥ · ∥, satisfying the following

conditions: for all x, y ∈ X and scalar α;

(i) ∥x∥ = 0 if and only if x = 0;

(ii) ∥αx∥ = |α|∥x∥;

(iii) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (the triangle inequality).

A vecter space X equipped with a norm ∥ · ∥ is called a normed space.

Every normed space gives rise to the metric d(x, y) = ∥x − y∥. It is called the

metric induced by the norm ∥ · ∥.

Definition 2.1.15. A complete normed space is called a Banach space.

Definition 2.1.16. A sequence space is a linear space whose members are sequences.

If X is sequence space and x ∈ X, the jth term of x is denote by x(j), that is,

x = {x(j)}∞j=1.

Definition 2.1.17. Let X be a normed space. The closed unit ball of X is the set

{x ∈ X : ∥x∥ ≤ 1}, which is denoted by B(X). The unit sphere of X is the set

{x ∈ X : ∥x∥ = 1}, which is denoted by S(X).

Definition 2.1.18. A real-valued continuous function f : R → R is said to be

convex if

f
(u+ v

2

)
≤ f(u) + f(v)

2
(2.1.1)

for all u, v ∈ R. If, in addition, the two sides of (2.1.1) are not equal for all u ̸= v,

then we call f strictly convex.
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2.2 Modular spaces and Modular metric spaces

Modular spaces

Definition 2.2.1. For a real linear space X, a function ρ : X → [0,∞] is called a

modular if it satisfies the following conditions:

(i) ρ(x) = 0 if and only if x = 0;

(ii) ρ(αx) = ρ(x) for all scalar α with |α| = 1;

(iii) ρ(αx+ βy) ≤ ρ(x) + ρ(y) for all x, y ∈ X and all α, β ≥ 0 with α + β = 1.

The modular ρ is said to be convex if

(iv) ρ(αx+ βy) ≤ αρ(x) + βρ(y) for all x, y ∈ X and all α, β ≥ 0 with α+ β = 1.

Example 2.2.2. Let (X, ∥ · ∥) be a normed space. Then ρ(x) = ∥x∥ is a convex

modular.

Example 2.2.3. Let X = Lp(a, b), where 0 < p < 1. Then

ρ(x) =

∫ b

a

|x(t)|pdt

is a p−convex modular.

Example 2.2.4. Let X = R and ρ(x) = |x|/(1 + |x|). Then ρ is modular (non-

convex modular).

Definition 2.2.5. For a modular ρ on X, the space Xρ = {x ∈ X : ρ(λx) → 0 as

λ→ 0+} is called the modular space.

Definition 2.2.6. A modular ρ is said to satisfy the ∆2 − condition (shortly,

ρ ∈ ∆2) if, for any ε > 0, there exist constants K ≥ 2 and a > 0 such that

ρ(2u) ≤ Kρ(u) + ε

for all u ∈ Xρ with ρ(u) ≤ a. If ρ satisfies the ∆2 − condition for any a > 0 with

K ≥ 2 dependent on a, then we say that ρ is the stong ∆2 − condition (shortly,

ρ ∈ ∆s
2).



8

Lemma 2.2.7. [28, Lemma 2.1] If ρ ∈ ∆s
2, then, for any L > 0 and ε > 0, there

exists δ = δ(L, ε) > 0 such that

|ρ(u+ v)− ρ(u)| < ε

whenever u, v ∈ Xρ with ρ(u) ≤ L and ρ(v) ≤ δ.

Lemma 2.2.8. [28, Lemma 2.3] The convergences in Luxemburg norm and in mod-

ular are equivalent in Xρ if ρ ∈ ∆2.

Lemma 2.2.9. [28, Lemma 2.4] If ρ ∈ ∆s
2, then, for any ε > 0 there exists δ =

δ(ε) > 0 such that ∥ x ∥≥ 1 + δ whenever ρ(x) ≥ 1 + ε.

Definition 2.2.10. Let Xρ be a modular space.

(1) The sequence {xn} in Xρ is said to be ρ-convergent to a point x ∈ Xρ (shortly,

xn
ρ→ x) if ρ(xn − x) → 0 as n→ ∞.

(2) The sequence {xn} in Xρ is called a ρ-Cauchy sequence if ρ(xn − xm) → 0 as

n,m→ ∞.

(3) A subset C of Xρ is said to be ρ − closed if the ρ − limit of a ρ-convergent

sequence of C always belongs to C.

(4) A subset C of Xρ is said to be ρ− complete if every ρ-Cauchy sequence in C

is ρ− convergent to a point in C.

(5) A subset C of Xρ is said to be ρ− bounded if

δρ(C) = sup{ρ(x− y) : x, y ∈ C} <∞.

Definition 2.2.11. Let Xρ be a modular space. A mappings T : Xρ → Xρ is said

to be continuous at a point x0 ∈ Xρ if, for any sequence {xn} in Xρ with xn
ρ→ x

we have T (xn)
ρ→ T (x) as n→ ∞.

Definition 2.2.12. [29] Let Xρ be a modular space, where ρ satisfies the ∆2 −

condition. Two self-mappings T and f of Xρ are said to be ρ − compatible if

ρ(Tfxn − fTxn) → 0 as n → ∞, whenever {xn} is a sequence in Xρ such that

fxn → z and Txn → z for some point z ∈ Xρ.
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Modular metric spaces Let X be a nonempty set and λ ∈ (0,∞).

Due to the disparity of the arguments, a function ω : (0,∞)×X ×X → [0,∞] will

be written as ωλ(x, y) = ω(λ, x, y) for all λ > 0 and x, y ∈ X.

Definition 2.2.13. [30] Let X be a nonempty set. A function ω : (0,∞)×X×X →

[0,∞] is called a metric modular on X is satisfies the following condition: for all

x, y, z ∈ X,

(i) ωλ(x, y) = 0 for all λ > 0 if and only if x = y;

(ii) ωλ(x, y) = ωλ(y, x) for all λ > 0;

(iii) ωλ+µ(x, y) ≤ ωλ(x, z) + ωµ(z, y) for all λ, µ > 0.

If, instead of (i), we have only the following condition:

(i′) ωλ(x, x) = 0 for all λ > 0, then ω called a (metric) pseudomodular on X.

If ωλ(x, y) = ω(x, y) does not depend on λ > 0 and has only finite values, then

the axioms (i)-(iii) mean that ω is a metric on X if (i) is replaced by (i′).

Example 2.2.14. Let λ > 0 and x, y ∈ X. Define a mapping ω : (0,∞)×X×X →

[0,∞] by

ωλ(x, y) =

 ∞, if x ̸= y,

0, if x = y.

Then ω is a metric modular on X.

Example 2.2.15. Let (X, d) be a metric space , λ > 0 and x, y ∈ X. Define a

mapping ω : (0,∞)×X ×X → [0,∞] by

ωλ(x, y) =
d(x, y)

φ(λ)
,

where φ : (0,∞) → (0,∞) is a nondecreasing function. Then ω is a metric modular

on X.

The main property of a (pseudo) modular ω on a set X is as follows: for all

x, y ∈ X, the function 0 < λ 7→ ωλ(x, y) ∈ [0,∞] is a nonincreasing on (0,∞). In

fact, if 0 < µ < λ, then (iii), (i′) and (ii) imply

ωλ(x, y) ≤ ωλ−µ(x, x) + ωµ(x, y) = ωµ(x, y). (2.2.1)
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It follows that, at each point λ > 0, the right limit ωλ+0(x, y) := lim
ϵ→+0

ωλ+ϵ(x, y),

the left limit ωλ−0(x, y) := lim
ε→+0

ωλ−ε(x, y) exist in [0,∞] and the following two

inequalities hold:

ωλ+0(x, y) ≤ ωλ(x, y) ≤ ωλ−0(x, y). (2.2.2)

Definition 2.2.16. [30] A function ω : (0,∞) × X × X → [0,∞] is said to be a

convex (metric) modular on X if it is satisfies the conditions (i) and (ii) in Definition

2.2.13 and the following condition holds;

(iv) ωλ+µ(x, y) ≤ λ
λ+µ

ωλ(x, z) +
µ

λ+µ
ωµ(z, y) for all λ, µ > 0 and x, y, z ∈ X.

If, instead of (i), we have only the condition (i′) in Definition 2.2.13, then ω is

called a convex (metric) pseudomodular on X.

From [30, 31], if x0 ∈ X, the set Xω = {x ∈ X : lim
λ→∞

ωλ(x, x0) = 0} is called a

modular set. We note that condition of Xω is an anlogue of the condition of Xρ and

the set Xω is a metric space with a metric is given by

d◦ω(x, y) = inf{λ > 0 : ωλ(x, y) ≤ λ}

for all x, y ∈ Xω (see Theorem 2.6 in [30]). Furthermore, if ω is convex, then the

modular set Xω is equal to

X∗
ω = {x ∈ X : ∃λ = λ(x) > 0 such that ωλ(x, x0) <∞}

and metrizable by

d∗ω(x, y) = inf{λ > 0 : ωλ(x, y) ≤ 1}

for all x, y ∈ X∗
ω. We know that (see [30, Theorem 3.11]) if X is a real linear space,

ρ : X → [0,∞] and we set

ωλ(x, y) = ρ

(
x− y

λ

)
(2.2.3)

for all λ > 0 and x, y ∈ X, then ρ is modular (convex modular) on X in the

sense of Definition 2.2.1 if and only if ω is metric modular(convex metric modular,

respectively) on X. On the other hand, if ω satisfy the following two conditions

(a) ωλ(µx, 0) = ωλ/µ(x, 0) for all λ, µ > 0 and x ∈ X;

(b) ωλ(x+ z, y + z) = ωλ(x, y) for all λ > 0 and x, y, z ∈ X.
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For any x ∈ X, if we set ρ(x) = ω1(x, 0) with (2.2.3), then

(i) Xρ = Xω(0) is a linear subspace of X and the functional ∥x∥ρ = d◦ω(x, 0),

x ∈ Xρ is an F -norm on Xρ;

(ii) if ω is convex, X∗
ρ ≡ X∗

ω(0) = Xρ is a linear subspace of X and the functional

∥ x ∥ρ= d∗ω(x, 0) for any x ∈ X∗
ρ is a norm on X∗

ρ .

Similar assertions hold if we replace the word modular by pseudomodular. If ω

is metric modular in X, then the set Xω is called a modular metric space.

By the some properties of metric spaces and modular spaces, we have the fol-

lowing:

Definition 2.2.17. Let Xω be a modular metric space.

(1) The sequence {xn} in Xω is said to be convergent to a point x ∈ Xω if

ωλ(xn, x) → 0 as n→ ∞ for all λ > 0.

(2) The sequence {xn} in Xω is called a Cauchy sequence if ωλ(xm, xn) → 0 as

m,n→ ∞ for all λ > 0.

(3) A subset C of Xω is said to be closed if the limit of a convergent sequence of

C always belong to C.

(4) A subset C of Xω is said to be complete if every Cauchy sequence in C is a

convergent sequence and its limit is in C.

(5) A subset C of Xω is said to be bounded if, for all λ > 0,

δω(C) = sup{ωλ(x, y); x, y ∈ C} <∞.

2.3 Lacunary sequence spaces

By a Lacunary sequence θ = (kr), where k0 = 0, we will mean an increasing

sequence of nonnegative integers with kr − kr−1 → ∞ as r → ∞. The intervals

determined by θ will be denoted by Ir = (kr−1, kr]. We write hr = kr − kr−1 and

the ratio kr/kr−1 will denoted by qr. The space of Lacunary strongly convergent

sequence Nθ was defined by Freedman et al. [32] as follow:
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Nθ =

{
x = (xk) : lim

r→∞

1

hr

∑
k∈Ir

|xk − l| = 0 for some l

}
.

It is well know that very closed connection between the space of Lacunary strongly

convergent sequence and the space of strongly Cesàro summability sequences. Some

more details can be found in [32, 33, 34, 35, 36].

Let p = (pr) be a bounded sequence of the positive real numbers. In 2007,

Karakaya [37] introduced the new sequence spaces l(p, θ) involving Lacunary se-

quence as follows:

l(p, θ) =

{
x = (x(i)) :

∞∑
r=1

(
1

hr

∑
i∈Ir

|x(i)|
)pr

<∞
}

(2.3.1)

and the paranorm on l(p, θ) is given by

∥ x ∥l(p,θ)=
( ∞∑

r=1

(
1

hr

∑
i∈Ir

|x(i)|
)pr) 1

M

, (2.3.2)

where M = supr pr. If pr = p for all r ≥ 1, then we use the notation lp(θ) in place

of l(p, θ). The norm on lp(θ) is given by

∥ x ∥lp(θ)=
( ∞∑

r=1

(
1

hr

∑
i∈Ir

|x(i)|
)p) 1

p

. (2.3.3)

By using the properties of the Lacunary sequence in the space l(p, θ), we get the

following sequences. If θ = (2r), then l(p, θ) = ces(p). If θ = (2r) and pr = p for all

r ∈ N, then l(p, θ) = cesp. For all x ∈ l(p, θ) defined the modular on l(p, θ) by

ϱ(x) =
∞∑
r=1

(
1

hr

∑
i∈Ir

|x(i)|
)pr

. (2.3.4)

The Luxemberg norm on l(p, θ) is defined by

∥ x ∥= inf{ε > 0 : ϱ(x
ε
) ≤ 1}.

The Luxemberg norm on lp(θ) can be reduced to a usual norm on lp(θ) (see [37]),

that is,

∥ x ∥=∥ x ∥lp(θ) .

Lemma 2.3.1. [37, Lemma 2.3] The functional ϱ is a convex modular on l(p, θ).

Lemma 2.3.2. [37, Lemma 2.5]
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(i) For any x ∈ l(p, θ), if ∥ x ∥< 1, then ϱ(x) ≤∥ x ∥.

(ii) For any x ∈ l(p, θ), ∥ x ∥= 1 if and only if ϱ(x) = 1.

(iii) For any x ∈ l(p, θ), ∥ x ∥> 1 if and only if ϱ(x) > 1.

2.4 Cesàro sequence spaces

Let w be the space of all real sequences. For 1 ≤ p < ∞, the Cesàro sequence

space (cesp, for short) is defined by

cesp = {x ∈ w :
∞∑
n=1

(
1

n

n∑
i=1

|x(i)|

)p

<∞}

equipped with the norm

∥x∥ =

(
∞∑
n=1

(
1

n

n∑
i=1

|x(i)|

)p) 1
p

. (2.4.1)

This space was first introduced by Shiue [38]. It is useful in the theory of matrix

operators and others (see [39]). In 2003, Suantai [40, 41] defined the generalized

Cesàro sequence space ces(p) when p = {pk} is a bounded sequence of positive real

numbers with pk ≥ 1 for all k ≥ 1 by

ces(p) =

{
x ∈ w : ϱ(λx) <∞ for some λ > 0

}
,

where

ϱ(x) =
∞∑
n=1

(
1

n

k∑
i=1

|x(i)|

)pn

equipped with the Luxemburg norm

∥x∥ = inf{ε > 0 : ϱ(x
ε
) ≤ 1}.

In the case of pk = p, 1 ≤ p < ∞, for all k ≥ 1, the generalized Cesàro sequence

space, ces(p), is the Cesàro sequence space, cesp, and the Luxemburg norm is ex-

pressed by the formula (2.4.1). In 2010, Khan [42] defined the generalized Cesàro

sequence space for 1 ≤ p < ∞ with is a bounded sequence q = (qk) of positive real

numbers by

cesp(q) =

{
x ∈ w :

(
∞∑
k=1

(
1
Qk

k∑
i=1

|qix(i)|
)p)1/p

<∞
}
,



14

where Qk =
n∑

k=1

qk , for all n ≥ 1. If qk = 1 for all k ≥ 1, then cesp(q) reduces to

cesp.

Now, we define the generalized Cesàro sequence space for bounded sequences

p = {pk} and q = {qk} of positive real numbers with pk ≥ 1 for all k ≥ 1 by

ces(p)(q) =

{
x ∈ w : ϱ(λx) <∞ for some λ > 0

}
,

where

ϱ(x) =
∞∑
k=1

(
1

Qk

k∑
i=1

|qix(i)|

)pk

with Qk =
n∑

k=1

qk and consider ces(p)(q) equipped with the Luxemburg norm

∥x∥ = inf{ε > 0 : ϱ(x
ε
) ≤ 1}.

Thus we see that pk = p, 1 ≤ p <∞, for all k ≥ 1, then ces(p)(q) reduces to cesp(q)

and, if qk = 1 for all k ≥ 1, then ces(p)(q) reduces to ces(p).

2.5 Geometric properties of Banach spaces

Let the (X, ∥ · ∥) be a real Banach space. Let B(X) and S(X) be the closed unit

ball and the unit sphere of X, respectively. For any subset A of X, we denote by

conv(A) (resp., (conv(A)) the convex hull (resp., the closed convex hull) of A.

Definition 2.5.1. A Banach space X is said to have the property (H) if, for any

sequence {xn} in X and x ∈ X such that xn
w→ x and ∥xn∥ → ∥x∥, we have xn → x

as n→ ∞.

Definition 2.5.2. A point x ∈ S(X) is called an extreme point of B(X) if, for any

sequence y, z ∈ S(X), the inequality 2x = y + z implies y = z.

Definition 2.5.3. A point x ∈ S(X) is called a locally uniformly rotund point of

B(X) (LUR-point, for short) if, for any sequence {xn} in B(X) such that ∥xn+x∥ →

2 as n→ ∞, we have ∥xn − x∥ → 0 as n→ ∞.

Definition 2.5.4. A Banach space X is said to be rotund (R) (or strictly convex

(SC)) if every point of S(X) is an extreme point of B(X). If every point of S(X)

is a LUR-point of B(X), then X is said to be locally uniformly rotund (LUR).
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Definition 2.5.5. A Banach space X is said to be uniformly rotund (UR) (or

uniformly convex (UC)) if, for any ε > 0, there exists δ > 0 such that, for all

x, y ∈ S(X), the inequality ∥x− y∥ > ε implies∥∥∥∥12(x+ y)

∥∥∥∥ < 1− δ.

Definition 2.5.6. A sequence {xn} of element X is called an ε-separated sequence

for some ε > 0 if

sep(xn) = inf{∥xn − xm∥ : n ̸= m} ≥ ε.

Definition 2.5.7. A Banach space X is said to have the uniform Kadec-Klee prop-

erty (for short, (UKK)) if, for any ε > 0, there exists δ > 0 such that, for any

sequence {xn} in S(X) with sep(xn) > ε and xn
w→ x, we have ∥x∥ < 1− δ.

Definition 2.5.8. A Banach space X is said to nearly uniformly convex (for short,

(NUC)) if, for any ε > 0, there exists δ ∈ (0, 1) such that, for any {xn} ⊂ B(X)

with sep(xn) ≥ ε, we have

conv(xn ∩ ((1− δ)B(X)) ̸= ∅.

Definition 2.5.9. A Banach space X is said to have the drop property (for short,

(D)) if, for every closed set C disjoint with B(X), there exists x ∈ C such that

D(x,B(x)) ∩ C = {x},

where D(x,B(X)) = conv(B(X) ∪ {x}) such that x /∈ B(X).

Definition 2.5.10. A Banach space X is said to have the property (β) if, for every

ε > 0, there exists δ > 0 such that, for any x ∈ B(X) and each sequence {xn} in

B(X) with sep(xn) ≥ ε there exists an index k such that∥∥∥∥x+ xk
2

∥∥∥∥ ≤ 1− δ.

Rolewicz [43] showed that the property (β) follows from the uniform convexity

and the property (β) implies (NUC) and (NUC) implies property (D). He also

proved that a Banach space X has property (D), then X is reflexive [44]. Moreover,

the property (β) is different from both of them (see [45]). Montesions [46] extended

this result by showing that X has property (D) if and only if X is reflexive and
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property (H). It is also known that (UKK) implies the property (H). Summariz-

ing the above discussion, we have the foloowing:

(D) =⇒ (Rfx)

⇑
(UC) =⇒ the property(β) =⇒ (NUC) =⇒ (UKK) =⇒ the property (H),

where (Rfx) denotes the property of reflexivity (see [43, 46, 47, 48]). The con-

verse of these implications are not true, in general, such as Kutzarova [45] provided

an example of (NUC) space which does not have the property (β).

Definition 2.5.11. [49] A Banach space X is said to have Opial’s property if, for

any weakly null sequence {xn} and x ̸= 0 in X,

lim
n→∞

inf ∥ xn ∥≤ lim
n→∞

inf ∥ xn + x ∥.

Opial proved in [49] that the sequence space lp(1 < p < ∞) have this property,

but Lp[0, π](p ̸= 2, 1 < p <∞) do not have it. Opial’s property is important because

Banach spaces with this property have the weak fixed point property (see [50]).

Definition 2.5.12. [51] A Banach space X is said to have the uniform Opial

property if, for any ε > 0, there exists τ > 0 such that, for any weakly null sequence

{xn} in S(X) and x ∈ X with ∥ x ∥≥ ε,

1 + τ ≤ lim
n→∞

inf ∥ xn + x ∥.

2.6 Fixed points and best proximity points

Definition 2.6.1. Let X be an nonempty set and f, g : X → X be single-valued

mappings.

(1) A point x ∈ X is a fixed point of f if fx = x. The set of all fixed points of f

is denoted by F (f).

(2) A point x ∈ X is a common fixed point of f and g if x = fx = gx. The set of

all common fixed points of f and g is denoted by F (f, g).

Definition 2.6.2. [52] Let (X, d) be a metric space and f, g : X → X. The pair

(f, g) is said to be commuting if fgx = gfx for all x ∈ X.
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Let A and B be nonempty subsets of a metric space (X, d). We recall the

following notations and notions that will be used in what follows:

d(A,B) := inf{d(x, y) : x ∈ A and y ∈ B},

A0 := {x ∈ A : d(x, y) = d(A,B) for some y ∈ B},

B0 := {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}.

In the setting of normed spaces, if the sets A andB are closed such that d(A,B) >

0, then it follows that A0 and B0 are contained in the boundaries of A and B

respectively (see [53]).

Definition 2.6.3. A point x ∈ A is said to be a best proximity point of the mapping

S : A→ B if it satisfies the following condition:

d(x, Sx) = d(A,B).

It can be observed that a best proximity reduces to a fixed point if the underlying

mapping is a self-mapping.

Definition 2.6.4. Let S : A→ B and T : A→ B. An element x∗ ∈ A is said to be

a common best proximity point if it satisfies the following condition:

d(x∗, Sx∗) = d(x∗, Tx∗) = d(A,B).

Observe that a common best proximity point is an element at which the multi-

objective functions x 7→ d(x, Sx) and x 7→ d(x, Tx) attain a common global mini-

mum since d(x, Sx) ≥ d(A,B) and d(x, Tx) ≥ d(A,B) for all x.

Definition 2.6.5. A mapping T : A ∪ B → A ∪ B is called a cyclic mapping if

T (A) ⊂ B and T (B) ⊂ A.

Definition 2.6.6. [54] A mapping S : A→ B and T : A→ B is said to be commute

proximally if they satisfy the following condition:

[d(u, Sx) = d(v, Tx) = d(A,B)] =⇒ Sv = Tu

for all u, v, x ∈ A.
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It is easy to see that proximal commutativity of self-mappings become commu-

tativity of the mappings.

Definition 2.6.7. [54] A mapping S : A→ B and T : A→ B is said to be swapped

proximally if they satisfy the following condition:

[d(y, u) = d(y, v) = d(A,B), Su = Tv] =⇒ Sv = Tu

for all u, v,∈ A and y ∈ B.

Definition 2.6.8. [55] A mapping T : A → B is called a proximal contraction of

the first kind if there exists k ∈ [0, 1) such that

d(u, Tx) = d(A,B)

d(v, Ty) = d(A,B)

 =⇒ d(u, v) ≤ kd(x, y)

for all u, v, x, y ∈ A.

Definition 2.6.9. [55] A mapping T : A → B is called a proximal contraction of

the second kind if there exists k ∈ [0, 1) such that

d(u, Tx) = d(A,B))

d(v, Ty) = d(A,B)

 =⇒ d(Tu, Tv) ≤ kd(Tx, Ty)

for all u, v, x, y ∈ A.

It is easy to see that the self-mappings that is a proximal contraction of the first

kind and second kind are precisely a contraction.

Definition 2.6.10. Let S : A → B and T : B → A be two mappings. The pair

(S, T ) is called a proximal cyclic contraction pair if there exists k ∈ [0, 1) such that

d(a, Sx) = d(A,B)

d(b, Ty) = d(A,B)

 =⇒ d(a, b) ≤ kd(x, y) + (1− k)d(A,B)

for all a, x ∈ A and b, y ∈ B.

Definition 2.6.11. Let S : A→ B and g : A→ A be an isometry. The mapping S

is said to preserve the isometric distance with respect to g if

d(Sgx, Sgy) = d(Sx, Sy)

for all x, y ∈ A.
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Definition 2.6.12. A mapping T : A→ B is said to be increasing if

x ≼ y =⇒ Sx ≼ Sy

for all x, y ∈ A.

Definition 2.6.13. [56] A mapping T : A → B is said to be proximally order-

preserving if it satisfies the following condition:

x ≼ y

d(u, Tx) = d(A,B)

d(v, Ty) = d(A,B)

 =⇒ u ≼ v (2.6.1)

for all u, v, x, y ∈ A.

It is easy to observe that, for a self-mapping, the notion of proximally order-

preserving mapping reduces to that of increasing mapping.

Definition 2.6.14. A set A is said to be approximatively compact with respect to

a set B if every sequence {xn} in A satisfying the condition that d(y, xn) → d(y, A)

for some y ∈ B has a convergent subsequence.

We observe that every set is approximatively compact with respect to itself.

Also, every compact set is approximatively compact with respect to any set.




