APENDIX A

Experimental Data

A.1 Catalyst Preparation

PVA Protection Method

Example of 20% Au of Au/C catalyst preparation was discussed below;

	Catalysts 100 mg contain		ontain	\rightarrow	20 mg of Au 80 mg of carbon					
	Au	0.5	mg	was obta	ained fr	om	HAuCl ₄	1		mg
Thus,	Au	20	mg	was obta	ained fr	om	HAuCl ₄	4()	mg

40 mg of HAuCl₄ was weighed out and dissolved in 181.8 ml of water to obtain 110 $\mu g/ml$.

Next, 100 mg of PVA was weighed out and dissolved in 5 ml of water, and then about 0.2 ml was dropped into HAuCl₄ solution (2 % wt of PVA).

NaBH₄ were used with the mole ratio of NaBH₄:Au (4:1);NaBH₄ 0.1M was prepared by weighed out 0.0189 g and then dissolved in 5 ml of water. After that 4.7 ml of NaBH₄ was added dropwise in HAuCl₄ solution. The amounts of every component for preparing 20, 30 and 40 wt% Au/C were summarized in Table A.1, A.2 and A.3, respectively.

 Table A.1 The amount of substances used in preparing 20 wt% Au/C catalyst by PVA method

	Weigh (mg)	Dissolving in Water (ml)	Adding in HAuCl4 solution (ml)
1. HAuCl ₄	40	181.8	-
2. Carbon	80	-	-
3. PVA	100	5	0.2
4. NaBH ₄	0.0189	5	4.7

Table A.2	The amount	of substances	used in	preparing	30 wt%	Au/C	catalyst	by l	PVA
	method								

	Weigh (mg)	Dissolving in Water (ml)	Adding in HAuCl ₄ solution (ml)
1. HAuCl ₄	60	272.7	-
2. Carbon	70	-	-
3. PVA	100	5	0.3
4. NaBH ₄	0.0378	10	7.05

	Weigh (mg)	Dissolving in Water (ml)	Adding in HAuCl ₄ solution (ml)
1. HAuCl ₄	80	363.6	-
2. Carbon	60	-	-
3. PVA	100	5	0.4
4. NaBH ₄	0.0378	10	9.4

Table A.3 The amount of substances used in preparing 40 wt% Au/C catalyst by PVA method

Citrate Protection Method

Table A.4 The amount of substances used in preparing 20 wt% Au/C catalyst by citrate method

	Weigh (mg)	Dissolving in Water (ml)	Adding in HAuCl ₄ solution (ml)
1. HAuCl ₄	40	381	-
2. Carbon	80	-	-
3. tri-potassium citrate	44	4	4
4. tri-potassium citrate	0.0189	5	47
NaBH ₄	44	5	7./

Table A.5	The amount o	of substances	used in	preparing	30 wt%	Au/C	catalyst by	citrate
	method							

	Weigh (mg)	Dissolving in Water (ml)	Adding in HAuCl ₄ solution (ml)
1. HAuCl ₄	60	571.43	-
2. Carbon	70	-	-
3. tri-potassium citrate	66	6	6
4. tri-potassium citrate NaBH ₄	0.0378 132	10	7.05

	Weigh (mg)	Dissolving in Water (ml)	Adding in HAuCl4 solution (ml)
1. HAuCl ₄	80	762	-
2. Carbon	60	-	-
3. tri-potassium citrate	88	8	8
4. tri-potassium citrate	0.0378	10	0.4
$NaBH_4$	176	10	7.4

Table A.6 The amount of substances used in preparing 40 wt% Au/C catalyst by citrate method

A.2 Results of Atomic Absorption Spectroscopy

Catalyst	AAS _{result} (mg/L)	filtrate volume (ml)	Au _{Total} (g)	Au _s (g)	Support (g)	%Au _{deposited}
PVA method						
20% Au/untreated C	n.d.	197	0.02	0.0200	0.08	20.00
20% Au/treated C	n.d.	186	0.02	0.0200	0.08	20.00
30% Au/treated C	11	280	0.030	0.0270	0.07	27.81
40% Au/treated C	48.2	408	0.042	0.0226	0.06	27.35
Citrate method						
20% Au/untreated C	n.d.	387	0.02	0.0200	0.08	20.00
20% Au/treated C	n.d.	407	0.02	0.0200	0.08	20.00
30% Au/treated C	0.47	575	0.03	0.0296	0.0698	29.80
40% Au/treated C	5.9	780	0.04	0.0354	0.06	37.11

Table A.7 Results of AAS and calculation of Au deposition on carbon support

A.3 Transmission Electron Microscopy (TEM) image

There are many TEM images of each catalyst captured by National Metal and Materials Technology Center (MTEC). TEM images of each catalyst were taken at three magnifications, 40,000x, 100,00x and 200,000x.

PVA protection method

1. 20% Au/ untreated Carbon

Figure A.1 TEM image at magnification of 40,000x. of 20 wt% Au on untreated carbon

(b) **Figure A.2 (a)-(d)** TEM image at magnification of 100,000x. of 20 wt% Au on untreated carbon

(d) **Figure A.2 (a)-(d)** TEM image at magnification of 100,000x. of 20 wt% Au on untreated carbon (continue)

Figure A.3 TEM image at magnification of 200,000x. of 20 wt% Au on untreated carbon

2. 20% Au/ treated Carbon

(b) **Figure A.4 (a)-(b)** TEM image at magnification of 40,000x. of 20 wt% Au on treated carbon

(b) **Figure A.5 (a)-(e)** TEM image at magnification of 100,000x. of 20 wt% Au on treated carbon

(d) **Figure A.5 (a)-(e)** TEM image at magnification of 100,000x. of 20 wt% Au on treated carbon (continue)

(e) **Figure A.5 (a)-(e)** TEM image at magnification of 100,000x. of 20 wt% Au on treated carbon (continue)

Figure A.6 TEM image at magnification of 200,000x. of 20 wt% Au on treated carbon

3. 30% Au/ treated Carbon

(b) **Figure A.7 (a)-(b)** TEM image at magnification of 40,000x. of 30 % wt Au on treated carbon

(b) **Figure A.8 (a)-(d)** TEM image at magnification of 100,000x. of 30 wt% Au on treated carbon

(d) **Figure A.8 (a)-(d)** TEM image at magnification of 100,000x. of 30 wt% Au on treated carbon (continue)

(b) **Figure A.9 (a)-(b)** TEM image at magnification of 200,000x. of 30 wt% Au on treated carbon

4. 40% Au/ treated Carbon

Figure A.10 TEM image at magnification of 40,000x. of 40 % wt Au on treated carbon

(b) **Figure A.11 (a)-(f)** TEM image at magnification of 100,000x. of 40 wt% Au on treated carbon

(d) **Figure A.11 (a)-(f)** TEM image at magnification of 100,000x. of 40 wt% Au on treated carbon (continue)

(f) **Figure A.11 (a)-(f)** TEM image at magnification of 100,000x. of 40 wt% Au on treated carbon (continue)

Figure A.12 TEM image at magnification of 200,000x. of 40 wt% Au on treated carbon

Citrate protection method

1. 20% Au/ untreated Carbon

Figure A.13 TEM image at magnification of 40,000x. of 20 wt% Au on untreated carbon

(b) **Figure A.14 (a)-(e)** TEM image at magnification of 100,000x. of 20 wt% Au on untreated carbon

(d) **Figure A.14 (a)-(e)** TEM image at magnification of 100,000x. of 20 wt% Au on untreated carbon (continue)

(e) **Figure A.14 (a)-(e)** TEM image at magnification of 100,000x. of 20 wt% Au on untreated carbon (continue)

Figure A.15 TEM image at magnification of 200,000x. of 20 wt% Au on untreated carbon

2. 20% Au/ treated Carbon

Figure A.16 TEM image at magnification of 40,000x. of 20 % wt Au on treated carbon

(b) **Figure A.17 (a)-(e)** TEM image at magnification of 100,000x. of 20 %wt Au of Au/C by citrate protection method on treated carbon

(d) **Figure A.17 (a)-(e)** TEM image at magnification of 100,000x. of 20 %wt Au of Au/C by citrate protection method on treated carbon (continue)

(e) **Figure A.17 (a)-(e)** TEM image at magnification of 100,000x. of 20 %wt Au of Au/C by citrate protection method on treated carbon (continue)

(b) **Figure A.18 (a)-(b)** TEM image at magnification of 200,000x. of 20 wt% Au on treated carbon

3. 30% Au/ treated Carbon

Figure A.19 TEM image at magnification of 40,000x. of 30 %wt Au on treated carbon

Figure A.20 TEM image at magnification of 100,000x. of 30 wt% Au on treated carbon

(d)

Figure A.20 TEM image at magnification of 100,000x. of 30 wt% Au on treated carbon (continue)

Figure A.20 TEM image at magnification of 100,000x. of 30 wt% Au on treated carbon (continue)

Figure A.21 TEM image at magnification of 200,000x. of 30 wt% Au on treated carbon.

4. 40% Au/ treated C

Figure A.22 TEM image at magnification of 40,000x. of 40 wt% Au on treated carbon.

(b) **Figure A.23 (a)-(f)** TEM image at magnification of 100,000x. of 40 wt% Au on treated carbon

(d) **Figure A.23 (a)-(f)** TEM image at magnification of 100,000x. of 40 wt% Au on treated carbon (continue)

(f) **Figure A.23 (a)-(f)** TEM image at magnification of 100,000x. of 40 wt% Au on treated carbon (continue)

(b) **Figure A.24 (a)-(b)** TEM image at magnification of 200,000x. of 40 wt% on treated carbon

A.4 Electrochemical Surface Area (ESA)

The example to determine the ESA of 20 wt% Au catalyst by PVA method;

Reduction Peak Area = $\frac{0.0055732 \text{ C/cm}^2 \text{ (G.C)}}{0.000386 \text{ C/cm}^2 \text{Au}}$ \longrightarrow From CV result (Table A.7) \longrightarrow From Literature [16] = 14.44 cm²Au /cm²(G.C)

Ink volume 0.2 ml contain catalyst 10 mg

Thus, Ink volume 0.0114 ml contain catalyst 0.057 mg

Since, G.C. area = 0.2827 cm^2 , the amount of are catalyst on electrode per crossectional area of electrode was equal to

$$\frac{0.057 \text{ mg cat}}{0.2827 \text{ cm}^2 \text{ (G.C.)}} = 0.2016 \text{ mg cat/ cm}^2 \text{ (G.C.)}$$

There are 20 wt% of Au on catalyst, thus the amount of Au per crossectional area of electrode was

 $0.2016 \times 0.2 = 0.0403 \text{ mg Au/cm}^2(G.C)$ $ESA = \frac{14.44 \text{ cm}^2 \text{Au/cm}^2(G.C)}{0.0403 \text{ mgAu/cm}^2(G.C)}$ $cm^2 \text{Au/cm}^2(G.C)$

$$ESA=358.10 \frac{\text{cm} \text{ Au}/\text{cm}^2(\text{G.C})}{\text{mgAu}/\text{cm}^2(\text{G.C})}$$

Table A.8 Reduction Peak Area used to determine the ESA

Thus,

Catalyst	Reduction Peak Area (C/cm²)						
Catalyst	(set 1)	(set 2)	(set 3)				
PVA method							
20% Au/ untreated C	0.0055732	0.0058280	0.0049212				
20%Au/ treated C	0.0052525	0.0056989	0.0047427				
30%Au/ treated C	0.0060622	0.0058588	0.0062568				
40% Au/ treated C	0.0056798	0.0046540	0.0050430				
Citrate method							
20% Au/ untreated C	0.0043392	0.0048039	0.0039633				
20%Au/ treated C	0.0042643	0.0049486	0.0033474				
30%Au/ treated C	0.0062427	0.0066683	0.0067422				
40% Au/ treated C	0.0057020	0.0053630	0.0044400				