Biological Activities of Cordyline fruticosa Leaves and Synthesis
of Xanthene Derivatives using Hexabromoacetone
12
Mr. Christian Kurnia Putra
Dr. Oraphin Chantarasriwong
Dr. Choladda Srisuwannaket
Master of Science
Chemistry
Chemistry
Science
2014

Abstract

This research work contains biological activities of Cordyline fruticosa Back leaves and synthesis of xanthenes derivatives using hexabromoacetone. Methanol (MeOH), ethyl acetate (EtOAc) and hexane extracts from C. fruticosa Back leaves were measured for antioxidant and antibacterial activities. All extracts showed potent antioxidant activity on DPPH radical scavenging (IC₅₀ 0.94-8.19 mg/mL) and FRAP assay (9.58-31.36 mmol Fe^{2+} eq/g) with the strongest activities of EtOAc extract. All extracts also presented the potent Fe^{2+} chelating activity (IC₅₀ 0.91-3.89 mg/mL) with the highest activity of hexane extract. In the Folin-Ciocalteau assay, MeOH extract showed the highest total phenolic content $(41.91 \pm 1.32 \text{ mg GAE/g})$ but performed low antibacterial activity against Bacillus cereus, Salmonella thypii and Streptococcus sobrinus with a diameter of inhibition zone of 9.1, 8.1 and 8.1 mm, respectively at a concentration of 500 ppm. Furthermore, a novel and efficient method for the synthesis of xanthene derivatives using hexabromoacetone (Br₃CCOCBr₃) has been established under solventfree conditions. The reaction of various aromatic aldehydes with β -naphthol, 5,5dimethyl-1,3-cyclohexanedione or 5-methyl-1,3-cyclohexanedione in the presence of 5% mol Br₃CCOCBr₃ was successfully applied, providing the desired products in excellent yields at short reaction times.

Keywords: Antibacterial Activity/ Antioxidant Activity/ *Cordyline fruticosa* Back/ Hexabromoacetone/ Solvent-Free Conditions/ Xanthene Derivatives

ACKNOWLEDGEMENTS

First of all, I would like to give thanks to my Lord, Jesus Christ, who gives me love and strength during my study in Thailand and makes these all possible under his merciful guidance.

Foremost, I would like to express my special appreciation and sincere gratitude to my advisor, Dr. Oraphin Chantarasriwong, for her continuous support of my study, patience, motivation and immense knowledge in all the time of research and thesis writing. I could not have imagined to have a better advisor and mentor like her.

I also gratefully acknowledge my co-advisor, Dr. Choladda Srisuwannaket, for her advice, care and crucial contribution for my work. Also, to the rest of thesis committee, Dr. Withawat Mingvanish, Dr. Nakorn Niamnont and Asst. Prof. Dr. Wanchai Pluempanupat, for their encouragements, brilliant comments and suggestions for this research.

I also want to declare my thankfulness to all staff and faculty member of Faculty of Science, King Mongkut's University of Technology Thonburi, Thailand, for their kindness, learning amenities and research facilities. My sincere thanks also goes to all staff, lecturers and team member at Faculty of Forestry and International Excellent Program, Mulawarman University, Indonesia, who facilitate and mediate this international program. In addition, I would like to thank to Beasiswa Kaltim Cemerlang Scholarship East Kalimantan Provincial Government, Indonesia, for their financial support during my study in Thailand.

Last but not least, I would like to thank to all my Indonesian friends, Thai buddies, colleagues and all people who cannot be mentioned one by one. And, the special thanks are dedicated to my family member, particularly, my lovely father, mother, sister and fiancée, for their supports, prayers, cares and loves. Thank you so much and God bless you all.

CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENTS	ii
CONTENTS	iii
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF SCHEMES	xii
LIST OF TECHNICAL VOCABULARY AND ABBREVIATIONS	xiii

CHAPTER

1.	INTRO	DUCTION	1
	1.1	Objectives	1
	1.2	Scope of Research	1
	1.3	Expected Benefits	2

2.	ANTIC	OXIDANT AND ANTIBACTERIAL ACTIVITIES OF LEAVES	3
	EXTR	ACTS OF Cordyline fruticosa Back	
	2.1	Introduction	3
	2.1.1	Traditional Utilization of <i>Cordyline fruticosa</i> Back	4

2.1.1	Huddional Otheration of Corayine francosa Back	
2.1.2	Research Relations of Cordyline fruticosa Back	4
2.2	Experimental	5
2.2.1	Instruments and Chemicals	5
2.2.2	Plant Sample	6
2.2.3	Extract Preparations	6
2.2.4	Phytochemical Screening	6
2.2.5	Antioxidant Activity	8
2.2.5.1	DPPH Radical Scavenging Activity	8
2.2.5.2	Ferric Reducing Antioxidant Power Assay	8
2.2.5.3	Fe ²⁺ Chelating Activity	8
2.2.6	Total Phenolic Contents	9
2.2.7	Antibacterial Activity	9

CONTENTS (Cont.)

		PAGE
2.3	Results and Discussion	9
2.3.1	Extract Preparations	9
2.3.2	Phytochemical Screening	10
2.3.3	Antioxidant Activity	11
2.3.3.1	DPPH Radical Scavenging Activity	11
2.3.3.2	Ferric Reducing Antioxidant Power Assay	13
2.3.3.3	Fe ²⁺ Chelating Activity	14
2.3.4	Total Phenolic Contents	15
2.3.5	Antibacterial Activity	17
SYNTH	ESIS OF XANTHENE DERIVATIVES USING HEXA-	19
BROM	DACETONE UNDER SOLVENT-FREE CONDITIONS	
3.1	Introduction	19
3.1.1	Classical Methods for the Synthesis of Xanthenes	20
3.1.2	Literature Reviews on the Synthesis of 14-(Aryl)-14H-	20
	dibenzo[a,j]xanthenes	
3.1.3	Literature Reviews on the Synthesis of 9-(Aryl)-3,3,6,6-	22
	tetramethyl-1,8-dioxo-octahydroxanthenes	
3.1.4	Literature Reviews on the Synthesis of 12-(Aryl)-9,9-dimethyl-	23
	8,9,10,12-tetrahydrobenzo[a]xanthene-11-ones	
3.1.5	Literature Reviews on Halogenating Agents for the Synthesis of	24
	Xanthenes	
3.1.6	Literature Reviews on Hexabromoacetone (Br ₃ CCOCBr ₃) in the	26
	Organic Synthesis	
3.2	Experimental	26
3.2.1	Instruments and Equipment	26
3.2.2	Chemicals	26
3.2.3	General Procedure for the Synthesis of Xanthenes	27
3.2.3.1	General Procedure for the Synthesis of 14-(Aryl)-14H-	27
	dibenzo[<i>a</i> , <i>j</i>]xanthenes	

3.

CONTENTS (Cont.)

	J	PAGE
3.2.3.2	General Procedure for the Synthesis of 9-(Aryl)-3,3,6,6-	28
	tetramethyl-1,8-dioxo-octahydroxanthenes	
3.2.3.3	General Procedure for the Synthesis of 9-(Aryl)-3,6-	30
	dimethyl-1,8-dioxo-octahydroxanthenes	
3.2.3.4	General Procedure for the Synthesis of 12-(Aryl)-9,9-	31
	dimethyl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-ones	
3.2.3.5	General Procedure for the Synthesis of 12-(Aryl)-9-methyl-	33
	8,9,10,12-tetrahydrobenzo[a]xanthene-11-ones	
3.2.3.6	General Procedure for the Synthesis of 9-(Aryl)-3,3,6-	35
	trimethyl-1,8-dioxo-octahydroxanthenes	
3.3	Results and Discussion	37
3.3.1	Condition Optimization for the Synthesis of Xanthenes	37
3.3.2	Synthesis of 14-(Aryl)-14 <i>H</i> -dibenzo[<i>a</i> , <i>j</i>]xanthenes	39
3.3.3	Synthesis of 9-(Aryl)-3,3,6,6-tetramethyl-1,8-dioxo-octahydro-	42
	xanthenes	
3.3.4	Synthesis of 9-(Aryl)-3,6-dimethyl-1,8-dioxo-octahydroxanthene	s 46
3.3.5	Synthesis of 12-(Aryl)-9,9-dimethyl-8,9,10,12-tetrahydro-	49
	benzo[a]xanthene-11-ones	
3.3.6	Synthesis of 12-(Aryl)-9-methyl-8,9,10,12-tetrahydrobenzo[a]-	52
	xanthene-11-ones	
3.3.7	Synthesis of 9-(Aryl)-3,3,6-trimethyl-1,8-dioxo-octahydro-	55
	xanthenes	
3.3.8	Proposed Reaction Mechanism for the Synthesis of Xanthene	58
	Derivatives	
CONCL	USION	60
4.1	Conclusion	60

4.2 Suggestion for Further Work 60

REFFERENCES

4.

61

CONTENTS (Cont.)

	PA	GE
APPENDIX		
А	Experimental Data of Antioxidant Activity of Leaves Extracts from	74
	Cordyline fruticosa Back	
В	The ¹ H NMR Spectrum of New Compounds of Xanthene	85
	Derivatives	

CURRICULUM VITAE

105

LIST OF TABLES

ТАВ	LE	PAGE
2.1	Phytochemical screening test of Cordyline fruticosa Back leaves extracts	10
2.2	DPPH scavenging activity of leaves extract of Cordyline fruticosa Back	12
2.3	FRAP assay of leaves extract of Cordyline fruticosa Back	13
2.4	Fe ²⁺ chelating activity of leaves extract of <i>Cordyline fruticosa</i> Back	15
2.5	Total phenolic contents of leaves extracts of Cordyline fruticosa Back	16
2.6	Antibacterial activity of MeOH extract of Cordyline fruticosa Back	17
3.1	Developed methods for the synthesis of 14-(aryl)-14 <i>H</i> -dibenzo[<i>a</i> , <i>j</i>]xanthenes	21
	in the presence of various catalysts	
3.2	Developed methods for the synthesis of 9-(aryl)-3,3,6,6-tetramethyl-1,8-	22
	dioxo-octahydroxanthenes in the presence of various catalysts	
3.3	Developed methods for the synthesis of 12-(aryl)-9,9-dimethyl-8,9,10,12-	23
	tetrahydrobenzo[a]xanthene-11-ones in the presence of various catalysts	
3.4	Effect of the amount of Br ₃ CCOCBr ₃ and temperature on the synthesis of 14-	38
	phenyl-14 <i>H</i> -dibenzo[<i>a</i> , <i>j</i>]xanthene	
3.5	Synthesis of 14-(aryl)-14 <i>H</i> -dibenzo[<i>a</i> , <i>j</i>]xanthenes in the presence of	39
	Br ₃ CCOCBr ₃ at 110 °C	
3.6	Synthesis of 9-(aryl)-3,3,6,6-tetramethyl-1,8-dioxo-octahydroxanthenes in the	42
	presence of Br ₃ CCOCBr ₃ at 100 °C	
3.7	Synthesis of 9-(aryl)-3,6-dimethyl-1,8-dioxo-octahydroxanthenes in the	46
	presence of Br ₃ CCOCBr ₃ at 100 °C	
3.8	Synthesis of 12-(aryl)-9,9-dimethyl-8,9,10,12-tetrahydrobenzo[a]xanthene-11	- 49
	ones in the presence of Br ₃ CCOCBr ₃ at 110 °C	
3.9	Synthesis of 12-(aryl)-9-methyl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-	52
	ones in the presence of Br ₃ CCOCBr ₃ at 110 °C	
3.10	Synthesis of 9-(aryl)-3,3,6-trimethyl-1,8-dioxo-octahydroxanthenes in the	55
	presence of Br ₃ CCOCBr ₃ at 100 °C	
A.1	Inhibition activity of DPPH scavenging assay of MeOH extract	75
A.2	Inhibition activity of DPPH scavenging assay of EtOAc extract	76
A.3	Inhibition activity of DPPH scavenging assay of hexane extract	77
A.4	Inhibition activity of DPPH scavenging assay of ascorbic acid	78

LIST OF TABLES (Cont.)

TABLE		PAGE
A.5	Reducing activity of leaves extracts of Cordyline fruticosa Back	79
A.6	Inhibition activity of Fe ²⁺ chelating assay of MeOH extract	80
A.7	Inhibition activity of Fe ²⁺ chelating assay of EtOAc extract	81
A.8	Inhibition activity of Fe ²⁺ chelating assay of hexane extract	82
A.9	Inhibition activity of Fe ²⁺ chelating assay of EDTA	83
A.10	Total phenolic content of leaves extracts of Cordyline fruticosa Back	84

LIST OF FIGURES

FIGU	URE	PAGE
2.1	Cordylinefruticosa Back	4
2.2	Calibration curve of gallic acid	16
2.3	Antibacterial plates of Bacillus cereus (A), Salmonella thypii (B) and	18
	Streptococcus sobrinus (C)	
3.1	Core structure of xanthenes: tricyclic dibenzopyran	19
3.2	Chemical structure of hexabromoacetone	26
3.3	The ¹ H NMR spectrum of 14-(4- <i>tert</i> -butylphenyl)-14 <i>H</i> -dibenzo[<i>a</i> , <i>j</i>]-	41
	xanthene (4d)	
3.4	The ¹ H NMR spectrum of 9-(4- <i>tert</i> -butylphenyl)-3,3,6,6-tetramethyl-1,8-	45
	dioxo-octahydroxanthene (5d)	
3.5	The ¹ H NMR spectrum of 9-(4-methoxyphenyl)-3,6-dimethyl-1,8-dioxo-	48
	octahydroxanthene (6b)	
3.6	The ¹ H NMR spectrum of 12-(4- <i>tert</i> -butylphenyl)-9,9-dimethyl-8,9,10,12-	51
	tetrahydrobenzo[a]xanthene-11-one (7d)	
3.7	The ¹ H NMR spectrum of 12-phenyl-9-methyl-8,9,10,12-tetrahydro-	54
	benzo[<i>a</i>]xanthene-11-one (8a)	
3.8	The ¹ H NMR spectrum of 9-phenyl-3,3,6-trimethyl-1,8-dioxo-octahydro-	57
	xanthene (9a)	
A.1	DPPH scavenging activity graph of MeOH extract	75
A.2	DPPH scavenging activity graph of EtOAc extract	76
A.3	DPPH scavenging activity graph of hexane extract	77
A.4	DPPH scavenging activity graph of ascorbic acid	78
A.5	Ferric reducing activity graph of FeSO ₄ .7H ₂ O	79
A.6	Fe ²⁺ chelating activity graph of MeOH extract	80
A.7	Fe ²⁺ chelating activity graph of EtOAc extract	81
A.8	Fe ²⁺ chelating activity graph of hexane extract	82
A.9	Fe ²⁺ chelating activity graph of EDTA	83
A.10	Total phenolic content graph of gallic acid	84
B .1	The ¹ H NMR spectrum of 9-(4-methylphenyl)-3,6-dimethyl-1,8-dioxo-	86
	octahydroxanthene (6c)	

LIST OF FIGURES (Cont.)

FIGU	URE	PAGE
B.2	The ¹ H NMR spectrum of 9-(4-chlorophenyl)-3,6-dimethyl-1,8-dioxo-	87
	octahydroxanthene (6d)	
B.3	The ¹ H NMR spectrum of 9-(3-hydroxylphenyl)-3,6-dimethyl-1,8-dioxo-	88
	octahydroxanthene (6e)	
B.4	The ¹ H NMR spectrum of 9-(2-methoxyphenyl)-3,6-dimethyl-1,8-dioxo-	89
	octahydroxanthene (6g)	
B.5	The ¹ H NMR spectrum of 9-(2-chlorophenyl)-3,6-dimethyl-1,8-dioxo-	90
	octahydroxanthene (6h)	
B.6	The ¹ H NMR spectrum of 12-(4-methoxyphenyl)-9-methyl-8,9,10,12-	91
	tetrahydrobenzo[a]xanthene-11-one (8b)	
B.7	The ¹ H NMR spectrum of 12-(4- <i>tert</i> -butylphenyl)-9-methyl-8,9,10,12-	92
	tetrahydrobenzo[a]xanthene-11-one (8c)	
B.8	The ¹ H NMR spectrum of 12-(3-chlorophenyl)-9-methyl-8,9,10,12-	93
	tetrahydrobenzo[a]xanthene-11-one (8e)	
B.9	The ¹ H NMR spectrum of 12-(2-hydroxyphenyl)-9-methyl-8,9,10,12-	94
	tetrahydrobenzo[a]xanthene-11-one (8f)	
B.10	The ¹ H NMR spectrum of 12-(2-methoxyphenyl)-9-methyl-8,9,10,12-	95
	tetrahydrobenzo[a]xanthene-11-one (8g)	
B. 11	The ¹ H NMR spectrum of 12-(2-chlorophenyl)-9-methyl-8,9,10,12-	96
	tetrahydrobenzo[a]xanthene-11-one (8h)	
B.12	The ¹ H NMR spectrum of 9-(4-methoxyphenyl)-3,3,6-trimethyl-1,8-dioxo-	97
	octahydroxanthene (9b)	
B.13	The ¹ H NMR spectrum of 9-(4-methylphenyl)-3,3,6-trimethyl-1,8-dioxo-	98
	octahydroxanthene (9c)	
B.14	The ¹ H NMR spectrum of 9-(4-chlorophenyl)-3,3,6-trimethyl-1,8-dioxo-	99
	octahydroxanthene (9d)	
B.15	The ¹ H NMR spectrum of 9-(3-hydroxyphenyl)-3,3,6-trimethyl-1,8-dioxo-	100
	octahydroxanthene (9e)	
B.16	The ¹ H NMR spectrum of 9-(3-chlorophenyl)-3,3,6-trimethyl-1,8-dioxo-	101
	octahydroxanthene (9f)	

LIST OF FIGURES (Cont.)

FIGURE		
B.17	The ¹ H NMR spectrum of 9-(3-nitrophenyl)-3,3,6-trimethyl-1,8-dioxo-	102
	octahydroxanthene (9g)	
B.18	The ¹ H NMR spectrum of 9-(2-methoxyphenyl)-3,3,6-trimethyl-1,8-dioxo-	103
	octahydroxanthene (9h)	
B.19	The ¹ H NMR spectrum of 9-(2-chlorophenyl)-3,3,6-trimethyl-1,8-dioxo-	104
	octahydroxanthene (9i)	

LIST OF SCHEMES

SCH	PAGE	
2.1	DPPH reaction mechanism	12
3.1	General equation for the synthesis of xanthene derivatives	37
3.2	Proposed reaction mechanism for the synthesis of 14-(aryl)-14H-	59
	dibenzo[a,j]xanthenes	

LIST OF TECHNICAL VOCABULARY AND ABBREVIATIONS

a.t.	=	ambient temperature
cm	=	centimeter
DCE	=	1,2-dichloroethane
DMAC	=	dimethyl acetamide
DPPH	=	1,1-dipheny-2-picrylhydrazyl
g	=	gram
GAE	=	gallic acid equivalent
h	=	hour
IC ₅₀	=	half maximal inhibitory concentration
L	=	liter
m	=	meter
mg	=	milligram
min	=	minute
mL	=	milliliter
mM	=	millimolar
mm	=	millimeter
mmol	=	millimol
MW	=	microwave
nm	=	nanometer
ppm	=	part per million
TPTZ	=	2,4,6-tris(2-pyridyl)-s-triazine
μg	=	microgram
μL	=	microliter
μΜ	=	micromolar
°C	=	degree in celsius