F.1 Calculations of Vapor Organics Concentration

Calculation of vapor methanol concentration:

From vapor methanol calibration curve: $y = 5 \times 10^{-08} x + 1 x 10^{-08}$ Where y is the vapor methanol concentration (mol/ml) x is the peak area (V.s)

To find vapor methanol concentration by using: $y = (5 \times 10^{-08} \times x) + 1 \times 10^{-08}$

Example,

Time (h)	Peak Area (V.s)				
	1	2	3	Average	
1.00	5.36	5.72	5.26	5.45	

At time 1.00 h; $y = (5 \times 10^{-08} \times 5.45) + 1 \times 10^{-08} = 2.82 \times 10^{-7} \text{ mol/ml}$

F.2 Calculations of fluxes

Calculation of flux:

Permeate flux (J) (mol/m².h) is defined as

$$J = \frac{n}{At} \tag{2.1}$$

where n is the mol of permeate A is the effective membrane area

t is the time of the experiment

Example,

Effective membrane area = $5.31 \times 10^{-4} \text{ m}^2$ Mol of permeated methanol = $2.82 \text{ x} 10^{-7} \text{ mol/ml}$ Dry air flow rate = 50 ml/min

$$J = \frac{2.82 \times 10^{-7} \frac{\text{mol}}{\text{ml}} \times 50 \frac{\text{ml}}{\text{min}} \times 60 \frac{\text{min}}{\text{h}}}{5.31 \times 10^{-4} \text{ m}^2}$$

$$J=1.593 \text{ mol}/(\text{m}^2.\text{h})$$

F.2 Calculations of Permeability

F.2.1 Calculation of Permeability for PV:

Permeability of component i (P_i) (mol.m/ m².h.kPa) is defined as

$$P_i = \frac{J_i \ l}{(x_i^F \gamma_i P_i^{sat} - y_i^P P^P)}$$
(2.2)

where

J_i	is the permeate flux of component <i>i</i>
l	is the membrane thickness
x_i^F	is the mole fraction of component <i>i</i> in feed
γi	is the activity coefficient of component <i>i</i> in feed
P_i^{sat}	is the vapor pressure of component <i>i</i> in feed
y_i^P	is the mole fraction of component <i>i</i> in permeate
P^{P}	is the permeate total pressure

Activity coefficient (γ_i) calculated from Non-Random Two Liquid model (NRTL) whereas, the variables in this model gets from program Aspen Engineering Suite 2006.

Vapor pressure (P_i^{sat}) calculated from Antoine's equations

F.2.1.1 Calculation of Permeability for single-component:

From Table G.2.1 Show fluxes and permeability of pure methanol (100 wt %) as a feed for PV $\,$

Time (h)	Flux (mol/m ² .h)			Permeability (mol.m/m ² .h.kPa)		
Time (ii)	1	2	3	1	2	3
1.00	1.572	1.673	1.543	1.07E-06	1.14E-06	1.05E-06

Membrane thickness (l) = $46 \times 10^{-6} \text{ m}$

Flux (J) = 1.572 mol/ m².h Activity coefficient (γ_i) = 1 Vapor pressure (P^{sat}) = 68.34 kPa Permeate pressure (P^P) = 0.76 kPa

$$P = \frac{1.572 \text{ mol/m}^2 \text{.h} \times 46 \times 10^{-6} \text{m}}{(1 \times 1 \times 68.34 - 0.76)}$$

 $P = 1.07 \times 10^{-6} \text{ mol.m/m}^2.\text{h.kPa}$

F.2.1.2 Calculation of Permeability for bi-component:

From **Table G.6.1** Show fluxes and permeability of methanol/ethanol (20:80 wt %) mixture as a feed for PV

Fluxes and permeability of methanol

Time (h)	Flux (mol/m ² .h)			Permeability (mol.m/m ² .h.kPa)		
	1	2	3	1	2	3
1.00	0.163	0.106	0.129	4.16E-07	2.72E-07	3.30E-07

Membrane thickness (l) = $46 \times 10^{-6} \text{ m}$

Flux (J)	$= 0.163 \text{ mol/ } \text{m}^2.\text{h}$	
Activity coefficient (γ_i)	= 1.01599	; from Appendix E
Vapor pressure (P ^{sat})	= 68.34 kPa	
Permeate pressure (P ^P)	= 0.060 kPa	; from Appendix C

 $P = \frac{0.163 \text{ mol/ } \text{m}^2.\text{h} \times 46 \times 10^{-6}\text{m}}{[(0.26 \times 1.01599 \times 68.34) - 0.060]}$

 $P = 4.16 \times 10^{-7} \text{ mol.m/m}^2 \text{ h.kPa}$

Fluxes and permeability of ethanol

Time (h)	Flux (mol/m ² .h)			Permeability (mol.m/m ² .h.kPa)		
Time (ii)	1	2	3	1	2	3
1.00	0.001	0.001	0.001	1.68E-09	1.68E-09	1.68E-09

Membrane thickness $(l) = 46 \times 10^{-6} \text{ m}$					
Flux (J)	$= 0.001 \text{ mol/ } \text{m}^2.\text{h}$				
Activity coefficient (γ_i)	= 0.99613	; from Appendix E			
Vapor pressure (P ^{sat})	= 37.42 kPa				
Permeate pressure (P^P)	= 0.021 kPa	; from Appendix C			

 $P = \frac{0.001 \text{ mol/ } \text{m}^2.\text{h} \times 46 \times 10^{-6}\text{m}}{[(0.74 \times 0.99613 \times 37.42) - 0.021]}$

 $P = 1.68 \times 10^{-9} \text{ mol.m/m}^2.\text{h.kPa}$

F.2.2 Calculation of Permeability for VP:

Permeability of component i (P_i) (mol.m/m².h.kPa) is defined as

$$P_i = \frac{J_i \ l}{(P_i^F - P_i^P)} \tag{2.3}$$

where

 J_i is the permeate flux of component *i*

l is the membrane thickness

 P_i^{F} is the partial pressure of component *i* in feed

 P_i^{P} is the partial pressure of component *i* in permeate

F.2.2.1 Calculation of Permeability for single-component:

From Table G.2.2 Show fluxes and permeability of pure methanol (100 wt %) as a feed for VP $\,$

Time (h)	Flux (mol/m ² .h)			Permeability (mol.m/m ² .h.kPa)		
Time (II)	1	2	3	1	2	3
1.00	1.128	1.196	-	7.67E-07	8.13E-07	-

Membrane thickness $(l) = 46 \times 10^{-6} \text{ m}$ Flux $(J) = 1.128 \text{ mol/ m}^2.\text{h}$ Vapor pressure $(P_i^{\text{F}}) = 68.34 \text{ kPa}$ Permeate pressure $(P^{\text{P}}) = 0.67 \text{ kPa}$; from Appendix C

$$P = \frac{1.128 \text{ mol/ } \text{m}^2.\text{h} \times 46 \times 10^{-6}\text{m}}{(68.34 - 0.67 \text{ kPa})}$$

 $P = 7.67 \times 10^{-7} \text{ mol.m/m}^2.\text{h.kPa}$

F.2.2.2 Calculation of Permeability for bi-component:

From **Table G.6.2** Show fluxes and permeability of methanol/ethanol (20:80 wt %) mixture as a feed for VP

Fluxes and permeability of methanol

Time (h)	Flux (mol/m ² .h)			Permeability (mol.m/m ² .h.kPa)		
Time (ii)	1	2	3	1	2	3
1.00	0.254	0.197	0.189	6.23E-07	4.82E-07	4.63E-07

Membrane thickness $(l) = 46 \times 10^{-6} \text{ m}$

Flux (J)	$= 0.254 \text{ mol/ } \text{m}^2.\text{h}$	
Partial pressure (P _i ^F)	= 18.87 kPa	; from Appendix D
Permeate pressure (P^P)	= 0.098 kPa	; from Appendix C

 $P = \frac{0.254 \text{ mol/} \text{m}^2.\text{h} \times 46 \times 10^{-6}\text{m}}{(18.87 - 0.098)}$

 $P = 6.23 \times 10^{-7} \text{ mol.m/m}^2.\text{h.kPa}$

Fluxes and permeability of ethanol

Time (h)	Flux (mol/m ² .h)			Permeability (mol.m/m ² .h.kPa)		
Time (ii)	1	2	3	1	2	3
1.00	0.001	0.001	0.001	2.32E-09	2.32E-09	2.32E-09

Membrane thickness (l) = $46 \times 10^{-6} \text{ m}$					
Flux (J)	$= 0.001 \text{ mol/ } \text{m}^2.\text{h}$				
Partial pressure (P _i ^F)	= 25.76 kPa	; from Appendix D			
Permeate pressure (P^P)	= 0.012 kPa	; from Appendix C			

$$P = \frac{0.001 \text{ mol/m}^2 \cdot h \times 46 \times 10^{-6} \text{m}}{(25.76 - 0.012)}$$

 $P = 2.32 \times 10^{-9} \text{ mol.m/m}^2.\text{h.kPa}$