LIST OF FIGURES

FIGUI	FIGURE	
2.1	Principle of membranes process	3
2.2	Schematic diagram of the pervaporation process	4
2.3	Schematic diagram of the vapor permeation	5
2.4	The separation mechanism in carbon membrane	7
2.5	Structural formula of Kapton® polyimide	10
2.6	Structure and pyrolysis process of Kapton® polyimide	10
3.1	Schematic diagrams of the pervaporation apparatus	17
3.2	Schematic diagrams of the vapor permeation apparatus	18
4.1.	Pervaporation fluxes as a function of time for	22
	(a) methanol, ethanol, IPA and acetone and	
	(b) ethanol, IPA and acetone	
4.2.	Vapor fluxes as a function of time for	23
	(a) methanol, ethanol, IPA and acetone and	
	(b) ethanol, IPA and acetone	
4.3.	Fluxes as a function of time for methanol/ethanol (20:80 wt. %) mixture	e 26
	(a) Fluxes from PV and (b) Fluxes from VP	
4.4.	Fluxes as a function of time for acetone/IPA (20:80 wt %) mixture	28
	(a) Fluxes from PV and (b) Fluxes from VP	
4.5.	Fluxes as a function of time for methanol/acetone (20:80 wt %) mixture	30
	(a) Fluxes from PV and (b) Fluxes from VP	
4.6.	Fluxes as a function of time for acetone/ethanol (50:50 wt %) mixture	32
	(a) Fluxes from PV and (b) Fluxes from VP	
A.1	Calibration curve of vapor methanol for sample volume 1.50 ml	38
A.2	Calibration curve of vapor methanol for sample volume 3.00 ml	39
A.3	Calibration curve of vapor ethanol for sample volume 3.00 ml	40
A.4	Calibration curve of vapor isopropanol for sample volume 3.00 ml	41
A.5	Calibration curve of vapor acetone for sample volume 3.00 ml	42
A.6.1	Calibration curve of vapor acetone for sample volume 3.00 ml	43
A.6.2	Calibration curve of vapor ethanol for sample volume 3.00 ml	44
C.1	Partial pressure of methanol for sample volume 1.50 ml	51
C.2	Partial pressure of methanol for sample volume 3.00 ml	52
C.3	Partial pressure of ethanol for sample volume 3.00 ml	53
C.4	Partial pressure of isopropanol for sample volume 3.00 ml	54
C.5	Partial pressure of acetone for sample volume 3.00 ml	55
C.6.1	Partial pressure of acetone for sample volume 3.00 ml	56
C.6.2	Partial pressure of ethanol for sample volume 3.00 ml	57

LIST OF FIGURES (Con't.)

TABLE		PAGE	
D.1	Partial pressure of methanol in feed	59	
D.2	Partial pressure of ethanol in feed	60	
D.3	Partial pressure of isopropanol in feed	61	
D.4	Partial pressure of acetone in feed	62	
D.5.1	Partial pressure of acetone in feed	63	
D.5.2	Partial pressure of ethanol in feed	64	