CONTENTS

PAGE

EN TH AC CC LIS LIS	IGLISH ABSTRACT IAI ABSTRACT CKNOWLEDGEMENTS ONTENTS ST OF TABLES ST OF FIGURES	ii iii v vi viii x
CH	HAPTER	
1.	INTRODUCTION	1
	1.1 Background	1
	1.2 Cojectives	1
	1.4 Expected Benefits	2
2.	THEORIES AND LITERATURE REVIEW	3
	2.1 Membranes Process	3
	2.2 Pervaporation Process, PV	4
	2.3 Vapor Permeation, VP	5
	2.4 Membrane Performance Evaluation	5
	2.5 Mechanism of Mass Transfer through the Membrane	6
	2.6 The effects of Operating Parameters	9
	2.7 Kapton [®] Polyimide	9
	2.8 Pyrolysis Process	10
	2.9 Literature Review	11
3.	EXPERIMENT	17
	3.1 Equipment and Materials	17
	3.2 Experimental Procedures	19
4.	RESULTS AND DISCUSSION	21
	4.1 Single-component permeation	21
	4.2 Bi-component permeation	25
5.	CONCLUSIONS AND RECOMMENDATIONS	34
	5.1 Conclusions	34
	5.2 Recommendations	34

REFERENCES

APPEN	DIX
-------	-----

A. Calibration Curve	37
B. GC Conditions for Analyzed Vapor Organics Concentration	45
C. Partial Pressure of Vapor Organic compounds in Permeate	50
D. Partial Pressure of Vapor Organic compounds in Feed for VP	58
E. Data from Aspen Engineering Suite 2006	65
F. Calculations	72
G. Experimental Data	78
RRICULUM VITAE	95

CURRICULUM VITAE

35

LIST OF TABLES

TABLE		PAGE
2.1	Properties of organic compounds	9
4.1	Molecular weight, Molecular diameter, and dipole moment of	24
	pure organic compounds.	
4.2	Fluxes and permeabilities of single-component permeation	24
	for PV and VP	
4.3	Fluxes and permeabilities of methanol/ethanol obtained	27
	from bi-component feed	
4.4	Fluxes and permeabilities of acetone/IPA obtained	29
	from bi-component feed	
4.5	Fluxes and permeabilities of acetone/methanol obtained	31
	from bi-component feed	
4.6	Fluxes and permeabilities of acetone/ethanol obtained	33
	from bi-component feed	
A.1	Data for calibration curve of vapor methanol, sample volume 1.50 ml	38
A.2	Data for calibration curve of vapor methanol, sample volume 3.00 ml	39
A.3	Data for calibration curve of vapor ethanol, sample volume 3.00 ml	40
A.4	Data for calibration curve of vapor isopropanol, sample volume 3.00 ml	41
A.5	Data for calibration curve of vapor acetone, sample volume 3.00 ml	42
A.6.1	Calibration curve of vapor acetone for sample volume 3.00 ml	43
A.6.2	Calibration curve of vapor ethanol for sample volume 3.00 ml	44
C.1	Data for partial pressure of methanol, sample volume 1.50 ml	51
C.2	Data for partial pressure of methanol, sample volume 3.00 ml	52
C.3	Data for partial pressure of ethanol, sample volume 3.00 ml	53
C.4	Data for partial pressure of isopropanol, sample volume 3.00 ml	54
C.5	Data for partial pressure of acetone, sample volume 3.00 ml	55
C.6.1	Data for permeate pressure of acetone	56
C.6.2	Data for permeate pressure of ethanol	57
D.1	Data for partial pressure of methanol in feed	59
D.2	Data for partial pressure of ethanol in feed	60
D.3	Data for partial pressure of isopropanol in feed	61
D.4	Data for partial pressure of acetone in feed	62
D.5.1	Data for partial pressure of acetone in feed	63
D.5.2	Data for partial pressure of ethanol in feed	64
G.1	The physical characteristics of the membrane carbonized at 600 $^{\circ}$ C	79
G.2.1	Fluxes and permeability of pure methanol (100 wt %) as a feed for PV	80
G.2.2	Fluxes and permeability of pure methanol (100 wt %) as a feed for VP	80

LIST OF TABLES (Con't.)

TABLE

G.3.1	Fluxes and permeability of pure ethanol (99.5 wt %) as a feed for PV	81
G.3.2	Fluxes and permeability of pure ethanol (99.5 wt %) as a feed for VP	81
G.4.1	Fluxes and permeability of pure isopropanol (99.8 wt %) as a feed for PV	82
G.4.2	Fluxes and permeability of pure isopropanol (99.8 wt %) as a feed for VP	82
G.5.1	Fluxes and permeability of pure acetone (99.99 wt %) as a feed for PV	83
G.5.2	Fluxes and permeability of pure acetone (99.99 wt %) as a feed for VP	83
G.6.1	Fluxes and permeability of methanol/ethanol (20:80 wt %) mixture as a feed for PV	84
G.6.2	Fluxes and permeability of methanol/ethanol (20:80 wt %) mixture as a feed for VP	85
G.7.1	Fluxes and permeability of acetone/IPA (20:80 wt %) mixture as a feed for PV	86
G.7.2	Fluxes and permeability of acetone/IPA (20:80 wt %) mixture as a feed for VP	86
G.8.1	Fluxes and permeability of methanol/acetone (20:80 wt %) mixture as a feed for PV	87
G.8.2	Fluxes and permeability of methanol/acetone (20:80 wt %) mixture as a feed for VP	89
G.9.1	Fluxes and permeability of acetone/ethanol (50:50 wt %) mixture as a feed for PV	91
G.9.2	Fluxes and permeability of acetone/ethanol (50:50 wt %) mixture as a feed for VP	93

PAGE

LIST OF FIGURES

FIGURE		
2.1	Principle of membranes process	3
2.2	Schematic diagram of the pervaporation process	4
2.3	Schematic diagram of the vapor permeation	5
2.4	The separation mechanism in carbon membrane	7
2.5	Structural formula of Kapton [®] polyimide	10
2.6	Structure and pyrolysis process of Kapton [®] polyimide	10
3.1	Schematic diagrams of the pervaporation apparatus	17
3.2	Schematic diagrams of the vapor permeation apparatus	18
4.1.	Pervaporation fluxes as a function of time for	22
	(a) methanol, ethanol, IPA and acetone and	
	(b) ethanol, IPA and acetone	
4.2.	Vapor fluxes as a function of time for	23
	(a) methanol, ethanol, IPA and acetone and	
	(b) ethanol, IPA and acetone	
4.3.	Fluxes as a function of time for methanol/ethanol (20:80 wt. %) mixture	e 26
	(a) Fluxes from PV and (b) Fluxes from VP	
4.4.	Fluxes as a function of time for acetone/IPA (20:80 wt %) mixture	28
	(a) Fluxes from PV and (b) Fluxes from VP	
4.5.	Fluxes as a function of time for methanol/acetone (20:80 wt %) mixture	e 30
	(a) Fluxes from PV and (b) Fluxes from VP	
4.6.	Fluxes as a function of time for acetone/ethanol (50:50 wt %) mixture	32
	(a) Fluxes from PV and (b) Fluxes from VP	
A.1	Calibration curve of vapor methanol for sample volume 1.50 ml	38
A.2	Calibration curve of vapor methanol for sample volume 3.00 ml	39
A.3	Calibration curve of vapor ethanol for sample volume 3.00 ml	40
A.4	Calibration curve of vapor isopropanol for sample volume 3.00 ml	41
A.5	Calibration curve of vapor acetone for sample volume 3.00 ml	42
A.6.1	Calibration curve of vapor acetone for sample volume 3.00 ml	43
A.6.2	Calibration curve of vapor ethanol for sample volume 3.00 ml	44
C.1	Partial pressure of methanol for sample volume 1.50 ml	51
C.2	Partial pressure of methanol for sample volume 3.00 ml	52
C.3	Partial pressure of ethanol for sample volume 3.00 ml	53
C.4	Partial pressure of isopropanol for sample volume 3.00 ml	54
C.5	Partial pressure of acetone for sample volume 3.00 ml	55
C.6.1	Partial pressure of acetone for sample volume 3.00 ml	56
C.6.2	Partial pressure of ethanol for sample volume 3.00 ml	57

LIST OF FIGURES (Con't.)

E	PAGE
Partial pressure of methanol in feed	59
Partial pressure of ethanol in feed	60
Partial pressure of isopropanol in feed	61
Partial pressure of acetone in feed	62
Partial pressure of acetone in feed	63
Partial pressure of ethanol in feed	64
	E Partial pressure of methanol in feed Partial pressure of ethanol in feed Partial pressure of isopropanol in feed Partial pressure of acetone in feed Partial pressure of acetone in feed Partial pressure of ethanol in feed