ห้องสมุดงานวิจัย สำนักงานคณะกรรมการวิจัยแห่งชาติ

ผลกระทบต่อลักษณะผลึกของซินดิโอแทคติกพอลิสไตรีนอันเนื่องมาจากการเติมสาร คู่ผสมที่เป็นเนื้อเดียวกัน และการเติมผลึกเหลวมวลโมเลกุลต่ำ (Effects of miscibility and Low Molar Mass Liquid Crystal Blend on the Crystallization of Syndiotactic Polystyrene)

> โดย ศุภกนก

15.4

13

17.4

12 -

ทองใหญ่

1815

โครงการวิจัยเลขที่ 71G-CHEM-2548 ทุนงบประมาณแผ่นดินปี 2548

> คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย กรุงเทพฯ ตุลาคม 2549

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ไม่รับผิดชอบต่อผลเสียใดๆ อันอาจเกิดจากการนำความคิดเห็นในเอกสารฉบับนี้ไปใช้ ความคิดเห็น ที่ปรากฏในเอกสารเป็นความคิดเห็นของผู้เขียนซึ่งไม่จำเป็นต้องเป็น ความคิดเห็นของคณะฯ 600250919

ห้องสมุดงานวิจัย สำนักงานคณะกรรมการวิจัยแห่งชาติ

ผลกระทบต่อลักษณะผลึกของซินดิโอแทคติกพอลิสไตรีนอันเนื่องมาจากการเติมสาร ้ คู่ผสมที่เป็นเนื้อเดียวกัน และการเติมผลึกเหลวมวลโมเลกุลต่ำ (Effects of miscibility and Low Molar Mass Liquid Crystal Blend on the **Crystallization of Syndiotactic Polystyrene)**

ทองใหญ่ ศุภกนก

โดย

ทุนงบประมาณแผ่นดินปี 2548

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย กรุงเทพฯ ตุลาคม 2549

ผลกระทบต่อลักษณะผลึกของซินดิโอแทคติกพอลิสไตรีนอันเนื่องมาจากการเติมสาร คู่ผสมที่เป็นเนื้อเดียวกัน และการเติมผลึกเหลวมวลโมเลกุลต่ำ (Effects of miscibility and Low Molar Mass Liquid Crystal Blend on the

Crystallization of Syndiotactic Polystyrene)

โดย ศุภกนก ทองใหญ่

โกรงการวิจัยเลขที่ 71G-CHEM-2548 ทุนงบประมาณแผ่นดินปี 2548

คณะวิศวกรรมศาสตร์ จุพาลงกรณ์มหาวิทยาลัย กรุงเทพฯ ตุลาคม 2549 ชื่อโครงการวิจัย ผลกระทบต่อลักษณะผลึกของซินดิโอแทคติกพอลิสไตรีนอันเนื่องมาจากการ เดิมสารคู่ผสมที่เป็นเนื้อเดียวกัน และการเดิมผลึกเหลวมวลโมเลกุลด่ำ

ชื่อผู้วิจัย ศุภกนก ทองใหญ่ เดือนและปีที่ทำการวิจัยเสร็จ ดุลาคม 2549

246358

บทคัดย่อ

ได้ทำการสังเคราะห์ชินดิโอเทคติกพอลิสไตรีนในห้องปฏิบัติการในสภาวะที่ปราศจาก ออกซิเจนและน้ำ โดยดัวเร่งปฏิกิริยาเมทัลโลซีน เพื่อใช้ทดสอบความเป็นเนื้อเดียวกันของพอลิ เมอร์ผสมกับพอลิเมอร์ที่สามารถเป็นเนื้อเดียวกันได้กับพอลิสไตรีนแบบอสันฐานในรูปแบบการ ผสมแบบหลอมละลายและการใช้ดัวทำละลายร่วม ชินดิโอเทคดิกพอลิสไตรีน สามารถผสมเป็น เนื้อเดียวกันได้กับ พอลิอัลฟาเม็ทธิลสไตรีน พอลิเอ็ททิลเมทาไครเลท พอลิเอ็นบิวทิลเม็ททาไค รเลท พอลิไซโคลเฮกซิลอไครเลท พอลิซิสไอโซปรีน โดยพบค่าอุณหภูมิคล้ายแก้วเพียงค่าเดียว ระหว่างพอลิเมอร์ทั้งสอง นอกจากนี้ยังเข้ากันบางส่วนได้กับพอลิไวนิลเม็ททิลอีเทอร์ นอกจากนี้ ได้ทดลองผสมผลึกเหลวมวลโมเลกุลต่ำและสารหล่อลื่น (กลีเซอร์รอลโมโนสเตียเรท) ในพอลิ เมอร์ผสมดังกล่าว พบว่าสามารถทำให้อุณหภูมิหลอมตัวของผลึกของซินดิโอเทคติกพอลิสไตรีน ิลดลง เนื่องจากการเคลื่อนที่ได้เร็วขึ้นของพอลิเมอร์อสันฐานที่ทำให้เคลื่อนที่ออกจากผลึกได้ดี ขึ้น นอกจากนี้ยังทำให้อุณหภูมิก่อผลึกมีค่าลดลงเล็กน้อย เนื่องจากพอลิเมอร์ผสมจะแยกตัว ้ออกจากกันได้ยากขึ้นซึ่งทำให้การก่อผลึกยากขึ้น วิธีผสมพอลิเมอร์ส่งผลต่อค่าอุณหภูมิคล้าย แก้วโดยวิธีผสมแบบใช้ตัวทำละลายร่วมจะให้ค่าอุณหภูมิคล้ายแก้วสูงกว่าการผสมแบบหลอม ้ละลายเล็กน้อย เนื่องจากสามารถผสมได้ในระดับโมเลกุล จากการศึกษาด้วยการกระเจิงแสง เอ็กเรย์พบว่าปริมาณความเป็นผลึกของพอลิเมอร์ผสมลดลงและจะลดลงมากขึ้นเมื่อผสมกับ ้ผลึกเหลวมวลโมเลกุลต่ำหรือสารหล่อลื่น การทนต่อความร้อนของพอลิเมอร์ผสมโดยเครื่อง เทอร์มอลกราวิเมทริกอนาไลซิสพบว่า พอลิเมอร์ผสมกับพอลิอัลฟาเม็ททิลสไตรีนและพอลิซิส ไอโซปรีนมีค่าอุณหภูมิสลายตัว 5% และ 10% สูงที่สุดตามลัมดับ การทดสอบโดยเครื่องดิฟ ้เฟอร์เร็นเชียลเม็คแคนิคอลเทอร์มอลอะนาไลเซอร์พบว่าที่ความถี่สูงพอลิเมอร์ผสมจะรับแรงได้ ้ดีกว่า นอกจากนี้ค่าสตอร์เรจโมดูลัสยังมีค่าลดลงเมื่อเพิ่มอุณหภูมิหรือเวลาในการรับแรง เนื่องจากโมเลกุลสามารถเคลื่อนที่ออกจากกันได้เร็วกว่าที่อุณหภูมิสูงหรือมีเวลาในการรับแรงที่ ้นานขึ้น และสามารถใช้ทฤษฐีดับบลิวแอลเอฟได้กับข้อมูลที่ทดลองมา ซึ่งจะสามารถหาค่าคงที่ ของดับบลิวแอลเอฟได้อีกด้วย

Project Title Effects of miscibility and Low Molar Mass Liquid Crystal Blend on the Crystallization of Syndiotactic Polystyrene

Name of the Investigators Supakanok Thongyai Year October 2006

246358 Abstract

Laboratory successfully synthesized Syndiotactic polystyrene without oxygen and water by metallocene catalyst. The miscibilities of the blend with compatible polymer of amorphous polystyrene pair were tested by melt mixing method and solution casting method. Syndiotactic polystyrene can be miscible with Poly(alfa-methyl styrene). Poly(ethyl methacrylate), Poly(n-butyl methacrylate), Poly(cyclohexyl acrylate) and Poly(cis-isoprene) by having only single glass transition temperature in between the two polymers while it can be partially miscible with Poly(vinyl methyl ether). The addition of Low molar mass liquid crystal and lubricant (gleceral monosterate) in the blend resulted in lower the crystalline melting temperature due to more mobile molecules can separated from crystal faster and resulted in lower crystallization temperature due to harder for mobile molecules to separate and generate a crystal. The mixing method affected the glass transition temperature by slightly lower temperature when using solution casting method compared to melt mixing method due to molecular mixing in solution. With X-Ray Diffraction Spectroscopy, the percent crystallinities of the blends were lower and even lower when mix with low molar mass liquid crystal or lubricant. With Thermal Gravimetric Analysis, the blends with Poly(alfa-methyl styrene) and Poly(cis-isoprene) have the highest 5% and 10% degradation temperature respectively. With Differential Mechanical Thermal Analyzer, higher frequency was, higher mechanical properties of the blends were. Moreover, when increase temperature or time of loading, the storage modulus of the blends were lower due to faster movement of mclecules at high temperature and longer time for movement of molecules. The WLF theory can be applied to the blends' data with WLF constant calculated and numbered.

สารบัญ

	หน้า
วัตถุประสงค์โครงการ	29
บทน้ำ	30
ผลงานวิจัยที่เกี่ยวข้องกับโครงงาน	33
ทฤษฏีที่เกี่ยวข้อง	40
1. Morphology ของพอลิเมอร์	40
 ปรากฏการณ์หลอมเหลวตัวของพอลิเมอร์ 	43
 คุณสมบัติทางความร้อน 	43
 สารเดิมแต่งในพอลิเมอร์ 	44
 การเข้ากันได้ของพอลิเมอร์ 	45
การวิเคราะห์ข้อมูล และ วิธีดำเนินการทดลอง	47
 วิธีผสมพอลิเมอร์โดยการหลอมละลาย 	47
 วิธีผสมพอลิเมอร์โดยการละลายในตัวทำละลายเดียวกัน 	47
 การเตรียมพอลิเมอร์เพื่อตรวจวัดคุณสมบัติทางความร้อน 	
ด้วย DSC	48
 การเตรียมตัวอย่างสำหรับ XRD 	49
 การหาค่าปริมาณการเป็นผลึก 	49
6. การอ่านค่าอุณหภูมิคล้ายแก้ว(Tg) อุณหภูมิก่อผลึก (Tc)	
และอุณหภูมิหลอมผลึก (Tm) จาก DSC	51
7. การอ่านค่าอุณหภูมิหลอมผลึก (Tm) และอุณหภูมิก่อผลึก (Tc)	52
8. การหาค่าปริมาณ SPS ในส่วนที่เป็นอสัณฐาน	53
 การสังเคราะซินดิโอเทคติกพอลิสไตรรีน 	55
เครื่องมือที่ใช้ในการวิจัย	57
ผลการทดลองตอนที่หนึ่ง	58
1.1 ผลกระทบของอุณหภูมิต่อความว่องไวของตัวเร่งปฏิกิริยา	58
1.2 ผลของอุณหภูมิต่อความเป็นซินดิโอเทคติก	58
1.3 ผลของอุณหภูมิของปฏิกิริยาต่อมวลโมเลกุล	
ของซินดิโอเทคติกพอลิสไตรีน	59
1.4 ผลการทดลองโดยเครื่อง DSC (Differential Scanning Calorimetr	y) 60

สารบัญ (ต่อ)

	หน้า
1.5 ผลการทดลองโดยเครื่อง XRD	70
1.6 การแปรผลข้อมูล DSC และ XRD	81
ผลการทดลองตอนที่สอง	86
2.1 การสังเคราะห์ชินดิโอเทคติกพอลิสไตรีน	86
2.2 การเข้าเป็นเนื้อเดียวกันของซินดิโอเทคติกพอลิสไตรีน	86
2.3 การผสมกับ PaMS	88
2.4 การผสมกับ PEMA	90
2.5 กา รผสมกับ PBMA	91
2.6 กา รผสมกับ PCHA	93
2.7 การผสมกับ PIP	95
2.8 การผสมกับ PVME	97
2.9 สรุปผลของการเข้าเป็นเนื้อเดียวกัน	98
2.10 ผลของการใส่ LCC และ GMS ต่อคุณสมบัติทางความร้อน	
ของพอลิเมอร์ผสม	* 99
ผลการทดลองตอนที่สาม	119
3.1 ค่าคุณสมบัติทางความร้อนโดย DSC	119
3.2 ค่าคุณสมบัติทางความร้อนโดย TGA	121
3.3 คุณสมบัติทา งกลโดย DMA	122
3.4 ผลกระทบเนื่องจากอุณหภูมิและเวลา	123
3.5 ผลกระทบเนื่องจากความถี่	130
3.6 การสร้างกราฟการรับแรงรวม	
โดยการใช้ Time-Temperature Superposition (TTS)	137
3.7 ผลกระทบอันเนื่องมาจากองค์ประกอบหลัก (sPS)	151
3.8 ค่าคงที่ของ Williams Landel and Ferry (WLF)	155
3.9 ผลกระทบอันเนื่องมาจากการผสมพอลิเมอร์	163
สรุปผลการทดลองตอนที่หนึ่ง	166
สรุปผลการทดลองตอนที่สอง	167
สรุปผลการทดลองตอนที่สาม	169

สารบัญ (ต่อ)

	หน้า
เอกสารอ้างอิง	171
ผลงานตีพิมพ์ที่ได้จากงานวิจัย	174
บทความที่หนึ่ง	176
บทความที่สอง	184
ข้อมูลการทดลองโดยละเอียด	194
ข้อมูลตอนที่หนึ่ง	194
ข้อมูลตอนที่สอง	229
ข้อมูลตอนที่สาม	261

สารบัญตาราง

ตารางที่		หน้า
0.1	ตัวอย่างการแสดงค่าประมวลผลจาก XRD	54
0.2	ตัวอย่างการแสดงค่าประมวลผลจาก DSC	54
1.1	ตารางร้อยละผลได้และค่า catalytic activity ของการสังเคราะห์	
	พอลิสไตรีนในสภาวะอุณหภูมิคงที่ต่างๆ (Percent Yield and	
	catalytic activity of polystyrene produced at	
	various polymerization temperatures)	58
1.2	ร้อยละดัชนีของความเป็นซินดิโอเทคติก (% S.I.) ของการสังเคราะห์	
	พอลิสไตรีนในสภาวะอุณหภูมิคงที่ต่างๆ (Percent Syndiotactic	
	index (% S.I.) of polystyrene products at various polymerization	
	temperatures)	59
1.3	แสดงค่ามวลโมเลกุลและมวลโมเลกุลตามจำนวนของการสังเคราะห์	
	ซินดิโอเทคติกพอลิสไตรีนในสภาวะอุณหภูมิคงที่ต่างๆ (Molecular	
	weights and molecular weight distributions of syndiotactic	
	polystyrene at various polymerization temperatures)	59
1.4	แสดงค่าอุณหภูมิคล้ายแก้ว (T _g) อุณหภูมิก่อตัวของผลึก (T _c)	
	และค่าอุณหภูมิหลอมเหลวตัวผลึก (T _m) ของซินดิโอเทคติกพอลิสไดรีน	
	บริสุทธ์ (Glass transition temperature (T _g), crystalline	¢
	temperature (T_c) and crystalline melting temperature (T_m) of	
	pure syndiotactic polystyrenes)	61
1.5	Glass transition temperature (T_g) , crystalline temperature (T_c)	
	and crystalline melting temperature (T_m) of sPS1/PBMA	
	blends at various compositions (T_g of pure PBMA = 31.85 ^o C)	61
1.6	Glass transition temperature (T_g) , crystalline temperature (T_c)	
	and crystalline melting temperature (T_m) of sPS2/PBMA	
	blends at various compositions (T_a of pure PBMA = 31.85 ^o C)	62

5

•

ตารางที่			
1.7	Glass transition temperature (T_g) , crystalline temperature (T_c)		
	and crystalline melting temperature (T_m) of sPS3/PBMA		
	blends at various compositions (T_g of pure PBMA = 31.85 °C)	62	
1.8	Glass transition temperature (T_g), crystalline temperature (T_c)		
	and crystalline melting temperature (T_m) of sPS1/PCHA		
	blends at various compositions (T_g of pure PCHA = 25.81 °C)	63	
1.9	Glass transition temperature (T_g) , crystalline temperature (T_c)		
	and crystalline melting temperature (T_m) of sPS2/PCHA		
	blends at various compositions (T_g of pure PCHA = 25.81 °C)	63	
1.10	Glass transition temperature (T $_{\rm g}$), crystalline temperature (T $_{\rm c}$)		
	and crystalline melting temperature (T_m) of sPS3/PCHA		
	blends at various compositions (T_g of pure PCHA = 25.81 °C)	64	
1.11	Glass transition temperature (T_g), crystalline temperature (T_c)		
	and crystalline melting temperature (T_m) of sPS1/PEMA		
	blends at various compositions (T_g of pure PEMA = 65.54 °C)	64	
1.12	Glass transition temperature (T $_{\rm g}$), crystalline temperature (T $_{\rm c}$)		
	and crystalline melting temperature (T_m) of sPS2/PEMA		
	blends at various compositions (T_g of pure PEMA = 65.54 °C)	65	
1.13	Glass transition temperature (T_g), crystalline temperature (T_c)		
	and crystalline melting temperature (T_m) of sPS3/PEMA		
	blends at various compositions (T_g of pure PEMA = 65.54 °C)	65	
1.14	Glass transition temperature (T_g) , crystalline temperature (T_c)		
	and crystalline melting temperature (T_m) of		
	sPS1/Poly($lpha$ -methylstyrene) blends at various compositions		
	(T _g of pure Poly(α -methylstyrene) = 87.33 °C)	66	

ตารางที	ł	หน้า
1.15	Glass transition temperature (T_g) , crystalline temperature (T_c)	
	and crystalline melting temperature (T _m) of	
	sPS2/Poly($lpha$ -methylstyrene) blends at various compositions	
	(T _g of pure Poly(α -methylstyrene) = 87.33 °C)	66
1.16	Glass transition temperature (T_g) , crystalline temperature (T_c)	
	and crystalline melting temperature (T_m) of	
	sPS3/Poly($lpha$ -methylstyrene) blends at various compositions	
	(T _g of pure Poly(α -methylstyrene) = 87.33 °C)	67
1.17	Glass transition temperature (T_g) , crystalline temperature (T_c)	
	and crystalline melting temperature (T_m) of sPS1/Polyisoprene	
	blends at various compositions (T_g of pure Polyisoprene = -47.02°C)	67
1.18	Glass transition temperature (T_g), crystalline temperature (T_c)	
	and crystalline melting temperature (T_m) of sPS2/Polyisoprene	
	blends at various compositions (T_g of pure Polyisoprene = -47.02°C)	68
1.19	Glass transition temperature (T_g) , crystalline temperature (T_c)	
	and crystalline melting temperature (T_m) of sPS3/Polyisoprene	
	blends at various compositions (T_g of pure Polyisoprene = -47.02°C)	68
1.20	Glass transition temperature (T_g) , crystalline temperature (T_c)	
	and crystalline melting temperature (T_m) of sPS1/PVME	
	blends at various compositions (T_g of pure PVME = -27.10 °C)	69
1.21	Glass transition temperature (T_g) , crystalline temperature (T_c)	
	and crystalline melting temperature (T_m) of sPS2/PVME	
	blends at various compositions (T_g of pure PVME = -27.10 °C)	69
1.22	Glass transition temperature (T $_g$), crystalline temperature (T $_c$)	
	and crystalline melting temperature (T_m) of sPS3/PVME	
	blends at various compositions (T_g of pure PVME = -27.10 °C)	70

•

ตารางที่		หน้า
1.23	แสดงปริมาณส่วนที่เป็นผลึกของซินดิโดเทคติกพอลิสไตรีน	
	(% Crystallinity of syndiotactic polystyrenes)	71
1.24	ค่าปริมาณความเป็นผลึกของ sPS/PBMA ที่องค์ประกอบต่างๆ	
	(% Crystallinity of sPS/PBMA blends at various compositions)	73
1.25	ค่าปริมาณความเป็นผลึกของ sPS/PCHA ที่องค์ประกอบต่างๆ	
	(% Crystallinity of sPS/PCHA blends at various compositions)	75
1.26	ค่าปริมาณความเป็นผลึกของ sPS/PEMA ที่องค์ประกอบต่างๆ	
	(% Crystallinity of sPS/PEMA blends at various compositions)	77
1.27	ค่าปริมาณความเป็นผลึกของ sPS/Poly(α-methylstyrene)	
	ที่องค์ประกอบต่างๆ (% Crystallinity of sPS/Poly(α-methylstyrene)	
	blends at various compositions)	79
1.28	ค่าปริมาณความเป็นผลึกของ sPS/Polyisoprene ที่องค์ประกอบต่างๆ	
	(% Crystallinity of sPS/Polyisoprene blends at various compositions)	81
1.29	Weight fraction of sPS in amorphous from XRD and	
	Flory-Fox equation of sPS/PBMA blends at various compositions	82
1.30	Weight fraction of sPS in amorphous from XRD and Flory-Fox	
	equation of sPS/PCHA blends at various compositions	83
1.31	Weight fraction of sPS in amorphous from XRD and	
	Flory-Fox equation of sPS/PEMA blends at various compositions	83
1.32	Weight fraction of sPS in amorphous from XRD and Flory-Fox	
	equation of sPS/Poly($lpha$ -methylstyrene) blends	
	at various compositions	84
1.33	Weight fraction of sPS in amorphous from XRD and	
	Flory-Fox equation of sPS/Polyisoprene blends	
	at various compositions	84

ตารางที่		หน้า
2.1	Polymerization of Styrene using Cp*TiCl ₃ with MMAO	86
2.2	Glass transition temperature (T_g) , melting temperature (T_m) ,	
	crystallization temperature (T_c) and melting enthalpy	
	of SPS/PaMS blends	88
2.3	Glass transition temperature (T_g) , melting temperature (T_m) ,	
	crystallization temperature (T_c) and melting enthalpy of	
	SPS/PaMS/LCC blends	89
2.4	Glass transition temperature (T_g) , melting temperature (T_m) ,	
	crystallization temperature (T_c) and melting enthalpy	
	of SPS/PaMS/GMS blends	89
2.5	Glass transition temperature (T_g) , melting temperature (T_m) ,	
	crystallization temperature (T_c) and melting enthalpy	
	of SPS/PEMA blends	90
2.6	Glass transition temperature (T_g) , melting temperature (T_m) ,	
	crystallization temperature (T_c) and melting enthalpy	
	of SPS/PEMA/LCC blends	91
2.7	Glass transition temperature (T_g) , melting temperature (T_m) ,	
	crystallization temperature (T_c) and melting enthalpy	
	of SPS/PEMA/GMS blends	91
2.8	Glass transition temperature (T_g) , melting temperature (T_m) ,	
	crystallization temperature (T_c) and melting enthalpy	
	of SPS/PBMA blends	92
2.9	Glass transition temperature (T_g) , melting temperature (T_m) ,	
	crystallization temperature (T_c) and melting enthalpy	
	of SPS/PBMA/LCC blends	93
2.10	Glass transition temperature (T_g) , melting temperature (T_m) ,	
	crystallization temperature (T_c) and melting enthalpy	
	of SPS/PBMA/GMS blends	93

•

ตารางที่		หน้า
2.11	Glass transition temperature (T_g) , melting temperature (T_m) ,	
	crystallization temperature (T_c) and melting enthalpy	
	of SPS/PCHA blends	94
2.12	Glass transition temperature (T_g) , melting temperature (T_m) ,	
	crystallization temperature (T_c) and melting enthalpy	
	of SPS/PCHA/LCC blends	95
2.13	Glass transition temperature (T_g) , melting temperature (T_m) ,	
	crystallization temperature (T_c) and melting enthalpy	
	of SPS/PCHA/GMS blends	95
2.14	Glass transition temperature (T_g) , melting temperature (T_m) ,	
	crystallization temperature (T_c) and melting enthalpy	
	of SPS/PIP blends	96
2.15	Glass transition temperature (T_g) , melting temperature (T_m) ,	
	crystallization temperature (T_c) and melting enthalpy	
	of SPS/PIP/LCC blends	97
2.16	Glass transition temperature (T_g) , melting temperature (T_m) ,	
	crystallization temperature (T_c) and melting enthalpy	
	of SPS/PIP/GMS blends	97
2.17	Glass transition temperature (T_g) , melting temperature (T_m)	
	and crystallization temperature ($\mathrm{T_c}$) of SPS/PVME blends	98
2.18	Melting temperature depression of their blends	102
2.19	Percentage of SPS in binary blends from calculation	107
2.20) % Crystallinity of SPS/PaMS, SPS/PaMS/GMS and	
	SPS/PaMS/LCC blends at various compositions	116
2.2	% Crystallinity of SPS/PEMA, SPS/PEMA/GMS and	
	SPS/PEMA/LCC blends at various compositions	116

ตารางที่		หน้า
2.22	% Crystallinity of SPS/PBMA, SPS/PBMA/GMS and	
	SPS/PBMA/LCC blends at various compositions	117
2.23	% Crystallinity of SPS/PCHA, SPS/PCHA/GMS and	
	SPS/PCHA/LCC blends at various compositions	117
2.24	% Crystallinity of SPS/PIP, SPS/PIP/GMS and	
	SPS/PIP/LCC blends at various compositions	118
3.1	Glass transition temperatures (T_g) , melting temperatures (T_m)	
	and crystallization temperatures (T_c) of sPS1 blend system	119
3.2	Glass transition temperatures (T_g) , melting temperatures (T_m)	
	and crystallization temperatures (T_c) of sPS2 blend system	120
3.3	Glass transition temperature (T_g) of sPS polymer blend	120
3.4	Sample temperature at 5 % and 10 % weight loss	121
3.5	C_1 and C_2 for pure sPS and all blend systems	162
3.6	Average storage modulus difference of all blend systems for sPS1	165
3.7	Average storage modulus difference of all blend systems for sPS2	165
c.1	DMA data of sPS1 for temperature 60 °C	268
c.2	DMA data of sPS1 for temperature 80 °C	269
c.3	DMA data of sPS1 for temperature 90 °C	270
c.4	DMA data of sPS1 for temperature 100.25 °C	271
c.5	DMA data of sPS1 for temperature 110 °C	272
c.6	DMA data of sPS1 for temperature 120 °C	273
c.7	DMA data of sPS1 for temperature 140 °C	274
c.8	DMA data of sPS1 for temperature 160 °C	275
c.9	DMA data of sPS1 for temperature 180 °C	276
c.1	0 DMA data of sPS1 blended with PIP for temperature 60 °C	277
c.1	1 DMA data of sPS1 blended with PIP for temperature 65 °C	278
c.1	2 DMA data of sPS1 blended with PIP for temperature 70.71 °C	279

•

ตารางที่	5 50+0 10		an dan an se	หน้า
c.13 DMA data of sPS1 b	lended with PIP for	temperature 85	5 °C	280
c.14 DMA data of sPS1 b	blended with PIP for	temperature 10	0° 00	281
c.15 DMA data of sPS1 b	blended with PIP for	temperature 12	20 °C	282
c.16 DMA data of sPS1 b	plended with PIP for	temperature 14	40 °C	283
c.17 DMA data of sPS1 b	plended with PIP for	temperature 16	60 °C	284
c.18 DMA data of sPS1 b	plended with PIP for	temperature 18	30 °C	285
c.19 DMA data of sPS1 b	plended with PBMA	for temperature	e 60 °C	286
c.20 DMA data of sPS1 b	plended with PBMA	for temperature	e 80 °C	287
c.21 DMA data of sPS1 b	plended with PBMA	for temperature	∋ 84.22 °C	288
c.22 DMA data of sPS1 b	olended with PBMA	for temperature	e 90 °C	289
c.23 DMA data of sPS1 b	olended with PBMA	for temperature	e 100 °C	290
c.24 DMA data of sPS1 b	blended with PBMA	for temperature	e 120 °C	291
c.25 DMA data of sPS1 I	blended with PBMA	for temperature	e 140 °C	292
c.26 DMA data of sPS1 I	blended with PBMA	for temperature	e 160 °C	293
c.27 DMA data of sPS1	blended with PBMA	for temperature	e 180 °C	294
c.28 DMA data of sPS1	blended with PEMA	for temperature	e 60 °C	295
c.29 DMA data of sPS1	blended with PEMA	for temperature	e 70 °C	296
c.30 DMA data of sPS1	blended with PEMA	for temperature	e 81.95 °C	297
c.31 DMA data of sPS1	blended with PEMA	for temperatur	e 90 °C	298
c.32 DMA data of sPS1	blended with PEMA	for temperatur	e 100 °C	299
c.33 DMA data of sPS1	blended with PEMA	for temperatur	e 120 °C	300
c.34 DMA data of sPS1	blended with PEMA	for temperatur	e 140 °C	301
c.35 DMA data of sPS1	blended with PEMA	for temperatur	e 160 °C	302
c.36 DMA data of sPS1	blended with PEMA	for temperatur	e 180 °C	303
c.37 DMA data of sPS1	blended with PHM	A for temperatur	re 60 °C	304
c.38 DMA data of sPS1	blended with PHM	A for temperatu	re 70 °C	305

สำนักงานคณะกรรมการวิจัยแห่งชาติ พ้องเ เลขทะเบียน..... เลขเรียกหนังสือ..... สารบัญตาราง (ต่อ)

ตารางที่		หน้า
c.39	DMA data of sPS1 blended with PHMA for temperature 79.22 °C	306
c.40	DMA data of sPS1 blended with PHMA for temperature 90 °C	307
c.41	DMA data of sPS1 blended with PHMA for temperature 100 $^{\circ}$ C	308
c.42	DMA data of sPS1 blended with PHMA for temperature 120 $^{\circ}C$	309
c.43	DMA data of sPS1 blended with PHMA for temperature 140 $^{\circ}C$	310
c.44	DMA data of sPS1 blended with PHMA for temperature 160 $^{\circ}C$	311
c.45	DMA data of sPS1 blended with PHMA for temperature 180 $^{\circ}$ C	312
c.46	DMA data of sPS1 blended with PaMS for temperature 60 °C	313
c.47	DMA data of sPS1 blended with PaMS for temperature 70 °C	314
c.48	DMA data of sPS1 blended with PaMS for temperature 80 °C	315
c.49	DMA data of sPS1 blended with PaMS for temperature 90.24 $^{\circ}C$	316
c.50	DMA data of sPS1 blended with PaMS for temperature 100 $^{\circ}C$	317
c.51	DMA data of sPS1 blended with PaMS for temperature 120 °C	318
c.52	DMA data of sPS1 blended with PaMS for temperature 140 °C	319
c.53	DMA data of sPS1 blended with PaMS for temperature 160 °C	320
c.54	DMA data of sPS1 blended with PaMS for temperature 180 °C	321
c.55	DMA data of sPS2 for temperature 60 °C	322
c.56	DMA data of sPS2 for temperature 80°C	323
c.57	DMA data of sPS2 for temperature 90°C	324
c.58	DMA data of sPS2 for temperature 100.25 °C	325
c.59	DMA data of sPS2 for temperature 110 °C	326
c.60	DMA data of sPS2 for temperature 120 °C	327
c.61	DMA data of sPS2 for temperature 140 °C	328
c.62	DMA data of sPS2 for temperature 160 °C	329
c.63	DMA data of sPS2 for temperature 180 °C	330
c.64	DMA data of sPS2 blended with PIP for temperature 60 $^{\circ}$ C	331

หน้า

ตารางที่

c.65 DMA data of sPS2 blended with PIP for temperature 65 °C	332
c.66 DMA data of sPS2 blended with PIP for temperature 70.71 °C	333
c.67 DMA data of sPS2 blended with PIP for temperature 85 °C	334
c.68 DMA data of sPS2 blended with PIP for temperature 100 °C	335
c.69 DMA data of sPS2 blended with PIP for temperature 120 $^{\circ}$ C	336
c.70 DMA data of sPS2 blended with PIP for temperature 140 $^{\circ}$ C	337
c.71 DMA data of sPS2 blended with PIP for temperature 160 $^{\circ}$ C	338
c.72 DMA data of sPS2 blended with PIP for temperature 180 $^{\circ}$ C	339
c.73 DMA data of sPS2 blended with PBMA for temperature 60 °C	340
c.74 DMA data of sPS2 blended with PBMA for temperature 80 $^{\circ}$ C	341
c.75 DMA data of sPS2 blended with PBMA for temperature 84.22 $^{\circ}$ C	342
c.76 DMA data of sPS2 blended with PBMA for temperature 90 $^{\circ}$ C	343
c.77 DMA data of sPS2 blended with PBMA for temperature 100 °C	344
c.78 DMA data of sPS2 blended with PBMA for temperature 120 °C	345
c.79 DMA data of sPS2 blended with PBMA for temperature 140 $^{\circ}$ C	346
c.80 DMA data of sPS2 blended with PBMA for temperature 160 °C	347
c.81 DMA data of sPS2 blended with PBMA for temperature 180 °C	348
c.82 DMA data of sPS2 blended with PEMA for temperature 60 °C	349
c.83 DMA data of sPS2 blended with PEMA for temperature 70 °C	350
c.84 DMA data of sPS2 blended with PEMA for temperature 81.95 °C	351
c.85 DMA data of sPS2 blended with PEMA for temperature 90 $^{\circ}$ C	352
c.86 DMA data of sPS2 blended with PEMA for temperature 100 °C	353
c.87 DMA data of sPS2 blended with PEMA for temperature 120 $^{\circ}$ C	354
c.88 DMA data of sPS2 blended with PEMA for temperature 140 $^{\circ}$ C	355
c.89 DMA data of sPS2 blended with PEMA for temperature 160 $^{\circ}$ C	356

ตารางที่	หน้า
c.90 DMA data of sPS2 blended with PEMA for temperature 180 °C	357
c.91 DMA data of sPS2 blended with PHMA for temperature 60 $^{\circ}$ C	358
c.92 DMA data of sPS2 blended with PHMA for temperature 70 $^{\circ}$ C	359
c.93 DMA data of sPS2 blended with PHMA for temperature 79.22 °C	360
c.94 DMA data of sPS2 blended with PHMA for temperature 90 $^{\circ}$ C	361
c.95 DMA data of sPS2 blended with PHMA for temperature 100 $^{\circ}$ C	362
c.96 DMA data of sPS2 blended with PHMA for temperature 120 $^{\circ}$ C	363
c.97 DMA data of sPS2 blended with PHMA for temperature 140 $^{\circ}C$	364
c.98 DMA data of sPS2 blended with PHMA for temperature 160 $^{\circ}$ C	365
c.99 DMA data of sPS2 blended with PHMA for temperature 180 $^{\circ}$ C	366
c.100DMA data of sPS2 blended with PaMS for temperature 60 $^{\circ}$ C	367
c.101DMA data of sPS2 blended with PaMS for temperature 70 $^{\circ}$ C	368
c.102DMA data of sPS2 blended with PaMS for temperature 80 $^{\circ}$ C	369
c.103DMA data of sPS2 blended with PaMS for temperature 90.24 $^{\circ}$ C	370
c.104DMA data of sPS2 blended with PaMS for temperature 100 $^{\circ}$ C	371
c.105DMA data of sPS2 blended with PaMS for temperature 120 $^{\circ}$ C	372
c.106DMA data of sPS2 blended with PaMS for temperature 140 $^{\circ}$ C	373
c.107DMA data of sPS2 blended with PaMS for temperature 160 $^{\circ}$ C	374
c.108DMA data of sPS2 blended with PaMS for temperature 180 $^{\circ}$ C	375

.

สารบัญรูป

รูปที่		หน้า
0.1	กราฟของการคำนวณ ค ่าพื้นที่ใต้กราฟของความเป็นผลึก	50
0.2	แสดงค่า Tg ตามการหาค่าเชิงราบ (onset)	
	และการหาค่าจุดกึ่งกลาง (midpoint)	51
0.3	ผลจากเครื่อง DSC	52
0.4	ตัวอย่างข้อมูลดิบของ XRD เป็นกราฟการกระเจิงแสง	53
1.1	X-ray diffractogram of syndiotactic polystyrenes	70
1.2	X-ray diffractogram of sPS1/PBMA blends at various compositions	71
1.3	X-ray diffractogram of sPS2/PBMA blends at various compositions	72
1.4	X-ray diffractogram of sPS3/PBMA blends at various compositions	72
1.5	X-ray diffractogram of sPS1/PCHA blends at various compositions	73
1.6	X-ray diffractogram of sPS2/PCHA blends at various compositions	74
1.7	X-ray diffractogram of sPS3/PCHA blends at various compositions	74
1.8	X-ray diffractogram of sPS1/PEMA blends at various compositions	75
1.9	X-ray diffractogram of sPS2/PEMA blends at various compositions	76
1.10	X-ray diffractogram of sPS3/PEMA blends at various compositions	76
1.11	X-ray diffractogram of sPS1/Poly($lpha$ -methylstyrene) blends	
	at various compositions	77
1.12	X-ray diffractogram of sPS2/Poly($lpha$ -methylstyrene) blends	
	at various compositions	78
1.13	X-ray diffractogram of sPS3/Poly($lpha$ -methylstyrene) blends	
	at various compositions	78
1.14	X-ray diffractogram of sPS1/Polyisoprene blends	
	at various compositions	79
1.15	X-ray diffractogram of sPS2/Polyisoprene blends	
	at various compositions	80
1.16	X-ray diffractogram of sPS3/Polyisoprene blends	
	at various compositions	80

ູ່ໃ	ปที่		หน้า
	2.1	Comparison of method in blending SPS/PaMS blends	
		with Fox equation	103
	2.2	Comparison of method in blending SPS/PEMA with Fox equation	103
	2.3	Comparison of method in blending SPS/PBMA with Fox equation	104
	2.4	Comparison of method in blending SPS/PCHA with Fox equation	104
	2.5	Comparison of method in blending of SPS/PIP blends	
		with Fox equation	105
	2.6	Curve of s ² I (s) versus s for polypropene	108
	2.7	Nomogram of K values as a function of k and $s_{\mbox{\tiny p}}$ calculated	
		for the chemical composition $(CH_2)_n$ and $s_0 = 0.1$	109
	2.8	X-ray diffraction pattern of amorphous SPS	110
	2.9	The X-ray diffraction patterns for SPS/PaMS blends and their blend	
		with additives at various compositions: (a) SPS/PaMS blends;	
		(b) SPS/PaMS/LCC blends and (c) SPS/PaMS/GMS blends	111
	2.10	The X-ray diffraction patterns for SPS/PEMA blends and their blend	
		with additives at various compositions: (a) SPS/PEMA blends;	
		(b) SPS/PEMA/LCC blends and (c) SPS/PEMA/GMS blends	112
	2.11	The X-ray diffraction patterns for SPS/PBMA blends and their blend	
		with additives at various compositions: (a) SPS/PBMA blends;	
		(b) SPS/PBMA/LCC blends and (c) SPS/PBMA/GMS blends	113
	2.12	The X-ray diffraction patterns for SPS/PCHA blends and their blend	
		with additives at various compositions: (a) SPS/PCHA blends;	
		(b) SPS/PCHA/LCC blends and (c) SPS/PCHA/GMS blends	114
	2.13	The X-ray diffraction patterns for SPS/PIP blends and their blend	
		with additives at various compositions: (a) SPS/PIP blends;	
		(b) SPS/PIP/LCC blends and (c) SPS/PIP/GMS blends	115
	3.1	Temperature at 5% and 10% weight loss for blending system	122
	3.2	E' curve as time function for sPS1	124

ን	ปที่		หน้า
41	3.3	E' curve as time function for sPS2	124
	3.4	E' curve as time function for sPS1/PIP blend	125
	3.5	E' curve as time function for sPS2/PIP blend	125
	3.6	E' curve as time function for sPS1/PBMA blend	126
	3.7	E' curve as time function for sPS2/PBMA blend	126
	3.8	E' curve as time function for sPS1/PEMA blend	127
	3.9	E' curve as time function for sPS2/PEMA blend	127
	3.10	E' curve as time function for sPS1/PHMA blend	128
	3.11	E' curve as time function for sPS2/PHMA blend	128
	3.12	E' curve as time function for sPS1/PaMS blend	129
	3.13	E' curve of time as time function for sPS2/PaMS blend	129
	3.14	E' curve as frequency function for sPS1	130
	3.15	E' curve as frequency function for sPS2	131
	3.16	E' curve as frequency function for sPS1/PIP blend	131
	3.17	E' curve as frequency function for sPS2/PIP blend	132
	3.18	E' curve as frequency function for sPS1/PBMA blend	132
	3.19	E' curve as frequency function for sPS2/PBMA blend	133
	3.20	E' curve as frequency function for sPS1/PEMA blend	133
	3.21	E' curve as frequency function for sPS2/PEMA blend	134
	3.22	E' curve as frequency function for sPS1/PHMA blend	134
	3.23	E' curve as frequency function for sPS2/PHMA blend	135
	3.24	E' curve as frequency function for sPS1/PaMS blend	135
	3.25	E' curve as frequency function for sPS2/PaMS blend	136
	3.26	Master curve for sPS1 as time function with T, 100.25 °C	138
	3.27	Master curve for sPS2 as time function with T _r 100.25 ^o C	138
	3.28	Master curve for sPS2 as time function with $T_r 100.25 \ ^{o}C$	139
	3.29	Master curve for sPS2/PIP blend as time function with T, 70.71 $^{\circ}$ C	139
	3.30	Master curve for sPS1/PBMA blend as time function with T, 84.22 $^{\rm o}{\rm C}$	140

<u>ร</u> ูปที่	หน้า
3.31 Master curve for sPS2/PBMA blend as time function with T_r	84.22 °C 140
3.32 Master curve for sPS1/PEMA blend as time function with T_r	81.95 °C 141
3.33 Master curve for sPS2/PEMA blend as time function with T	81.95 ^o C 141
3.34 Master curve for sPS1/PHMA blend as time function with T	, 79.22 °C 142
3.35 Master curve for sPS2/PHMA blend as time function with T	, 79.22 °C 142
3.36 Master curve for sPS1/PaMS blend as time function with T	90.24 °C 143
3.37 Master curve for sPS2/PaMS blend as time function with T,	90.24 °C 143
3.38 Master curve for sPS1 as frequency function with T, 100.25	5 °C 144
3.39 Master curve for sPS2 as frequency function with T_r 100.25	5 °C 145
3.40 Master curve for sPS1/PIP blend as frequency function	
with T, 70.71 °C	145
3.41 Master curve for sPS2/PIP blend as frequency function	
with T _r 70.71 °C	146
3.42 Master curve for sPS1/PBMA blend as frequency function	
with T _r 84.22 ^o C	146
3.43 Master curve for sPS2/PBMA blend as frequency function	
with T _r 84.22 °C	147
3.44 Master curve for sPS1/PEMA blend as frequency function	
with T _r 81.95 °C	147
3.45 Master curve for sPS2/PEMA blend as frequency function	
with T _r 81.95 [°] C	148
3.46 Master curve for sPS1/PHMA blend as frequency function	l
with T _r 79.22 ^o C	148
3.47 Master curve for sPS2/PHMA blend as frequency function	
with T _r 79.22°C	149
3.48 Master curve for sPS1/PaMSblend as frequency function	
with T _r 90.24 [°] C	149

รูปที่		หน้า
3.49	Master curve for sPS2/PaMSblend as frequency function	
	with T _r 90.24 ^o C	150
3.50	Master curve for sPS1 and sPS2	152
3.51	Master curve for sPS1 and sPS2 blended with PIP	152
3.52	Master curve for sPS1 and sPS2 blended with PBMA	153
3.53	Master curve for sPS1 and sPS2 blended with PEMA	153
3.54	Master curve for sPS1 and sPS2 blended with PHMA	154
3.55	Master curve for sPS1 and sPS2 blended with PaMS	154
3.56	Relationship between -1/ log a_{τ} versus 1/(T-T _g) for sPS1	156
3.57	Relationship between -1/ log a_{T} versus 1/(T-T _g) for sPS2	156
3.58	Relationship between -1/ log a_{T} versus 1/(T-T _g) for sPS1/PIP	157
3.59	Relationship between -1/ log a_{T} versus 1/(T-T _g) for sPS2/PIP	157
3.60	Relationship between -1/ log a_{T} versus 1/(T-T _g) for sPS1/PBMA	158
3.61	Relationship between -1/ log a_{T} versus 1/(T-T _g) for sPS2/PBMA	158
3.62	Relationship between -1/ log a_{T} versus 1/(T-T _g) for sPS1/PEMA	159
3.63	Relationship between -1/ log a_{T} versus 1/(T-T _g) for sPS2/PEMA	159
3.64	Relationship between -1/ log a_{T} versus 1/(T-T _g) for sPS1/PHMA	160
3.65	Relationship between -1/ log a_{τ} versus 1/(T-T _g) for sPS2/PHMA	160
3.66	Relationship between -1/ log a_{τ} versus 1/(T-T _g) for sPS1/PaMS	161
3.67	Relationship between -1/ log a_{τ} versus 1/(T-T _g) for sPS2/PaMS	161
3.68	E' master curve for all sPS1 blend systems	163
3.69	E' master curve for all sPS2 blend systems	164
A.1	DSC curve of PBMA	195
A.2	DSC curve of PCHA	195
A.3	DSC curve of PEMA	195
A.4	DSC curve of Poly($lpha$ -methylstyrene)	196
A.5	DSC curve of Polyisoprene	196
A.6	DSC curve of PVME	196

.

รูปที่	หน้า
A.7 DSC curve of sPS1	197
A.8 DSC curve of sPS2	197
A.9 DSC curve of sPS3	197
A.10 DSC curve of sPS1 / PBMA blends at composition 50/50 wt%	198
A.11 DSC curve of sPS2 / PBMA blends at composition 50/50 wt%	198
A.12 DSC curve of sPS3 / PBMA blends at composition 50/50 wt%	198
A.13 DSC curve of sPS1 / PBMA blends at composition 60/40 wt%	199
A.14 DSC curve of sPS2 / PBMA blends at composition 60/40 wt%	199
A.15 DSC curve of sPS3 / PBMA blends at composition 60/40 wt%	199
A.16 DSC curve of sPS1 / PBMA blends at composition 70/30 wt%	200
A.17 DSC curve of sPS2 / PBMA blends at composition 70/30 wt%	200
A.18 DSC curve of sPS3 / PBMA blends at composition 70/30 wt%	200
A.19 DSC curve of sPS1 / PBMA blends at composition 80/20 wt%	201
A.20 DSC curve of sPS2 / PBMA blends at composition 80/20 wt%	201
A.21 DSC curve of sPS3 / PBMA blends at composition 80/20 wt%	201
A.22 DSC curve of sPS1 / PBMA blends at composition 90/10 wt%	202
A.23 DSC curve of sPS2 / PBMA blends at composition 90/10 wt%	202
A.24 DSC curve of sPS3 / PBMA blends at composition 90/10 wt%	202
A.25 DSC curve of sPS1 / PCHA blends at composition 50/50 wt%	203
A.26 DSC curve of sPS2 / PCHA blends at composition 50/50 wt%	203
A.27 DSC curve of sPS3 / PCHA blends at composition 50/50 wt%	203
A.28 DSC curve of sPS1 / PCHA blends at composition 60/40 wt%	204
A.29 DSC curve of sPS2 / PCHA blends at composition 60/40 wt%	204
A.30 DSC curve of sPS3 / PCHA blends at composition 60/40 wt%	204
A.31 DSC curve of sPS1 / PCHA blends at composition 70/30 wt%	205
A.32 DSC curve of sPS2 / PCHA blends at composition 70/30 wt%	205
A.33 DSC curve of sPS3 / PCHA blends at composition 70/30 wt%	205
A.34 DSC curve of sPS1 / PCHA blends at composition 80/20 wt%	206

รูปที่		หน้า
A.35	DSC curve of sPS2 / PCHA blends at composition 80/20 wt%	206
A.36	DSC curve of sPS3 / PCHA blends at composition 80/20 wt%	206
A.37	DSC curve of sPS1 / PCHA blends at composition 90/10 wt%	207
A.38	DSC curve of sPS2 / PCHA blends at composition 90/10 wt%	207
A.39	DSC curve of sPS3 / PCHA blends at composition 90/10 wt%	207
A.40	DSC curve of sPS1 / PEMA blends at composition 50/50 wt%	208
A.41	DSC curve of sPS2 / PEMA blends at composition 50/50 wt%	208
A.42	DSC curve of sPS3 / PEMA blends at composition 50/50 wt%	208
A.43	DSC curve of sPS1 / PEMA blends at composition 60/40 wt%	209
A.44	DSC curve of sPS2 / PEMA blends at composition 60/40 wt%	209
A.45	DSC curve of sPS3 / PEMA blends at composition 60/40 wt%	209
A.46	DSC curve of sPS1 / PEMA blends at composition 70/30 wt%	210
A.47	DSC curve of sPS2 / PEMA blends at composition 70/30 wt%	210
A.48	DSC curve of sPS3 / PEMA blends at composition 70/30 wt%	210
A.49	DSC curve of sPS1 / PEMA blends at composition 80/20 wt%	211
A.50	DSC curve of sPS2 / PEMA blends at composition 80/20 wt%	211
A.51	DSC curve of sPS3 / PEMA blends at composition 80/20 wt%	211
A.52	DSC curve of sPS1 / PEMA blends at composition 90/10 wt%	212
A.53	DSC curve of sPS1 / PEMA blends at composition 90/10 wt%	212
A.54	DSC curve of sPS1 / PEMA blends at composition 90/10 wt%	212
A.55	DSC curve of sPS1 / Poly($lpha$ -methylstyrene) blends	
	at composition 50/50 wt%	213
A.56	DSC curve of sPS1 / Poly($lpha$ -methylstyrene) blends	
	at composition 50/50 wt%	213
A.57	DSC curve of sPS1 / Poly($lpha$ -methylstyrene) blends	
	at composition 50/50 wt%	213
A.58	DSC curve of sPS1 / Poly($lpha$ -methylstyrene) blends	
	at composition 60/40 wt%	214

รูปที่	หน้า
A.59 DSC curve of sPS2 / Poly($lpha$ -methylstyrene) blends	
at composition 60/40 wt%	214
A.60 DSC curve of sPS3 / Poly($lpha$ -methylstyrene) blends	
at composition 60/40 wt%	214
A.61 DSC curve of sPS3 / Poly($lpha$ -methylstyrene) blends	
at composition 60/40 wt%	215
A.62 DSC curve of sPS2 / Poly($lpha$ -methylstyrene) blends	
at composition 70/30 wt%	215
A.63 DSC curve of sPS3 / Poly($lpha$ -methylstyrene) blends	
at composition 70/30 wt%	215
A.64 DSC curve of sPS1 / Poly($lpha$ -methylstyrene) blends	
at composition 80/20 wt%	216
A.65 DSC curve of sPS2 / Poly($lpha$ -methylstyrene) blends	
at composition 80/20 wt%	216
A.66 DSC curve of sPS3 / Poly($lpha$ -methylstyrene) blends	
at composition 80/20 wt%	216
A.67 DSC curve of sPS1 / Poly($lpha$ -methylstyrene) blends	
at composition 90/10 wt%	217
A.68 DSC curve of sPS2 / Poly($lpha$ -methylstyrene) blends	
at composition 90/10 wt%	217
A.69 DSC curve of sPS3 / Poly($lpha$ -methylstyrene) blends	
at composition 90/10 wt%	217
A.70 DSC curve of sPS1 / Polyisoprene blends at composition 50/50 wt%	218
A.71 DSC curve of sPS2 / Polyisoprene blends at composition 50/50 wt%	218
A.72 DSC curve of sPS3 / Polyisoprene blends at composition 50/50 wt%	218
A.73 DSC curve of sPS1 / Polyisoprene blends at composition 60/40 wt%	219
A.74 DSC curve of sPS2 / Polyisoprene blends at composition 60/40 wt%	219

ฐปที่	หน้า
A.75 DSC curve of sPS3 / Polyisoprene blends at composition 60/40 wt%	6 219
A.76 DSC curve of sPS1 / Polyisoprene blends at composition 70/30 wt%	a 220
A.77 DSC curve of sPS2 / Polyisoprene blends at composition 70/30 wt%	s 220
A.78 DSC curve of sPS3 / Polyisoprene blends at composition 70/30 wt%	s 220
A.79 DSC curve of sPS1 / Polyisoprene blends at composition 80/20 wt%	5 221
A.80 DSC curve of sPS2 / Polyisoprene blends at composition 80/20 wt%	6 221
A.81 DSC curve of sPS3 / Polyisoprene blends at composition 80/20 wt%	6 221
A.82 DSC curve of sPS1 / Polyisoprene blends at composition 90/10 wt%	6 222
A.83 DSC curve of sPS2 / Polyisoprene blends at composition 90/10 wt%	6 222
A.84 DSC curve of sPS3 / Polyisoprene blends at composition 90/10 wt%	6 222
A.85 DSC curve of sPS1 / PVME blends at composition 50/50 wt%	223
A.86 DSC curve of sPS2 / PVME blends at composition 50/50 wt%	223
A.87 DSC curve of sPS3 / PVME blends at composition 50/50 wt%	223
A.88 DSC curve of sPS1 / PVME blends at composition 60/40 wt%	224
A.89 DSC curve of sPS2 / PVME blends at composition 60/40 wt%	224
A.90 DSC curve of sPS3 / PVME blends at composition 60/40 wt%	224
A.91 DSC curve of sPS1 / Polyisoprene blends at composition 70/30 wt%	6 225
A.92 DSC curve of sPS2 / Polyisoprene blends at composition 70/30 wt%	b 225
A.93 DSC curve of sPS3 / Polyisoprene blends at composition 70/30 wt%	a 225
A.94 DSC curve of sPS1 / PVME blends at composition 80/20 wt%	226
A.95 DSC curve of sPS2 / PVME blends at composition 80/20 wt%	226
A.96 DSC curve of sPS3 / PVME blends at composition 80/20 wt%	226
A.97 DSC curve of sPS1 / PVME blends at composition 90/10 wt%	227
A.98 DSC curve of sPS2 / PVME blends at composition 90/10 wt%	227
A.99 DSC curve of sPS3 / PVME blends at composition 90/10 wt%	227
A.100 The chromatogram of sPS1	228
A.101 The chromatogram of sPS2	228
A.102 The chromatogram of sPS3	228

24

รูปที่	หน้า
B.1 DSC curve of SPS	230
B.2 DSC curve of SPS blended with LCC	230
B.3 DSC curve of SPS blended with GMS	230
B.4 DSC curve of PaMS	231
B.5 DSC curve of PaMS blended with LCC	231
B.6 DSC curve of PaMS blended with GMS	231
B.7 DSC curve of SPS20/PaMS80 blends	232
B.8 DSC curve of SPS20/PaMS80/LCC blends	232
B.9 DSC curve of SPS20/PaMS80/GMS blends	232
B.10 DSC curve of SPS40/PaMS60 blends	233
B.11 DSC curve of SPS40/PaMS60/LCC blends	233
B.12 DSC curve of SPS40/PaMS60/GMS blends	233
B.13 DSC curve of SPS60/PaMS40 blends	234
B.14 DSC curve of SPS60/PaMS40/LCC blends	234
B.15 DSC curve of SPS60/PaMS40/GMS blends	234
B.16 DSC curve of SPS80/PaMS20 blends	235
B.17 DSC curve of SPS80/PaMS20/LCC blends	235
B.18 DSC curve of SPS80/PaMS20/GMS blends	235
B.19 DSC curve of PBMA	236
B.20 DSC curve of PBMA blended with LCC	236
B.21 DSC curve of PBMA blended with GMS	236
B.22 DSC curve of SPS20/PBMA80 blends	237
B.23 DSC curve of SPS20/PBMA80/LCC blends	237
B.24 DSC curve of SPS20/PBMA80/GMS blends	237
B.25 DSC curve of SPS40/PBMA60 blends	238
B.26 DSC curve of SPS40/PBMA60/LCC blends	238
B.27 DSC curve of SPS40/PBMA60/GMS blends	238
B.28 DSC curve of SPS60/PBMA40 blends	239

Ĵ	ปที่		หน้า
	B.29	DSC curve of SPS60/PBMA40/LCC blends	239
	B.30	DSC curve of SPS60/PBMA40/GMS blends	239
	B.31	DSC curve of SPS80/PBMA20 blends	240
	B.32	DSC curve of SPS80/PBMA20/LCC blends	240
	B.33	DSC curve of SPS80/PBMA20/GMS blends	240
	B.34	DSC curve of PEMA	241
	B.35	DSC curve of PEMA blended with LCC	241
	B.36	DSC curve of PEMA blended with GMS	241
	B.37	DSC curve of SPS20/PEMA80 blends	242
	B.38	DSC curve of SPS20/PEMA80/LCC blends	242
	B.39	DSC curve of SPS20/PEMA80/GMS blends	242
	B.40	DSC curve of SPS40/PEMA60 blends	243
	B.41	DSC curve of SPS40/PEMA60/LCC blends	243
	B.42	DSC curve of SPS40/PEMA60/GMS blends	243
	B.43	DSC curve of SPS60/PEMA40 blends	244
	B.44	DSC curve of SPS60/PEMA40/LCC blends	244
	B.45	DSC curve of SPS60/PEMA40/GMS blends	244
	B.46	DSC curve of SPS80/PEMA20 blends	245
	B.47	DSC curve of SPS80/PEMA20/LCC blends	245
	B.48	DSC curve of SPS80/PEMA20/GMS blends	245
	B.49	DSC curve of PCHA	246
	B.50	DSC curve of PCHA blended with LCC	246
	B.51	DSC curve of PCHA blended with GMS	246
	B.52	DSC curve of SPS20/PCHA80 blends	247
	B.53	DSC curve of SPS20/PCHA80/LCC blends	247
	B.54	DSC curve of SPS20/PCHA80/GMS blends	247
	B.55	DSC curve of SPS40/PCHA60 blends	248
	B.56	DSC curve of SPS40/PCHA60/LCC blends	248

₃ ปที่	หน้า
B.57 DSC curve of SPS40/PCHA60/GMS blends	248
B.58 DSC curve of SPS60/PCHA40 blends	249
B.59 DSC curve of SPS60/PCHA40/LCC blends	249
B.60 DSC curve of SPS60/PCHA40/GMS blends	249
B.61 DSC curve of SPS80/PCHA20 blends	250
B.62 DSC curve of SPS80/PCHA20/LCC blends	250
B.63 DSC curve of SPS80/PCHA20/GMS blends	250
B.64 DSC curve of PIP	251
B.65 DSC curve of PIP blended with LCC	251
B.66 DSC curve of PIP blended with GMS	251
B.67 DSC curve of SPS20/PIP80 blends	252
B.68 DSC curve of SPS20/PIP80/LCC blends	252
B.69 DSC curve of SPS20/PIP80/GMS blends	252
B.70 DSC curve of SPS40/PIP60 blends	253
B.71 DSC curve of SPS40/PIP60/LCC blends	253
B.72 DSC curve of SPS40/PIP60/GMS blends	253
B.73 DSC curve of SPS60/PIP40 blends	254
B.74 DSC curve of SPS60/PIP40/LCC blends	254
B.75 DSC curve of SPS60/PIP40/GMS blends	254
B.76 DSC curve of SPS80/PIP20 blends	255
B.77 DSC curve of SPS80/PIP20/LCC blends	255
B.78 DSC curve of SPS80/PIP20/GMS blends	255
B.79 DSC curve of PVME	256
B.80 DSC curve of PVME blended with LCC	256
B.81 DSC curve of PVME blended with GMS	256
B.82 DSC curve of SPS20/PVME80 blends	257
B.83 DSC curve of SPS20/PVME80/LCC blends	257
B 84 DSC curve of SPS20/PVME80/GMS blends	257

3	ปที่		หน้า
	B.85	DSC curve of SPS40/PVME60 blends	258
	B.86	DSC curve of SPS40/PVME60/LCC blends	258
	B.87	DSC curve of SPS40/PVME60/GMS blends	258
	B.88	DSC curve of SPS60/PVME40 blends	259
	B.89	DSC curve of SPS60/PVME40/LCC blends	259
	B.90	DSC curve of SPS60/PVME40/GMS blends	259
	B.91	DSC curve of SPS80/PVME20 blends	260
	B.92	DSC curve of SPS80/PVME20/LCC blends	260
	B.93	DSC curve of SPS80/PVME20/GMS blends	260
	C.1	DSC curve of sPS1	262
	C.2	DSC curve of sPS1 blended with PIP	262
	C.3	DSC curve of sPS1 blended with PBMA	262
	C.4	DSC curve of sPS1 blended with PEMA	263
	C.5	DSC curve of sPS1 blended with PHMA	263
	C.6	DSC curve of sPS1 blended with PaMS	263
	C.7	DSC curve of sPS2	264
	C.8	DSC curve of sPS2 blended with PIP	264
	C.9	DSC curve of sPS2 blended with PBMA	264
	C.10	DSC curve of sPS2 blended with PEMA	265
	C.11	DSC curve of sPS2 blended with PHMA	265
	C.12	2 DSC curve of sPS2 blended with PaMS	265
	C.13	3 TGA curve of sPS	266
	C.14	4 TGA curve of sPS blended with PIP	266
	C.15	5 TGA curve of sPS blended with PBMA	266
	C.16	6 TGA curve of sPS blended with PEMA	267
	C.1	7 TGA curve of sPS blended with PHMA	267
	C.1	8 TGA curve of sPS blended with PaMS	267

.

วัตถุประสงค์ของโครงการ

 เพื่อพัฒนาผลิตภัณฑ์และการประยุกต์ใช้งานพอลิเมอร์ผสมที่มาจากซินดิโอแทคติกพอลิสไต รีน

 เพื่อประกันคุณภาพและมีองค์ความรู้ (Know how) ในการเลือกผสมพอลิสไตรีนชนิดซินดิ โอแทคติกเพื่อให้ได้คุณสมบัติตามที่ต้องการอีกด้วย