CONTENTS

PAGE

ENGLISH ABSTRACT	ii
THAI ABSTRACT	iii
ACKNOWLEDGEMENTS	v
CONTENTS	vi
LIST OF TABLES	viii
LIST OF FIGURES	Х
NOMENCLATURES	xiv
CHAPTER	
1. INTRODUCTION	1
1.1 Background	1
1.2 Objectives	2
1.3 Scopes of work	2
1.4 Expected results	2
2. THEORIES AND LITERATURE REVIEWS	3
2.1 Theories	3
2.1.1 History of Doxorubicin	3
2.1.2 Mechanism of action	3
2.2 Supercritical Fluid Extraction	3
2.3 Co-solvent or Modifier	6
2.4 Estimation the pure component properties	7
2.4.1 First-order groups	8
2.4.2 Second-order groups	8
2.4.3 Third-order groups	9
2.4.4 Proposed model	9
2.5 GCA-EoS model	11
2.5.1 Repulsive term	11
2.5.2 Attractive term	12
2.5.3 Association term	13
2.6 Rapid expansion of super critical solution (RESS) process	14
2.7 Particle formation	16
2.7.1 Mass, Momentum and Energy Conservation	16
2.7.2 Particle formation model	16
3. METHODOLOGY	18
3.1 Methodology	18
3.1.1 Studying the overview of supercritical technology specified on the RESS	19
Process.	1)

CONTENTS (CONT.)

CURRICULUM VITAE	94
C. Parameters estimation	88
B. Validdation of estimation properties between previous and this work	82
A. Comparison of estimation method	78
APPENDIX	
REFERENCES	74
5.2 Recommendations	73
5.1 Conclusions	72
5. CONCLUSIONS AND RECOMMENDATIONS	72
4.4.5 Co-solvent concentration (methanol)	07
4.4.2 Fie-expansion pressure	01 67
4.4.1 Pre-expansion temperature	50 61
4.4 Sensitivity analysis	56 56
supersonic free jet region	50
4.3.1 Physical properties of the supercritical fluid in subsonic and	
4.3 Results of the flow model in the precipitation unit	49
4.2.3 Solubility of DOX in supercritical phase	46
4.2.2 Fugacity coefficient of DOX in supercritical phase (ϕ_i)	43
4.2.1 The compressibility factor of system (z)	41
4.2 GCA-EoS in extraction unit	40
4.1 Validation of Group-Contribution base estimate method	39
4. RESULTS AND DISCUSSION	39
3.3.3 Modeling of particle formation in supersonic free jet region	37
3.3.2 Modeling of flow field in supersonic free jet region	36
3.3.1 Modeling of flow field in subsonic region	32
3.3 Modeling of particle formation	31
3.2.3 Association parameters	22
3.2.2 Attractive parameters	22
3.2.1 Repulsive parameters	22
2.2 The requirements of peremeter in CCA EOS model	20
3.1.3 Formulating and developing mathematical model in the RESS process	20
in modified supercritical phase using GCA-EoS model	19
3.1.2 Formulating mathematical model to solve the solubility of DOX	

LIST OF TABLES

ТАВ	LE	PAGE
2.1	Physical and transport properties of gases, liquids and SCFs	5
2.2	Critical condition for carious solvents	5
2.3	Modifier in pure supercritical carbon dioxide	6
2.4	Selected function for each property	10
2.5	The critical properties parameters of DOX carbon dioxide and	10
5.1	methanol using the method of Marrero and Gani	22
3.2	The GCA-EOS pure-group parameters of this system	23
3.3	The GCA-EOS binary interaction parameters (k_{ki}^{*})	25
3.4	The GCA-EOS binary interaction parameters (k_{k_i}'')	25
3.5	The GCA-EOS binary interaction parameters (α_{kj})	26
3.6	Associating groups, their active sites, and type of association effect in DOX and methanol molecule	30
3.7	Energy ($\varepsilon^{A_k B_j}$) and volume ($\kappa^{A_k B_j}$) of association parameters for self- and cross- association in both systems of DOX in pure supercritical carbon dioxide and supercritical carbon dioxide with methanol as a modifier	30
3.8	Critical temperature (T_c) , critical pressure (P_c) , critical density (ρ_c) ,	
	molecular weight, acentric factor (ω), and polar factor (χ) of both	
	carbon dioxide and methanol [37]	35
4.1	Comparing the accuracy between two widely-used group contribution	20
4.0	prediction methods for normal melting point $C_{\text{empering the assurement}} = f_{\text{mental melting point}}(T_{\text{empering the assurement}})$	39
4.2	Comparing the accuracy of normal metting point (T_m) estimation between the previous work of Phongtummaruk and this work	40
43	Assumption of flow model along the sub-sonic and supersonic	40
1.5	free jet region	50
A.1	The property function, group contribution term and adjustable parameter	r
	of normal melting point estimation	79
A.2	2 First level group of estimation by using method of Marrero and Gani	79
A.3	Second level group of estimation by using method of Marrero and Gani	79
A.4	Third level group of estimation by using method of Marrero and Gani	80
A.5	Estimation of normal melting point of method of Joback and Reid	81
B.1	Group contribution parameters of first level of estimation of the	
	previous work of Phongtummaruk	84
В.2 В.3	Group contribution parameters of first level of estimation of this work Group contribution parameters of second level of estimation of the	84
	previous work of Phongtummaruk	86
B.4	Group contribution parameters of second level of estimation of this work	k 86

LIST OF TABLES (CONT.)

TABLE

B.5	Group contribution parameters of third level of estimation of this work	87
C.1	The property function, group contribution term and adjustable parameter	
	of normal boiling point, critical temperature, and critical pressure	
	estimation	88
C.2	First level group of estimation normal boiling point critical	
	temperature, and critical pressure by method of Marrero and Gani	88
C.3	Second level group of estimation normal boiling point, critical	
	temperature, and critical pressure by method of Marrero and Gani	89
C.4	Third level group of estimation normal boiling point, critical	
	temperature, and critical pressure by using method of Marrero and Gani	89
C.5	Estimated normal boiling point, critical temperature, and critical pressure	
	by using method of Marrero and Gani	89
C.6	Simple group, number of each group in DOX molecule, and volume	
	increment (ΔV) for estimating solid density based on Lyman method	90
C.7	Molecular feature, number of each feature in DOX molecule,	
	and incremental values (V _b) for estimating molar volume based on	
	Schroeder's method	92
C.8	Simple groups for Parachoe estimation, number of each group in	
	DOX molecule, and Parachor incremental for estimating molar volume	
	based on Schroeder's method	93

LIST OF FIGURES

FIGU	JRE	PAGE
2.1	Chemical structure of Doxorubicin	3
2.2	Pressure-temperature diagram of a pure substanc	4
2.3	T_c - x_c , P_c - x_c , and P_c - T_c diagrams of the supercritical carbon dioxide	
	and methanol system	7
2.4	RESS equipment concept	15
3.1	Schematic diagrams of methodology	18
3.2	Classification and numbering of DOX into pure chemical group	23
3.3	Functional group specification in DOX molecule (a) the seventh and	
	eighth simple functional group based on Figure 3.2, (b) lack functional	
	group, and (c) excess functional group	24
3.4	Associated hydroxyl (OH) and ketone (CO) groups of DOX molecule	
	in pure supercritical carbon dioxide	27
3.5 \$	Schematic of self- and cross- association DOX molecule in pure	
_	supercritical carbon dioxide	28
3.6	Schematic of self- and cross- association of DOX in supercritical	
	carbon dioxide and methanol as a modifier	29
3.7	Schematic drawing of the rapid expansion parts	31
4.1	Calculated compressibility factor (z) of the system of DOX in pure	
	supercritical carbon dioxide correlated with pressure (bar) at various	4.1
4.0	temperatures	41
4.2	Calculated compressibility factor (z) of the system of DOX in	
	supercritical carbon dioxide with added methanol as a modified $(a) = 2$ (b) $(b) = 4$ and $(c) = 5$ much methanol as a modified	
	co-solvent (a) 3, (b) 4, and (c) 5 mole percentage correlated with	40
12	pressure (bar) at various temperatures C_{2} of the system of DOX in modified	42
4.3	calculated compressibility factor (2) of the system of DOA in modified	
	temperature (308,15 K) correlated with pressure (bar) at various ratio	
	of modified co-solvent	13
1 1	Coloulated fugacity coefficient (ϕ) of DOV in (a) nume superprintical	-5
4.4	Calculated fugacity coefficient (φ_i) of DOX in (a) pure supercritical	
	carbon dioxide, (b) modified co-solvent of supercritical carbon dioxide	
	and methanol ($x_{CO_2} = 0.97$) correlated with pressure (bar) at various	
	temperature	44
4.5	Calculated fugacity coefficient (ϕ_i) of DOX in pure supercritical	
	carbon dioxide and modified co-solvent at constant temperature	
	(a) 308.15 K, (b) 313.15 K., (c) 318.15 K, and (d) 323.15 K correlated	
	with pressure (bar) at various ratio of methanol as a modified co solvent	t 46
4.6	Solubility of DOX in pure supercritical carbon dioxide correlated	
	with pressure (bar) at various extraction temperatures	47

LIST OF FIGURES (CONT.)

FIGURE

PA	GE
----	----

4.7	Solubility of DOX in modified co-solvent of supercritical carbon dioxide and 3 mole percentage of methanol correlated with	
	pressure (bar) at various extraction temperatures	47
4.8	Solubility of DOX in pure supercritical carbon dioxide and modified	
	co-solvent at constant temperature (a) 308.15 K. (b) 313.15 K.	
	(c) 318 15 K and (d) 323 15 K correlated with pressure (bar) at	
	various ratio of methanol as a modified co-solvent	49
10	Calculated velocity profile (cm/s) correlated with expansion distance	т <i>)</i>
т.)	(cm) when expanding saturated modified supercritical solution through	
	expansion paths (a) subsonic and (b) supersonic free jet region with	
	pro expansion condition 328 15 K and 200 bar (mathenol 3 mole	
	pre-expansion condition 558.15 K and 200 bar (methanor 5 more	51
4 10	$C_{alculated density profile (a/am3) correlated with expansion distance$	51
4.10	(am) when expanding seturated modified superprintical solution through	
	(cm) when expanding saturated modified supercritical solution through	
	expansion pains (a) subsonic and (b) supersonic free jet region with	
	pre-expansion condition 558.15 K and 200 bar	50
4 1 1	(methanol 3 mole percentage)	52
4.11	Calculated temperature profile (K) correlated with expansion distance	
	(cm) when expanding saturated modified supercritical solution through	
	expansion paths (a) subsonic and (b) supersonic free jet region with	
	pre-expansion condition 338.15 K and 200 bar	
	(methanol 3 mole percentage)	53
4.12	Calculated pressure profile (bar) correlated with expansion distance	
	(cm) when expanding saturated modified supercritical solution through	
	expansion paths (a) subsonic and (b) supersonic free jet region with	
	pre-expansion condition 338.15 K and 200 bar	
	(methanol 3 mole percentage)	54
4.13	Calculated supersaturation ratio in supersonic free jet region correlated	
	with expansion distance (cm) when expanding saturated modified	
	supercritical solution through expansion path with pre-expansion	
	condition 338.15 K and 200 bar (methanol 3 mole percentage)	54
4.14	Calculated nucleation rate (particles/cm ³ s) in supersonic free jet region	
	correlated with expansion distance (cm) when expanding saturated	
	modified supercritical solution through expansion path with pre-expansion	
	condition 338.15 K and 200 bar (methanol 3 mole percentage)	55
4.15	Calculated critical radius (nm) in supersonic free jet region correlated	
	with expansion distance (cm) when expanding saturated modified	
	supercritical solutionthrough expansion path with pre-expansion	
	condition 338.15 K and 200 bar (methanol 3 mole percentage)	55

LIST OF FIGURES (CONT.)

FIGURE

4.16	Calculated number concentration of critical nuclei (particles/cm ³) in supersonic free jet region correlated with expansion distance (cm) when expanding saturated modified supercritical solution through expansion path with pre-expansion condition 338.15 K and 200 bar	
	(methanol 3 mole percentage)	56
4.17	Velocity profile (cm/s) of modified saturated solution when expanding through (a) subsonic (b) supersonic free jet region correlated with	
4.18	expansion distance (cm) at various pre-expansion temperatures Density profile (g/cm^3) of modified saturated solution when expanding	57
	through (a) subsonic (b) supersonic free jet region correlated with expansion distance (cm) at various pre-expansion temperatures	58
4.19	Temperature profile (K) of modified saturated solution when expanding through (a) subsonic (b) supersonic free jet region correlated with	50
4.20	expansion distance (cm) at various pre-expansion temperatures Pressure profile (bar) of modified saturated solution when expanding	58
	through (a) subsonic (b) supersonic free jet region correlated with expansion distance (cm) at various pre-expansion temperatures	59
4.21	Supersaturation ratio in supersonic free jet region correlated with	
4.22	expansion distance (cm) at various pre-expansion temperatures Nucleation rate (particles/cm ³ s) in supersonic free jet region correlated	60
	with expansion distance (cm) at various pre-expansion temperatures	60
4.23	Critical radius (nm) in supersonic free jet region correlated with	
4.0.4	expansion distance (cm) at various pre-expansion temperatures	60
4.24	Number concentration of critical nuclei (particles/cm [°]) in supersonic free jet region correlated with expansion distance (cm) at various	61
4 25	pre-expansion temperatures Velocity profile (cm/s) of modified saturated solution when expanding	01
1.23	through (a) subsonic (b) supersonic free jet region correlated with expansion distance (cm) at various pre-expansion pressures	62
4.26	Density profile (g/cm^3) of modified saturated solution when expanding through (a) subsonic (b) supersonic free jet region correlated with	
	expansion distance (cm) at various pre-expansion pressures	63
4.27	Temperature profile (K) of modified saturated solution when expanding through (a) subsonic (b) supersonic free jet region correlated with	
	expansion distance (cm) at various pre-expansion pressures	64
4.28	Pressure profile (bar) of modified saturated solution when expanding through (a) subsonic (b) supersonic free jet region correlated with	
	expansion distance (cm) at various pre-expansion pressures	64
4.29	Supersaturation ratio in supersonic free jet region correlated with	
	expansion distance (cm) at various pre-expansion pressures	65

PAGE

LIST OF FIGURES (CONT.)

FIGURE

4.30	Nucleation rate (particles/ cm^3 s) in supersonic free jet region correlated with expansion distance (cm) at various pre-expansion pressures	66
4.31	Critical radius (nm) in supersonic free jet region correlated with expansion distance (cm) at various pre-expansion pressures	66
4.32	Number concentration of critical nuclei (particles/cm ³) in supersonic free jet region correlated with expansion distance (cm) at various	
	pre-expansion pressures	66
4.33	Velocity profile (cm/s) of modified saturated solution when expanding through (a) subsonic (b) supersonic free jet region correlated with expansion distance (cm) at various ratios of methanol modified	
	co-solvent 2	67
4.34	Density profile (g/cm ³) of modified saturated solution when expanding through (a) subsonic (b) supersonic free jet region correlated with expansion distance (cm) at various ratios of methanol modified	
	co-solvent	68
4.35	Temperature profile (K) of modified saturated solution when expanding through (a) subsonic (b) supersonic free jet region correlated with	
	expansion distance (cm) at various ratios of methanol modified	60
4 36	CO-SOLVERI Pressure profile (bar) of modified saturated solution when expanding	69
	through (a) subsonic (b) supersonic free jet region correlated with	
	expansion distance (cm) at various ratios of methanol modified	
	co-solvent	69
4.37	Supersaturation ratio in supersonic free jet region correlated with	
4.38	expansion distance (cm) at various ratios of methanol modified co-solvent Nucleation rate (particles/cm ³ s) in supersonic free jet region correlated	70
	with expansion distance (cm) at various ratios of methanol modified	70
4.39	Critical radius (nm) in supersonic free jet region correlated with	70
4.40	expansion distance (cm) at various ratios of methanol modified co-solvent Number concentration of critical nuclei (particles/cm ³) in supersonic	70
	free jet region correlated with expansion distance (cm) at various	
D 1	ratio of methanol modified co-solvent	71
B.1	Defined simple functional groups in first level of estimation of DOX molecule (a) previous work of Phongtummaruk and (b) this work	83
B.2	Defined polyfunctional groups in second level of estimation of DOX	05
	molecule (a) previous work of Phongtummaruk and (b) this work	85
B.3	Defined in polycyclic groups in third level of estimation of DOX	
	molecule in this work	87
C.1	Estimation of molar volume of pure solid base on Lyman method	90

NOMENCLATURES

Α	=	Helmholtz energy (J)
	=	Area (flow model)
a	=	Coefficients of the Bender equation of state
B, C, D, E,	=	Temperature dependent coefficients (egB-EoS)
F, G, and H		
B*, C*, D*, E*,	=	Reduced function (egB-EoS)
$F^*, G^*, and H^*$		
С	=	Heat capacity
<i>C</i> , <i>D</i> , <i>E</i>	=	Contribution of first-, second-, and third- order group
		(Estimation method)
d	=	Hard sphere diameter
D	=	Diameter
f	=	Fanning friction factor (flow model)
		Conversion factor (egB-EoS)
g	=	Attractive energy parameter for interaction (GCA-EoS)
		Constant (egB-EoS)
h	=	Heat transfer coefficient
Н	=	Specific enthalpy
k	=	Boltzmann's constant (particle formation)
		Attractive energy parameter for interaction (GCA-EoS)
L	=	Length
	=	Avogadro number (particle formation)
М	=	Number of associating sites
п	=	Number of moles of component
Ν	=	Fluid phase concentration
N, M, O	=	Times occurred in component (estimation method)
Р	=	Pressure (bar, MPa)
q	=	Surface parameter
Q	=	Heat loss by convection
r	=	Radius of conical shape in supersonic free jet region
R	=	Universal gas constant (cm ³ bar/mol K)
S	=	Surface area
S	=	Supersaturation ratio
Т	=	Temperature (K)
V	=	Number of groups in molecule (GCA-EoS model)
		Velocity (flow model)
V	=	Total volume
W	=	Sonic velocity
X	=	Mole fraction of component
		Distance (flow model)
X	=	Mole fraction of group not associate

NOMENCLATURES (CONT.)

у	=	Solute solubility (mole fraction basis)
Z.	=	Compressibility factor
NC	=	Number of components in the mixture
NGA	=	Number of associating functional groups in the mixture
MW	=	Molecular weight
\widetilde{q}	=	Total number of surface segments
$\theta_{_k}$	=	Surface fraction
α	=	NRTL non-randomness parameter
З	=	Characterizes the association energy
κ	=	Associating volume
ρ	=	Density
σ	=	Solid-fluid interfacial tension
ϕ	=	Fugacity
ω	=	Acentric factor
υ	=	Solute molar volume (solubility expression)
χ	=	Polar factor
τ	=	Reduced temperature
δ	=	Reduced density
ξ, η	=	Binary parameters for interaction between species (egB-EoS)

Subscripts

*	=	Referent state (GCA-EoS model)
		Prevailing condition (particle formation)
0	=	Adjustable value
2	=	Solute phase
b	=	Boiling point
С	=	Critical
i, j, k	=	Type, molecule
т	=	Melting point (estimation method)
		Mach (flow model)
		Mixed (egB-EoS)
nozzle	=	Nozzle region
pre	=	pre-expansion condition
post	=	post-expansion condition

NOMENCLATURES (CONT.)

Superscripts

att	=	Attractive term
assoc	=	Association term
Ε	=	Extraction condition
out	=	Outlet
р	=	Constant pressure
res	=	Residual Helmholtz energy
rep	=	Repulsive term
sat	=	Saturated
v	=	Constant volume