

LIST OF FIGURES

Figure		Page
1	Triglyceride	3
2	The transesterification reaction	7
3	Three step of transesterification reaction	8
4	The mechanism of alkali catalyst transesterification	8
5	(a) Conventional processing consists of one reactor and nine distillations	12
	(b) The reactive distillation configuration	12
6	The reactive distillation concept for synthesis of methyl tert-butyl ether	13
7	The reactive distillation concept for hydration of ethylene oxide to Ethylene glycerol	14
8	(a) The equilibrium stage	15
	(b) Multi-stage distillation column	16
9	Reflux ratio schematic	19
10	Process facilities of biodiesel process	20
11	The modification biodiesel process from Zhang	21
12	(a) Triolein structure	22
	(b) Dolein structure	22
	(c) Monolein structure	22
	(d) Methyl oleate structure	22
13	(a) Trilinolein structure	23
	(b) Dilinolein structure	23
	(c) Monolinolein structure	23
	(d) Methyl linoleate structure	23
14	(a) The structure of trioleic from GAUSSIAN 03W	25
	(b) The structure of dioleic from GAUSSIAN 03W	25
	(c) The structure of monoleic from GAUSSIAN 03W	26
	(d) The structure of methyl oleic from GAUSSIAN 03W	26
15	(a) The structure of trilinoleic from GAUSSIAN 03W	27
	(b) The structure of dilinoleic from GAUSSIAN 03W	27
	(c) The structure of monolinoleic from GAUSSIAN 03W	28
	(d) The structure of trilinoleic from GAUSSIAN 03W	28

LIST OF FIGURES (Cont'd)

Figure			Page
16	The alkali catalyst process to produce biodiesel from virgin oil	30	
17	The biodiesel production of this work	31	
18	Transesterification section	33	
19	Methanol recovery section	34	
20	Residue curve for glycerol, biodiesel and methanol	35	
21	Glycerin removal section	36	
22	Alkali removal section	37	
23	Residue curve for biodiesel, water and methanol	37	
24	The biodiesel production by using reactive distillation	39	
25	Reactive distillation section	40	
26	Glycerin removal section	41	
27	Alkali removal section	41	
28	The comparison of conversion in the bottom stream between Conventional and reactive distillation	43	
29	The comparison of energy consumption between reactive distillation and conventional process	43	
30	(a) The reactive distillation with recycle methanol (b) The reactive distillation without recycle methanol	44	
31	The number of reaction zone	46	
32	Effect of number of reaction zone on the biodiesel	47	
33	The number of rectifying zone	48	
34	The effect of number of rectifying zone on the biodiesel	48	
35	The number of stripping zone	49	
36	The effect of number stripping zone on the biodiesel	50	
37	The effect of column pressure on the biodiesel and reboiler duty	51	
38	The effect of reflux ratio on the biodiesel	52	
39	The effect of reflux ratio on the methanol recycle	52	
40	The effect of reflux ratio on the condenser duty	53	
41	The control structure of biodiesel process	54	

LIST OF FIGURES (Cont'd)

Figure		Page
42	(a) controller response of column pressure in case of increasing oil feed	57
	(b) controller response of liquid level on top of column in case of increasing oil feed	57
	(c) controller response of liquid level on bottom of column in case of increasing oil feed	57
43	(a) controller response of first liquid level of glycerin removal in case of increasing oil feed	58
	(b) controller response of second liquid level of glycerin removal in case of increasing oil feed	58
44	(a) controller response of first liquid level of alkali removal in case of increasing oil feed	59
	(b) controller response of second liquid level of alkali removal in case of increasing oil feed	59
45	(a) controller response of column pressure in case of decreasing oil feed	60
	(b) controller response of liquid level on top of column in case of decreasing oil feed	60
	(c) controller response of liquid level on bottom of column in case of decreasing oil feed	60
46	(a) controller response of first liquid level of glycerin removal in case of increasing oil feed	61
	(b) controller response of second liquid level of glycerin removal in case of increasing oil feed	61
47	(a) controller response of first liquid level of alkali removal in case of increasing oil feed	62
	(b) controller response of second liquid level of alkali removal in case of increasing oil feed	62

LIST OF FIGURES (Cont'd)

Figure		Page
48	(a) The effect of changing feed oil from 1,000 kg/h to 1,020 kg/h on the quantity	63
	(b) The effect of changing feed oil from 1,000 kg/h to 1,020 kg/h on the quality	63
49	(a) The effect of changing feed oil from 1,000 kg/h to 980 kg/h on the quantity	64
	(b) The effect of changing feed oil from 1,000 kg/h to 980 kg/h on the quality	64

Appendix Figure

A1	The structure of di-linoleic	75
A2	The defining structure of di-linoleic	75