Abstract

The properties of $(La_{0.8}Sr_{0.2})_{2.x}Ca_xNiO_4$ (LSN-Ca_x), $(La_{0.8}Sr_{0.2})_{2.x}Ca_xNi_{0.9}Co_{0.1}O_4$ (LSNC-Ca_x) and $La_{2.x}Ca_xNi_{0.9-y}Co_{0.1}(Fe, Zn)_yO_4$ (LNCF-Ca_x and LNCZ-Ca_x) as cathode materials for solid oxide fuel cell were investigated. All compounds prepared by modified citrate method exhibited K₂NiF₄-type with tetragonal structure using calcination and sintering temperature of 900°C and 1350°C for 10 hours, respectively. LSN-Ca_x and LSNC-Ca_x (x=0-0.5) substituted with Ca²⁺ on the A-site in composition of x=0.2 showed the single phase of K₂NiF₄-type structure and the highest electrical conductivity of 176.9 and 166.9 S/cm at 800°C, respectively. To improve oxygen permeation of $La_2Ni_{0.9}Co_{0.1}O_4$ (LNC), Ni-site was firstly substituted with Fe³⁺ or Zn²⁺ to obtain LNC-Fe_y and LNC-Zn_y (y=0-0.2). Then Ca²⁺ was incorporated into La-site of LNC-Fe_{0.05} and LNC-Zn_{0.05} which had the highest oxygen permeation rate, to improve the electrical conductivity. The highest electrical conductivity was achieved for LNCF-Ca_{0.5} and LNCZ-Ca_{0.5} and the values were 98.4 and 84.9 S/cm at 800°C. Additionally, the single cell performance of LNCF-Ca_{0.5} and LNCZ-Ca_{0.5} with LSGM electrolyte was measured and maximum power densities were 322 and 312 mW/cm² at 800°C, respectively. This indicated that LNCF-Ca_{0.5} and LNCZ-Ca_{0.5} could be potential cathode materials for IT-SOFC.