TABLE OF CONTENTS

	Page
ABSTRACT (IN THAI)	i
ABSTRACT (IN ENGLISH)	iii
DEDICATION	V
ACKNOWLEDGEMENTS	vi
LIST OF TABLES	X
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	xiv
CHAPTER I INTRODUCTION	1
1. Background and rationale	1
2. Objectives of the study	6
3. The scope of the study	6
4. Anticipated outcomes	6
5. Location of research conducting	7
CHAPTER II LITERATURE REVIEWS	8
1. Hair	8
1.1 The growth of hair follicle	10
1.2 Hair pigmentation	19
1.3 Hair cells	23
1.4 Hair loss	26
1.4.1 Androgen metabolism	29
1.4.2 Genetic involvement	31
1.5 Medication management	33
1.5.1 Drug therapy	33
1.5.2 Hair transplantation	34
2. Report on plants affecting hair growth	39
3. Carthamus tinctorius L.	40

TABLE OF CONTENTS (Cont.)

	Page
CHAPTER III MATERIALS AND METHODS	44
1. Chemicals	44
2. Materials and apparatus	44
3. Plant materials	45
4. Preparation of the plant extracts	45
4.1 Plant preparation for the screening test	45
4.2 Preparation of Carthamus tinctorius	45
5. Safety evaluation	46
5.1 Cytotoxic effect on white blood cells	46
5.2 Mutagenicity effect evaluation	47
5.2.1 S-9 mixture preparation	47
5.2.2 Determination of mutagenic activity	47
6. Chemical component analysis	47
6.1 UV- visible spectrophotometer	47
6.2 HPLC analysis	48
6.3 Determination of phenolics content and	
antioxidant activity	48
7. Preliminaty stability test	49
8. The study on hair growth promoting effect	49
8.1 <i>In vitro</i> study	49
8.1.1 Cell cultures	49
8.1.2 Cell proliferation	50
8.1.3 The expression of hair growth-related gene	50
8.1.4 Hair growth activity	52
8.1.5 Melanin content	53
8.2 <i>In vivo</i> study	53
8.2.1 Sample test preparation	53
8.2.2 Animals	53
8.2.3 Experiment	54

TABLE OF CONTENTS (Cont.)

	Page
9. Preliminary skin permeation study	55
9.1 Preparation of pig ear skin	55
9.2 Preparation of the test sample	55
9.3 Permeation experiment	55
10. Statistic analysis	56
CHAPTER IV RESULTS	57
1. Effect of the plant extracts on the viability of dermal papilla	
Cells (DPCs) and keratinocytes (HaCaT)	57
2. Safety evaluation	62
2.1 Effect of CTE on white blood cells	62
2.2 Mutagenicity evaluation	63
3. Chemical component analysis	64
4. Preliminary stability test of CTE	69
5. Hair growth promoting effect of CTE	70
5.1 <i>In vitro</i> study	70
5.1.1 Effect of CTE on the expression of hair	
growth-related genes	70
5.1.2 Melanin content	78
5.1.3 Effect of CTE on the growth of mouse	
neonate hair follicle	80
5.2 <i>In vivo</i> study	81
6. Skin permeation study	87
CAHPTER V DISCUSSION	89
CHAPTER VI CONCLUSION	96
REFERENCES	98
APPENDIX	110
RESEARCH PUBLICATIONS	114
VITAE	116

LIST OF TABLES

		Page
Table 1	Types of alopecia	28
Table 2	Targets and related therapies	36
Table 3	Gradient elution of HPLC mobile phase system	48
Table 4	Nucleotide sequence of the primers and PCR product size	51
Table 5	PCR conditions	52
Table 6	Fifteen selected plants for hair growth promoting study	58
Table 7	The highest cell viability and 50% toxicity dose (TC50) when treated	
	with 0.03-5.00 mg/ml of plant extracts on DPCs and HaCaT	61
Table 8	% yield and effect of C.tinctorius fraction on viability of DPCs and	
	HaCaT	62
Table 9	Hydroxysafflor yellow A content in four fractions of <i>C.tinctorius</i>	68
Table 10	The total phenolic compounds and anti-oxidative activity of CTE	69
Table 1	Effect of CTE on the growth of mouse neonate hair follicle	80
Table 12	Effect of CTE on anagen/telogen ratio, hair follicle	
	number and skin thickness of mice	83
Table 13	Effect of CTE on the mice skin thickness	86
Table 14	Flux and lag time of CTE permeation through pig ear skin	88

LIST OF FIGURES

		Page
Figure 1	The structure of human skin	8
Figure 2	Diagrammatic drawing of the hair	10
Figure 3	The structure of hair follicle	11
Figure 4	Signaling molecules controlling hair growth	12
Figure 5	Auto-and cross-induction of TGF-α, amphiregulin, HB-EGF,	
	epiregulin, and betacellulin in normal human keratinocytes	14
Figure 6	Effect of insulin-like growth factor-I on keratinocyte growth	16
Figure 7	Effects of TGF- β1, BMP2, and activin on keratinocyte growth	17
Figure 8	Vitamin D production and metabolism	18
Figure 9	Fate of melanocytes (MC) during morphogenesis of hair follicle	
	pigmentary unit	21
Figure 10	Melanin synthesis pathways	22
Figure 11	Various isolated and cultivated hair follicular cells	25
Figure 12	Clinical patterns of hair loss in male and female	27
Figure 13	Pathways for androgen metabolism by scalp hair follicle	31
Figure 14	Stem cell diagram	37
Figure 15	Androgenetic alopecia: Pathogenic mechanisms and therapeutic	
	strategies	39
Figure 16	Safflower plants (A), florets (B), ethanolic extract (C)	42
Figure 17	Structure of hydroxysafflor yellow A	42
Figure 18	Extraction chart of 4 fractions of C.tinctorius	46
Figure 19	Side by side diffusion cell	56
Figure 20	Fifteen plant materials	59
Figure 21	Crude plant extracts and %yield of ethanolic extraction of	
	15 herbals plants	60
Figure 22	Cytotoxic effect of CTE on white blood cell	62
Figure 23	Effect of CTE on Salmonella typhimurium	63
Figure 24	UV-vis spectrum of hydroxysafflor yellow A (A) and CTE (B)	64
Figure 25	HPLC profiles of standard mixture (A-C) and CTE (D)	66

LIST OF FIGURES (Cont.)

		Page
Figure 26	HPLC profile of <i>C.tinctorius</i> (2 mg/ml)	67
Figure 27	The structures of four identified compounds in CTE	68
Figure 28	The stability of CTE	69
Figure 29	The physical appearance of CTE after 5 months of storage	70
Figure 30	Effect of CTE on mRNA expression of VEGF in DPCs and	
	HaCaT cells	71
Figure 31	Effect of CTE on mRNA expression of KGF in DPCs and	
	HaCaT cells	72
Figure 32	Effect of CTE on mRNA expression of TGF-β1 in DPCs	
	and HaCaT cells	73
Figure 33	Effect of CTE on mRNA expression of 5α -reductase (Type I)	
	in DPCs and HaCaT cells	74
Figure 34	Effect of CTE on mRNA expression of 5α -reductase (Type II)	
	in DPCs and HaCaT cells	75
Figure 35	Effect of CTE on B16F10 melanocytes viability	76
Figure 36	Effect of CTE on mRNA expression of tyrosinase, TRP-1	
	and TRP-2 in B16F10 cells	77
Figure 37	Photograph of darken B16F10 cells, after incubated for 48 h	
	without any substances (A) and with CTE 25 μ g/ml (B)	78
Figure 38	Melanin content (A) and viability (B) of B16F10 cells treated	
	with different concentrations of CTE for 48 h	79
Figure 39	Light microscope picture of hair follicles treated with CTE	
	and minoxidil showing intact morphology at 72 h	80
Figure 40	Effect of CTE on hair growth in C57BL/6 mice	81
Figure 41	Representative transverse (A) and longitudinal (B) sections	
	of C57BL/6 mice	82
Figure 42	Hair growth-promoting effects of CTE in C57BL/6	84

LIST OF FIGURES (Cont.)

		Page
Figure 43	Representative transverse (A) and longitudinal (B) histological	
	profiles of C57BL/6 mice	85
Figure 44	Hair growth-promoting effects of CTE in Sprague-dawley rats	87
Figure 45	Skin permeation profile of CTE	88

LIST OF ABBREVIATIONS

C. tinctorius Carthamus tinctorius L.

CTE Ethanolic extract of *C.tinctorius* florets

°C Degree Celsius

DM Dermis

DMSO Dimethyl sulfoxide

DMEM Dulbecco's Modified Eagle Medium

DPCs Dermal papilla cells

ED Epidermis

FBS Fetal Bovine Serum
G-6-P glucose-6-phosphate

HPLC High performance liquid chromatography

h Hours

HF Hair follicle

KCl Potassium chloride

KGF Keratinocyte growth factor

L litre

MgCl₂ Magnesium chloride

min Minute
ml Mililitre
mM Milimolar

MTT 3-[4,5-dimethylthiazol-2-yl]-2,5-dyphenyl tetra-zolium

Bromide

NADH Nicotinamide adenine dinucleotide phosphate

NADPH Nicotinamide adenine dinucleotide phosphate reduced form

NaOH Sodium hydroxide

PBMCs Peripheral blood mononuclear cells

RPMI Roswell Park Memorial Institute Medium

RT-PCR Reverse transcription- polymerase chain reaction

SC Subcutis

LIST OF ABBREVIATIONS (Cont.)

TRP Tyrosinase related-protein

VEGF Vascular endothelial growth factor

 $\begin{array}{ccc} \mu g & & Microgram \\ \mu l & & Microlitre \\ \mu m & & Micrometre \end{array}$