CONTENTS

	PAGE				
ENGLISH ABSTRACT	ii				
THALABSTRACT					
ACKNOWLEDGEMENTS					
CONTENTS	vi				
LIST OF TABLES	viii				
LIST OF FIGURES					
NOMENCLATURE	Х				
CHAPTER					
1. INTRODUCTION	1				
1.1 Background	1				
1.2 Objectives	2				
1.3 Scopes of work	2				
1.4 Expected results	2				
2. THEORY AND LITERATURE REVIEW	3				
2.1 The plastic injection molding process	3				
2.2 The injection molding parameters	5				
2.3 Rheology of polylactic acid	6				
2.4 Plastic flow characteristic	8				
2.5 Computational Fluid Dynamics (CFD)	10				
2.6 Mesh topologies	13				
2.7 Literature review	14				
3. METHODOLOGY	16				
3.1 Study and collect information	16				
3.2 Study the principle of CFD and how to use ANSYS CFX	16				
3.3 Develop and validate the dynamic model with experimental result	s 17				
3.4 Analyze and conclude the results	25				
4. RESULTS AND DISCUSSION	26				
4.1 Effect of melt temperature on viscosity and shear rate	26				
4.2 Melt front predictions	27				
4.3 Temperature profiles	29				
4.4 Pressure distribution along melt flow advancement	31				
5. CONCLUSION AND RECOMMENDATIONS	32				
5.1 Conclusion	32				
5.2 Recommendation	33				

	PAGE
REFERENCES	34
CURRICULUM VITAE	39

LIST OF TABLES

TABLE	PAGE
2.1 Cross-WLF model constants for the PLA 7000D used in simulation	7
3.1 Data connectivity between experiment and simulation	17
3.2 Material properties of air and PLA 7000D	23
3.3 The operating condition of plastic injection molding process	24

LIST OF FIGURES

FIGURE

2.1 Injection molding machine	3
2.2 Injection molding process	4
2.3 Injection molding parameters	5
2.4 Cross-WLF model terms	6
2.5 Fountain flow	8
2.6 Molecular orientation through the cross section	8
2.7 Heat transfer in the cross section	9
2.8 Injection rate effect on the frozen thickness	9
2.9 Steps in pre-processing stage	10
2.10 Types of cell	13
3.1 Methodology	16
3.2 Actual shape of mold	18
3.3 Mold model	18
3.4 Dimension of dog bone part and runner parts in inches	19
3.5 The average water volume fraction versus the number of elements	21
3.6 Meshed model of mold	21
3.7 Adapted mesh model of mold	22
3.8 Position of inlet, outlet and wall of mold model	24
4.1 Consolidated plot of viscosity versus shear rate at different temperatures	26
4.2 Flow front predictions at different filling time	28
4.3 Example positions of temperature contours	29
4.4 Temperature contours at different locations in mold cavity	30
4.5 Pressure distributions along melt flow length at 175 °C, 190 °C and 230 °C	31

PAGE

NOMENCLATURE

A_1	=	Data fitted coefficient of Cross-WLF model (-)
Ã ₂	=	Data fitted coefficient of Cross-WLF model (K)
D_1	=	Data fitted coefficient of Cross-WLF model (Pa.s)
D_2	=	Data fitted coefficient of Cross-WLF model (K)
D_3	=	Data fitted coefficient of Cross-WLF model (K/Pa)
n	=	Power law index in the high shear rate regime (-)
Р	=	Pressure (Pa)
Т	=	Temperature (K)
t	=	Time constant (s)
η	=	Dynamic viscosity (kg/m. s)
η_0	=	Zero shear viscosity (kg/m. s)
η_∞	=	High shear viscosity (kg/m. s)
$ au^*$	=	Critical stress level (Pa)
Ý	=	Shear rate (1/s)
r	=	Volume fraction (-)
Γ	=	Diffusivity (kg/m. K)
ρ	=	Density (kg/m^3)
C_P	=	Specific heat capacity at constant pressure (J/kg. K)
τ	=	Shear stress (N/m ²)
S_E	=	Energy source (kg/m.K ⁻³)
S_M	=	Momentum source $(kg/m^{-2}.K^{-2})$
v	=	specific volume (m ³)
δ	=	Identity matrix or Kronecker Delta function
α	=	Used as subscript to indicate that the quantity applies to polylactic acid
~		

 β = Used as subscript to indicate that the quantity applies to air