
CHAPTER 2 THEORIES 
 

 

To study tropical cyclone formation, a shallow water model is used to simulate the 

storm development and bogus wind by an asymmetric wind model is applied to enhance 

the weak observed wind of the storm.  

 

2.1 Symmetric Wind Model 
In the symmetric wind model, wind speed is zero at the center of the storm and 

increases rapidly to its maximum at the radius of maximum wind and then decreases 

gradually to zero at large radii. The wind speed can be described by the Holland model 

(Holland, 1980)  
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where  RVh  is the tangential wind speed at the distance R from the eye of the storm 

(ms-1), centerp  is the central pressure of the storm (hectopascal-hPa), envp is the 

environmental pressure (hPa), maxR is the radius of maximum wind (m), R is the radius 

where wind speed is to be calculated (m),  is the air density of fluid which is constant 

and equal to 1.15 kgm-3 and f (=2Ωsinϕ, where Ω is the angular speed of the earth 

equal 7.292105 rads1  and ϕ is latitude) is the Coriolis parameter.  

 

Harper and Holland (2008) suggest an empirical relation for the parameter b that 

determines the shape of the radial profile as  
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The modified Rankine vortex model uses a shape parameter b to adjust the wind speed 

distribution in the radial direction and requires user to specify the maximum gradient 

wind speed for a stationary storm Vmax and Rmax. For convenience, in this study the 

maximum wind speed from the gradient wind is used. 

 

In the natural coordinates system, the horizontal momentum equations in form the 

gradient wind in any situation can be determined by solving the quadratic equation for 
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The air pressure distribution is (Holland 1980) 
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The pressure gradient from differentiation Eq. (2.4) is given by 
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Substitute Eq. (2.5) into Eq. (2.3) 
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At maxRR   the maximum gradient wind speed is given by 
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Since the Coriolis force is small in comparison to the pressure gradient and centrifugal 

forces near maxR , Eq. (2.7) becomes 
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where Vcenter is the translation speed of the storm. 

 

Eq. (2.8) is the parameter that determines the shape of the radial profile. 

 

An example of a symmetric wind pattern is shown in Figure 2.1. 

 

 
 

Figure 2.1 An example of symmetric wind speed of tropical cyclone. Each circle 

represents a contour of wind speed (isotach). 

 

In Figure 2.1, Vh(R1) >Vh(R2) >Vh(R3) are the tangential wind speeds at distance R1, R3 

and R2, respectively, where R1 is the radius of maximum wind. 

Figure 2.2 shows schematic diagrams of symmetric wind of a storm from the symmetric 

wind model with wind speed around the storm and wind vector of the storm in Figure 

2.2(a) and Figure 2.2(b), respectively. 

eye 
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    (a)                  (b) 

Figure 2.2 (a) Symmetric wind speed (ms-1) and (b) Symmetric wind vector. 
 

2.2 Asymmetric Wind Model 
The asymmetric wind around the storm is generated by including the effect of storm 

center movement. Translation vector of the center is added to the rotation vector of the 

storm obtained from Holland model. This asymmetric wind model gives wind speed 

pattern that is close to the real tropical cyclone wind than that of Holland model.   

 

Combining translation speed of tropical cyclone with tangential speed at the distance R, 

the asymmetric wind speed is obtained, 

    centerhasym VuRVRV


 ,
  

  (2.9) 

where  ,RVasym


  is the asymmetric wind vector of a moving cyclone at distance R from 

the center with the angle θ from the reference axis,  RVh
 is the tangential wind speed 

of symmetric wind model in Eq. (2.1) at distance R from the center, 
centerV


  is the 

translation vector of the storm center and u


 is the unitary vector pointing in the 

direction of rotation in the symmetric wind model. 

To show the vectors of the cyclone winds, consider Figure 2.3 at the point A of radius 1R   

with angle 1 , and a point B of radius 2R  with angle 2 . 
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Figure 2.3 Wind vectors associated with the asymmetric wind model (Mouton, 

  2012). 

 

A is the first position in polar coordinate and defined as  11,R , where 1R  is the distance 

from the center of storm to point A, 1 is the angle between radius 1R  and the reference 

axis. B is the second position in polar coordinate and defined as  22 ,R , where 2R  is the 

distance from the center of storm to point B and 2  is the angle between radius 2R  and 

reference axis. Noting that  ,RVasym


 is the sum of two vector, 

centerV


and   uRVh


. 

The non-moving model’s wind vector is  

     uRVRV h


,         (2.10) 

The equation of asymmetric wind vector is 

       centerhasym VuRVRV


 ,         (2.11) 

From Figures 2.4 (a) and (b), and using vector addition and Pythagoras theorem, the 

asymmetric wind speed of a moving cyclone can be obtained. 

 

                             

 

 

 

 

 

 

 

 

 

 

        Figure 2.4 Relationships between    RVRV hasym ,,

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The asymmetric wind model (AWM) is formulated by combining the movement of 

tropical cyclone to the symmetric wind model. The research by Kongied (2011) presents 

an asymmetric wind model as  

          cos2,, 22

centerhcenterhasymasym VRVVRVRVRV 


   (2.12)     

where  Vasym(R, θ)  is  the  asymmetric  wind  speed of  a moving cyclone at  the position  

(R, θ), Vcenter is the translation speed of the storm center and θ is the angle between the 

line passing through the point of interest and the reference axis. 

The main difference between symmetric wind and asymmetric wind is that symmetric 

wind is a scalar summation, while asymmetric wind is a vector summation of rotation 

wind vector and translation vector. 

Figure 2.5 shows schematic diagrams of asymmetric wind of the storm from 

asymmetric wind model with wind speed and wind vector of the storm in Figures 2.5(a) 

and Figure 2.5(b), respectively. 

         

    (a)                  (b) 

Figure 2.5 (a) Asymmetric wind speed (ms-1) and (b) Asymmetric wind vector. 

 

2.3 Shallow Water Model 
The shallow water equations are a set of hyperbolic partial differential equations that 

describes the flow below a pressure surface in an inviscid shallow fluid layer in a 

rotating frame of reference. The equations explain the evolution of a hydrostatic 

homogeneous (constdcant density), and incompressible fluid in response to gravitational 

and rotational accelerations.  The shallow water model is a simplified version of the 

Navier-Stokes equations. 

The momentum, hydrostatic and continuity equations for a shallow water model can be 

written as (Holton, 2004) 

1
0

du p
fv

dt x


  


     (2.13) 

http://en.wikipedia.org/wiki/Hyperbolic_partial_differential_equation
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where u is the wind component along x axis, v is the wind component along y axis, w is 

the vertical wind speed component along z axis, p is the pressure, g is the gravity.   

The total time derivative is defined by 
y
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Consider a thin layer of fluid above a flat surface. The depth of the fluid (h) is a 

function of x and y (h = h(x, y)) and the mean depth H. 

Assume that the pressure at the top of the fluid layer is a constant p0. Integrating the 

hydrostatic Eq. (2.15) between the limits z and h to get  

    0pzhgp  
  

(2.17) 

where h is the height of the interface. 

 

Assume that the pressure at a point is given by the weight of fluid above it (plus p0). It 

implies that the horizontal pressure gradient at a depth z is given by 
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The expressions on the right hand sides are independent of the depth z. 

Assume that the horizontal velocity (u, v) is initially independent of depth z. Then it can 

be assumed that the velocity (u, v) is constant throughout the fluid layer. Integrating the 

continuity equation, Eq. (2.16), through the full depth of the fluid. Since u and v are 

constant with respect to z, the first two terms give 

0
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Because the bottom is flat, the vertical velocity must vanish there. Moreover, the 

vertical velocity of a fluid particle at the top surface is given by ( )
dh

w h
dt

 . 

Thus, the third term of Eq. (2.16) can be integrated as  
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dz w h w
z dt

 
   

 
    (2.20) 

Finally, the result of integrating Eq. (2.16) may be written as  
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The set of shallow water equations are as follows. 

Equations of motion,
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where  is the geopotential height 

Continuity equation, 
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In the Lagrangian framework, the shallow water model can be written as 
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2.4 Vorticity and Circulation 
The circulation, C, about a closed contour in a fluid is defined as the line integral 

evaluated along the contour of the component of the velocity vector that is locally 

tangent to the contour. In a horizontal plane 

   yvxuC                       (2.28) 

The vertical component of vorticity is defined as the circulation about a closed contour 

in the horizontal plane divided by the area enclosed, in the limit where the area 

approaches zero. Figure 2.6 shows a diagram for a derivation of vorticity. 
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Figure 2.6 Derivation of vorticity in Cartesian coordinates (Holton, 2004). 

 

The circulation for a small area in Figure 2.6 is 

          

 

 

 

(2.29) 

 

 

Dividing through by the area (dA=ΔxΔy) of the rectangular element yields and the 

vertical component of vorticity  
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In this research the finite difference method is used to compute ζ. By the finite 

difference method, the domain of solution of the given partial differential equation is 

first divided into a number of grid points. The wind data are given on a rectangular grid 

(Figure 2.7). 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Wind vectors on a rectangular grid. 

 

Figure 2.7 shows a part of a rectangular grid with wind vectors. The flow parallel to the 

sides of the square is very important for the possible rotation or vorticity of the air 

around point (i, j).  
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The central-difference approximation at the grid point (i, j) transforms Eq. (2.30) into 
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where Δx and Δy are the grid intervals along x-axis and y-axis, respectively.  

The values of 
jiu ,
 and 

jiv ,
 in Eq. (2.31) are obtained from Vasym(R, θ) in Eq. (2.12) by 

coordinates transformation from polar to cartesian coordinates. 

 

The translation vector, the resultant vector and the combination of the tangent wind and 

the translation vectors are shown in Figure 2.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Combination of the tangent wind and the translation vectors. 

 

Let O is the storm center (origin of the coordinates),  is the angle of the resultant 

vector,  1 is the angle of point P with respect to the x-axis,  2 is the angle of the 

translation vector,  3 is RQP


,  4 is RPQ


,  5 is the angle of the tangent wind 

vector at point  P, PQ is the tangent wind vector, PS is the translation vector and PR 

is the resultant vector. 

In Figure 2.8, the angles  1 to   are defined as follows  

  1 = tan-1(XP/OX)         

  2 =  0 + 180º ;  0 = tan-1(lat/lon)    

  3 = 180 - 2 +   with the conditions  3 :=  360 -  3  if  3 180  

By the law of cosine, consider the triangle PQR and denote PQ = PQ = Vh(R,  5),      

QR = Vcenter and PR= PR = Vasym(R,  ) (where R = OP).  

 where Vcenter is the translation speed of the storm center 

  Vasym   is the asymmetric wind speed. 
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  5 =  1+ 90o with the condition  5 :=  5 - 360o if  5 > 360o   

where lat = latitude at the initial position of the storm minus latitude of the 

previous  6-hour position. Similarly, lon = longitude at the initial position minus 

longitude of the previous 6-hour position.   

 

Then the asymmetric wind speed is  

          3

222
cos2,  RQPQQRPQPRRVasym 

  
(2.32) 

 

and the angle between the asymmetric wind and tangential wind ( 4) is 
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Therefore, the direction of asymmetric wind vector, , can be calculated by two 

conditions. 

    4 
  

if 25    

      

    4    if 25    

     

The x-component (u) and y-component (v) of the asymmetric wind can be calculated 

by Eqs. (2.34a) and (2.34b). 

u = PRcos          (2.34a) 

v = PRsin        (2.34b) 

 

2.5 Wind Direction and Degree  
In meteorology, wind direction is the direction in which the wind is coming from, as 

shown in Figure 2.9 and Table 2.1.  

 

 

 

 

 

 

     

  

  

 

 

 

 

 

Figure 2.9 Wind cardinal and degree directions. 
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Table 2.1 Meteorological wind direction and degree. 

Cardinal Direction Degree 

North (N) 0.0 

North northeast (NNE) 22.5 

Northeast (NE) 45.0 

East northeast (ENE) 67.5 

East (E) 90.0 

In this research, northeast monsoon wind is defined as wind with direction between 22.5 

to 67.5 degree. 

 

The horizontal wind vector (VH) is represented by the bold black line in the Figure 2.10 

below; i and j represent unit vectors towards east and north, respectively (The Natural 

Environment Research Council, 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.10 Wind vector and meteorological wind direction (The Natural    

   Environment Research Council, 2013). 

 

In Figure 2.10, φVect is the wind vector angle. It increases clockwise from north when 

viewed from above, φMet is the meteorological wind direction angle. It also increases 

clockwise from north when viewed from above and φPolar which is the wind vector in 

polar angle in two-dimensions. It increases anticlockwise from east (x-axis), this in the 

opposite sense to the wind vector and the meteorological wind direction, and from a 

different origin. 

 

The use of trigonometric functions assumes that angles are expressed in units of radians, 

φ(rad), rather than degrees. Directions are converted from units of degrees to radians 

through the relationship: 

φ(rad) = 
180


× φ(deg)     (2.35) 

Transformation of u and v components of wind vector to meteorological wind direction 

(φMet) can be done as follows,  

φVect(deg) = tan-1
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These directions are typically expressed in units of degrees, φ(deg), but can either be in 

the interval -180° to +180° or 0° to 360°. The wind vector and meteorological wind 

direction are related by 

φMet(deg) = φVect(deg)+180    (2.37) 

Subtracting 360° where appropriate in order to keep the values within the desired range. 


