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Abstract

DLC/a-Si bilayer film was deposited on germanium substrate where a-Si layer was
firstly deposited on the substrate using DC magnetron sputtering. DLC layer was then
deposited on the a-Si layer using pulsed filtered cathodic arc (PFCA) method. In-situ
ellipsometry was used to monitor the thicknesses of the growth films, allowing a precise
control over the a-Si and DLC thicknesses. The bilayer films were deposited with
different DLC/a-Si thickness ratios, including 2/2, 2/6, 4/4, 6/2 and 9/6. The effect of
DLC/a-Si thickness ratios on the sp® content of DLC was analyzed by Raman
spectroscopy. The results show that a-Si layer has no effect on the structure of DLC
film. Furthermore, the upper shift in G-peak position and the decrease in Ip/lg inform
that sp® content of the film is directly proportional to DLC thickness. The DLC/a-Si
thickness ratio 9/6 was further analyzed using transmission electron microscopy (TEM)
and X-ray photoelectron spectroscopic (XPS) depth profile. It was found that carbon
atoms implanting on a-Si layer act not only as a carbon source for DLC formation, but
also as a source for SiC formation. The Raman peak positions at 796 cm™ and 972 cm™
corresponded to the longitudinal optical (LO) and transverse optical (TO) phonon
modes SiC, respectively, the thicknesses of bilayer films were also estimated using
spectroscopic ellipsometry (SE).

In this work, DLC/a-Si bilayer film with a thickness ratio of 10/7 nm was deposited
simultaneously on three types of substrate: SiO,, Ge, and Ta;Os. The results revealed
that the thickness of the growth film strongly depended on the surface energy of the
substrate. The lowest thickness of a-Si layer of 5.64 nm was observed on SiO, substrate
due to the highest substrate surface energy of SiO, surface. The a-Si layer thicknesses of
6.30 and 6.97 nm were observed on Ge and Ta;Os, respectively. This indicates that Ge
and Ta,Os have lower substrate surface energy than that of SiO, surface. However, the
DLC films deposited on each a-Si layer of three substrates have the same thickness
approximately of 9.9 nm, because all of them were deposited on a-Si layer-coated
substrates having the same surface energy. This information may be important for
analysizing and developing bilayer protective films for future hard disk drive.

Keywords: Amorphous silicon (DLC)/ Diamond-like carbon/
Pulsed filtered cathodic arc (PFCA)/ Silicon carbide (SiC)
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