
CHAPTER 3 METHODOLOGY 

 
3.1 The Educational Global Climate Model 

The climate model applied in this study is Educational Global Climate Model (EdGCM). 

It is a three dimensional computer model that divides the atmosphere into a series of 

discrete grid cells. The EdGCM’s model grid has 7,776 grid cells which is corresponding 

to 8° × 10° latitude by longitude in horizontal column (Figure 3.1) and containing 9 

vertical layers in the atmosphere (Chandler et al., 2006). 
 

 
 

Figure 3.1 NASA/GISS Global Climate Model grid resolutions of 8° × 10° latitude by 

longitude (Chandler et al., 2006). 

The procedure for running EdGCM is as follows.  

 

Figure 3.2 The steps for running the EdGCM (Columbia University, 2009). 

 

  

Start 

Step 2: Set the value of various greenhouse gases.  

Step 3: Run the model until the required time is reached. 

 

End 

Step 1: Set the geographic boundary conditions (i.e., land mass 

distribution, topography, vegetation distribution). 
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3.2 The Data for the Educational Global Climate Model 

The EdGCM model describes both seasonal and daily solar cycles in its temperature 

calculations. Cloud particles, aerosols, and radiatively important gases are explicitly 

incorporated into the radiation scheme. The data required for EdGCM are described in 

Table 3.1. 

Table 3.1 The required conditions of EdGCM (Chandler et al., 2006). 

 

Boundary Conditions The boundary conditions are the description of the land-ocean 

distribution and the topography. The land surface cover is 

specified, including the locations and heights of continental ice 

sheets, the seasonal distribution of vegetation and the location 

and extent of lakes. 

Initial Conditions The initial conditions specify the starting temperature, pressure, 

winds, and humidity for every location in the atmosphere.  

Climate Forcings The climate forcings impact the results of the run more 

dramatically, such as greenhouse gases. 

Climate Feedbacks There are three feedback mechanisms that are illustrative of the 

process, and which are dominant mechanisms effecting global 

warming and cooling scenarios: the water vapor feedback, the 

cloud feedback, and the ice albedo feedback. 

Climate Sensitivity The sensitivity of the climate system to a forcing is most 

commonly expressed in terms of the global mean temperature 

change that would be expected after a time sufficiently long for 

both the atmosphere and the ocean to come to equilibrium with 

the change in climate forcing. 

 

3.3 The Experiment Design 

The EdGCM is designed for running 143-year predictions from the 1st January 1958 to 

31st December 2100. Summary of the EdGCM runs are shown in Table 3.2 and Table 3.3. 

However, only the outputs of surface air temperature in April from 2010 to 2100 are used 

for predictability measurement in this research. 

3.3.1 Case I : Pertubed CO2 
 

Table 3.2 Case I  

 

Greenhouse gas The Control Run 

(CTRL) 

The Perturbed Runs  

(PERs) 

 

Carbon Dioxide 

(CO2) 

 

314.9  ppm 

  PER1 : 1% increase of CO2 

  PER2 : 5% increase of CO2 

  PER3 : 10% increase of CO2 

  PER4 : 20% increase of CO2 

  PER5 : 50% increase of CO2 

 

Table 3.2 shows the initial concentration of carbon dioxide for the control run (CTRL) 

and the perturbed runs (PERs) for Case I. 

  



 

 

16 

3.3.2 Case II : Perturbed CO2 and CH4 
 

Table 3.3 Case II  

 

Greenhouse gas The Control Run 

(CTRL) 

The Perturbed Runs  

(PERs) 

 

Carbon Dioxide (CO2) 

 

Methane (CH4) 

 

314.9  ppm 

 

1.2240 ppm 

  PER2 : 5% increase of CO2 

  PER6 : 5% increase of CH4 

  PER7 : 5% increase of CO2 

             +5% increase of CH4 

 

 

Similarly, Table 3.3 shows the initial concentration of carbon dioxide and methane for 

the control run and the perturbed runs for Case II. 

3.4 The Study Domain 

The study domain covers Southeast Asian region between latitude 4° S to 28° N and 

longitude 95° E to 115° E as shown in Figure 3.3.  

 

 

Figure 3.3 The latitude and longitude of the study domain. 
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3.5. The Modified Lyapunov Exponent 

The predictability problem refers to those causes of uncertainty as model uncertainty and 

initial uncertainty. Most theoretical studies of atmospheric predictability tend to 

concentrate on the initial uncertainty and its propagation forwards in time through the 

integration of an otherwise deterministic flow model (Jifan, 1989). There are several 

methods that can be used to estimate model predictability. Most predictability 

measurement methods are based on the Lyapunov exponent (LE) with infinitesimal 

perturbation. LE provides a measure of the rate of convergence or divergence of nearby 

trajectories, which indicating the level of sensitivity of a system to initial condition 

(McCue, 2005). To establish a new predictability measurement method which associates 

the condition of the exponential rate to the growth rate of initial perturbation of dynamical 

models, the modified Lyapunov exponent (MoLE) is proposed as follows.  

 

A time evolution is usually described by a dynamical system, which is given by the 

solution to differential equations in continuous time or difference equations in discrete 

time. Consider an n-dimensional continuous dynamical system. Assume that the 

evolution of the atmosphere is defined by the nonlinear differential equation (Baohua et 

al., 2006), 
 

( )
( ( ))

d t
t

dt


x
F x        (3.1) 

 

where ( )x
nt   is the state space with respect to a continuous time t, 0t   and F is an n-

dimensional vector field. The solution of (3.1), ( )tx , will be called a reference solution 

with its initial condition 0(0) x x . 

 

Consider an n-dimensional discrete dynamical system described by the following form 

(Jifan, 1989) 

 

                 ( ) ( ( ))t t t x F x ,      (3.2) 

 

where ( )x
nt   is the state space with respect to a discrete time t, t  and F  is a 

continuously differentiable nonlinear function. Thus the ( )x t  value can be demonstrated 

based on initial value, 0(0) .x x  

 

Now, consider a one-dimensional map, 

  

     ( ) ( ( ))x t t f x t  ,      (3.3) 

 

For the separation between two points, the control state 0x  and the perturbed state 

0 0x x  where 
0 (0)x x   is the small initial perturbation added to 0x  at the initial 

time. Then at time t, the control and the perturbed states of the dynamical system will be 

evolved to 0 ( )x t  and 0( ) ( ),x t x t  respectively, as shown in Figure 3.4. 
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Figure 3.4 The schematic diagram of measuring error growth rate in the sense of LE. 

 

Define the average surface air temperature ( ), 1,2,..., ix t i N  as the state space of the 

dynamical system at time t where N is the total number of experiment data points. Then 

i  for ( )ix t  which is the separation rate of two trajectories at finite initial separation 

( ),ix t  can be written as 

 

( )1
( ( )) ln

( )

i

i i

i

x t t
x t

t x t


 



  
     

   i = 1, 2, …,N  (3.4) 

 

where ( )ix t  is the distance between the control average surface air temperature 0 ( )x t  

and the perturbed temperature 0( ) ( ) ( ),i ix t x t x t   with a suitable norm at time t. To 

establish the new measurement method namely modified Lyapunov exponent (MoLE), 

the weighted arithmetic mean of all trajectories ( )ix t  has been defined.  

 

To find the weighted , 1,2, , iw i N   which is associated with ( ), 1,2,..., ix t i N  the 

approach is based on the work of Mishra (2004) which uses median as a weighted 

arithmetic mean of all experimental data. Let the median be a weighted arithmetic mean 

of x  denoted by ( ),med x  the steps in this procedure are shown in Figure 3.5. 

 

 

 

 

 

 
Control trajectory 

Perturbed trajectory 
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Figure 3.5 The steps to find the median from a weighted arithmetic mean calculation. 

 

The weighted arithmetic mean of (3.4) over all of trajectories ( ), 1,2,..., ix t i N  in the 

phase space is the point of interest. Thus, for the state space of the dynamical system at 

time t of the point ( ), 1,2,..., ix t i N  which ( ), 1,2,..., iw t i N  exists, define MoLE at 

finite initial separation ( )ix t  in the state space as 
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where ( )ix t  is the distance between the control average surface air temperature 0 ( )x t  

and the perturbed temperature 0( ) ( ) ( ),i ix t x t x t   with a suitable norm at time t. Thus, 

MoLE can be used to measure the error growth rate in finite separation. The exponent 
i  

depends not only on initial error but also weighted arithmetic mean of all experimental 

time series, which is different from the other types of LE. Moreover, median as weighted 

arithmetic mean lies at the middle part of the series and hence MoLE is not affected by 

the extreme values such as temperature in different region. The positive exponent 

indicates sensitive dependence on the initial conditions. The larger the exponent, the 

faster the error grows and the lower the predictability. 

 


