
CHAPTER 2 THEORY 

 
2.1 The Fundamental Physical Equations 

The Educational Global Climate Model (EdGCM) is a suite of software that allows 

users to run a fully functional three dimensions global climate model (GCM) on laptops 

or desktop computers (Macs and Windows PCs). The heart of a GCM is a model of the 

Earth’s atmosphere. The model numerically solves five fundamental physical equations 

that are used to describe the evolving state of the atmosphere. These equations are the 

conservation of mass, conservation of energy, conservation of momentum, conservation 

of moisture and the ideal gas law in each cell also taking into account the transport of 

quantities between cells (Chandler et al., 2006). The model equations are as follows.  

The conservation of momentum (Newton’s second law of motion), 
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The conservation of mass (continuity equation), 
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The conservation of energy (first law of thermodynamics), 
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The conservation of moisture (vapor, liquid, solid), 
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The ideal gas law (approximated equation of state), 

              .dp R T         (2.5)  

where   V   velocity   R   radiation vector 

T    temperature  C    conductive heating 

p    pressure   
pc   heat capacity at const. p 

                           density   E    evaporation 

  q    specific humidity  S     latent heating 

           g    gravity   
qS    phase-change source 

               rotation of the earth  k    diffusion coefficients 

           
dF   drag force of the earth 

dR   dry air gas constant.  

2.2 Predictability Measurement 

The atmosphere is a dynamical system which is a system that changes over time, it is 

difficult to provide accurate prediction and determines the predictability. The term 

predictability measurement may be defined as a useful method for measuring the rate of 

error growing in a dynamical system. There are many methods to measure the ability of 

prediction. In this study, the following measurements are utilized.  
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2.2.1 Lyapunov Exponent (LE) 

The notion of Lyapunov exponent (LE) is based on the average rate of exponential 

separation of two infinitesimally close trajectories in the phase space. The method of 

Lyapunov characteristic exponents serves as a useful tool to quantify chaos. Especially, 

LE represents a mean to measure the rate of convergence or divergence of nearby 

trajectories (McCue, 2005).  

 

Figure 2.1 The simple measuring chaos in the sense of LE (Elert, 2007). 

 

The growth of the difference 
td  between the two trajectories over a time period 

0tt t t    can be described by  

     0

t

td d e        (2.6)  

where 
0d  is called an initial distance (Figure 2.1). Hence the separation rate ( ) is 

given by (Marc, 1995)  
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For N segments of the nearby trajectories, the average of   is given by 
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The magnitude of   is an indicator of the time scale on which chaotic behavior can be 

predicted for the positive and negative exponent cases, respectively, it works for 

discrete as well as continuous system. Since   is proportional to the logarithmic 

measure of the rate of divergence, the following holds (Leonov, 2007),  

1. If 0,   then the motion is diverge.  

2. If 0,   then the motion is neutral.  

3. If 0,   then the motion is converge.  

For a projection of three-dimension phase space, the deformation of a circle along 

reference trajectories is shown in Figure 2.2.  
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Figure 2.2  Stretching and contraction of trajectories projection of a three-dimension 

flow (Saiuparad and Sukawat, 2012).  

For the stretching along the first direction 1d , the LE 1  is positive and the system 

cannot be stable. For the contraction along the second direction 
2d , the LE 2  is 

negative, and then the system is stable. If the third direction is no deformation, the LE 

3 is zero. These three LEs can be written their signs in the notation (+,  , 0), which 

specifies chaos for flows. The signs of LEs are sufficient to determine the stability of a 

dynamical system. It is convenient to arrange the exponents starting from the largest 

positive on the left 
1  to the largest negative on the right 

n  

1 2 3 2 1, , ,..., ...   n n           

For three-dimension phase space flow, the following properties hold (Kinsner, 2003).  

1. If the system has only negative Lyapunov exponents, then the system is called stable.  

2. If the system has only zero and negative Lyapunov exponents, then the system is 

called stable periodic.  

3. If the system has only one positive Lyapunov exponent, then the system is called 

chaos.  

2.2.2 Maximum Lyapunov Exponent (MLE) 

Physically, LE is a measure of how rapidly nearby trajectories converge or diverge. 

Often times only the maximal Lyaponov exponent (MLE) is discussed since the 

maximal exponent is the simplest to calculate from a numerical time series and yields 

the greatest insight into the dynamics of the system (McCue, 2005). MLE is a measure 

of the rate of exponential separation of two infinitesimally close trajectories in the phase 

space and is given by (Boffetta, 1998),  
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where 
td  is the distance between the trajectories at time t. Consider a reference 

trajectory and a test trajectory which are separated at time 
0t by a small phase space 

distance 
0.d  For a chaotic system, the distance between reference and test trajectories 
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 d t  will be separated at an exponential rate. Hence, it must be renormalized. Define a 

rescaling parameter 
i  as (Marc, 1995),  
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where 
it  is the time at which   .id t D  The rescaling of the test trajectory is performed 

when the distance  id t  becomes greater than or equal to the threshold D. Then,  
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where  i it   and  i id d t . For successive threshold crossing and subsequent 

rescalings,  
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and so on. Therefore, the instantaneous LE is written by 
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Hence, MLE can be defined as 
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where  N  represents the total step number of evolution.  

2.2.3 Finite Size Lyapunov Exponent (FSLE) 

The finite size Lyapunov exponent (FSLE) is the average exponential separation of two 

trajectories at finite errors   in the phase space. It is a generalization of the LE’s 

concept to finite separations which is defined as 
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In order to compute the average of growth rate after a given time interval at every time 

step t , FSLE is given by, 
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where      ( )x t   is the distance between the trajectories with a suitable norm for an 

initial time. 

( )x t t   is the distance between the trajectories at the time t + t, where t is 

the forecast period.  

      
   is the averaged over many trajectories.  

Moreover, FSLE tends to MLE in the limit of infinitesimal separation between 

trajectories (Aurell, 1997), 
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2.4.4 Finite Time Lyapunov Exponent (FTLE) 

The finite time Lyapunov exponent (FTLE) is applied to fully developed turbulence 

model and to atmospheric predictability. FTLE has been defined for a prescribed finite 

time interval to study the local dynamics on the attractor. The sensitivity of trajectories 

over finite time intervals t to perturbations of the initial conditions can be associated 

with FTLE. For a system of equation written in state space from ( ),x u x  a 

trajectory ( )x t  and the equations for small deviations x  from this trajectory can be 

expressed by the equation (Eckhardt and Yao, 1993), 
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where x  is the deviation from the trajectory. The equation for FTLE is given by 
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FTLE measures convergence or divergence of nearby trajectories and thus providing a 

quantitative measure of a system’s sensitivity to initial condition. Positive FTLE 

indicates exponential divergence of a nearby trajectory and conversely, negative FTLE 

indicates exponential convergence.  

2.4.5 Local Lyapunov Exponent (LLE) 

By definition, the local Lyapunov exponent (LLE) of a dynamical system characterizes 

the rate of separation of infinitesimally closed points of the trajectory (Guégan and 

Leroux, 2008). This local rate has been defined as a finite time version of global LE, 

which provides information on how a perturbation to a system’s trajectory will 

exponentially increase or decrease in finite time. LLE depends on the orientation of 

initial conditions in dynamical systems and also depends on the magnitude of the time 
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interval. Thus, LLE is a short time LE in the limit where the time interval approaches 

zero which can be expressed as (McCue and Troesch, 2004)  
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where   ( )x t   is the trajectory with the time t 

( )x t   is the distance between the trajectories at the time t  

( )x t t   is the distance between the trajectories at the time t + t ,  

 t    is the time interval or forecast period.  

LLE exhibits the property as the practical quantity that controls the limit on 

predictability which is related to the inherent dynamical instability in a chaotic system. 

In a real sense, one may predict forward only for a finite time in a chaotic system 

because one has knowledge of local phase space position only to a finite resolution. 

This uncertainty in phase space location is increase or decrease exponentially rapidly as 

time evolves along the trajectory. Therefore, the finite time LLE is the critical quantities 

that govern predictability (Abarbanel et al., 1992).  

2.4.6 Supremum Lyapunov Exponent (SLE) 

The supremum Lyapunov exponent (SLE) provides a measure of the average rate of 

convergence or divergence of nearby trajectories (Saiuparad and Sukawat, 2012). The 

system with more positive exponent indicates sensitive dependence on the initial 

conditions, that is chaotic dynamics and unpredictability. The definition of SLE for 

predictability measurement is described as follows.  

Assume that the evolution of the atmosphere is governed by a nonlinear dynamical 

system of n-dimension continuous-time, defined by the differential equation,  

( ) ( ( ))t tx F x       (2.22) 
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where ( )tx  is the trajectories of the finite-dimensional state space ,n
 ( )x

nt   is the 

state space at time t, that is  1 2  3      x
T

nx x x x  and F is an n-dimensional vector 

field. Assume the vector field F generates the vector in space ( ) ( , )x f xt t , such that 
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The solution of (2.24) under the initial condition 0(0) x x  is written as 

                    0( ) ( , )x f xt t      (2.25) 

where 
0( , ) :f x

n nt   is the map which describes time evolution of all phase points 

such that 
0 0( ,0)f x x .  
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Let the set 
0{ ( , ) : }f x t t is the trajectory of the system through 

0x . Consider an n-

dimensional discrete-time smooth dynamical system of a nonlinear model solution that 

depends only on the initial condition 

   0( , ) ( , )f x f xt t M t  , t     (2.26) 

where 0( , )f x
nt  is the vector in a state space of the system at the time t, t  is the 

time interval, M is the time integration of the numerical scheme from the initial 

condition 
0( , )f x t to time evolution of the next state ( , )f x t t .  

Define the surface air temperature ( )xi t  as the state space of the dynamical system at 

time t at the point xi , i=1,2,3,…,N (N is the the total number of experiment data 

points). The Lyapunov exponent (LE) for ( )xi t can be written as 
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Then the characteristic exponents of ( )xi t are defined by 
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If in (2.28) and (2.29) the limits exist and  
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then the characteristic exponent of ( )xi t  exists and defined by (Saiuparad and Sukawat, 

2012), 
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Therefore, the characteristic exponential of ( )xi t  is the rate of divergence or 

convergence of two nearby trajectories. The supremum of (2.31) over all of trajectories 

( )xi t  in the phase space is the point of interest. The supremum Lyapunov exponent 

(SLE) is defined as (Saiuparad and Sukawat, 2012),  
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