CONTENTS

PAC	βE
-----	----

THAI A ACKNO CONTE LIST O LIST O LIST O	SH ABSTRACT BSTRACT OWLEDGEMENTS NTS F TABLES F FIGURES F SYMBOLS F TECHNICAL TERMS AND ABBREVIATIONS	ii iii iv v vii viii x x
CHAPT		
	RODUCTION	1
	Rationale / Problem Statement	1
	Regional Climate Change	1
	Global Climate Models Literature Review	2
	Objective	
1.5	Objective	6
2. THE	ORY	7
2.1	The Fundamental Physical Equations	7
2.2	Predictability Measurement	7
2.2.1	Lyapunov Exponent	8
2.2.2	Maximum Lyapunov Exponent	9
2.2.3	Finite Size Lyapunov Exponent	10
	Finite Time Lyapunov Exponent	11
	Local Lyapunov Exponent	11
2.2.6	Supremum Lyapunov Exponent	12
3 MFT	HODOLOGY	14
	The Educational Global Climate Model	14
	The Data for the Educational Global Climate Model	15
	The Experiment Design	15
	Case I : Pertubed CO ₂	15
	Case II : Pertubed CO_2 and CH_4	16
3.4	The Study Domain	16
3.5	The Modified Lyapunov Exponent	17
	JLTS AND DISCUSSION	21
4.1	The EdGCM Forecasts	21
4.2	Difference in Surface Air Temperature Forecast for EdGCM	27
4.3	Predictability of EdGCM	35
	Case I : Pertubed CO ₂	35
	Case II : Pertubed CO_2 and CH_4	39
4.4	Summary of Experiments	42

5. CON	CLUSI	ON AND RECOMMENDATION	44
5.1	Conclu	sion	44
5.2	Recom	mendation	45
REFER	RENCES	\$	46
APPEN	DIX A	The EdGCM Forecasts	51
APPEN	DIX B	Difference in Average Surface Air Temperature Forecast	62
BIOGR	APHY		84

LIST OF TABLES

TABLE		PAGE
1.1	Summary of literature reviews	6
3.1	The required conditions of EdGCM	15
3.2	Case I	15
3.3	Case II	16
4.1	Values of predictability of EdGCM for Case I	35
4.2	Values of predictability of EdGCM for Case II	39
4.3	Summary of predictability measurements	42
4.4	Summary of predictability measurement of surface air temperature from EdGCM for Case I	e 43
4.5	Summary of predictability measurement of surface air temperature from EdGCM for Case II	e 43
5.1	Summary of predictability measurement of surface air temperature from EdGCM for all experiments	e 44

LIST OF FIGURES

FIGURE]	PAGE
1.1	Schematic of the physical components of the climate system	3
2.1	The simple measuring chaos in the sense of LE	8
2.2	Stretching and contraction of trajectories projection of a three-dimension flow	9
3.1	NASA/GISS Global Climate Model grid resolutions of $8^{\circ} \times 10^{\circ}$ latitude by longitude	14
3.2	The steps for running the EdGCM	14
3.3	The latitude and longitude map of the study domain	16
3.4	The schematic diagram of measuring error growth rate in the sense of LE	18
3.5	The steps to find the median from a weighted arithmetic mean calculation	19
4.1	Forecast surface air temperature in April, for the years 2080, 2090 and 2100 from EdGCM model for a) CTRL and b) PER1	21
4.2	Forecast surface air temperature in April, for the years 2080, 2090 and 2100 from EdGCM model for a) CTRL and b) PER2	22
4.3	Forecast surface air temperature in April, for the years 2080, 2090 and 2100 from EdGCM model for a) CTRL and b) PER3	23
4.4	Forecast surface air temperature in April, for the years 2080, 2090 and 2100 from EdGCM model for a) CTRL and b) PER4	24
4.5	Forecast surface air temperature in April, for the years 2080, 2090 and 2100 from EdGCM model for a) CTRL and b) PER5	25
4.6	Forecast surface air temperature in April, for the years 2080, 2090 and 2100 from EdGCM model for a) CTRL and b) PER6	26
4.7	Forecast surface air temperature in April, for the years 2080, 2090 and 2100 from EdGCM model for a) CTRL and b) PER7	27
4.8	The differences of the forecast values of surface air temperature (°C between PER1 and CTRL) 28
4.9	The differences of the forecast values of surface air temperature (°C between PER2 and CTRL) 29
4.10	The differences of the forecast values of surface air temperature (°C between PER3 and CTRL) 30
4.11	The differences of the forecast values of surface air temperature (°C between PER4 and CTRL) 31
4.12	The differences of the forecast values of surface air temperature (°C between PER5 and CTRL) 32
4.13	The differences of the forecast values of surface air temperature (°C between PER6 and CTRL) 33
4.14	The differences of the forecast values of surface air temperature (°C between PER7 and CTRL) 34
4.15	Time evolution of λ for PER1 for all methods	36
4.16	Time evolution of λ for PER2 for all methods	37
4.17	Time evolution of λ for PER3 for all methods	37
4.18	Time evolution of λ for PER4 for all methods	38
4.19	Time evolution of λ for PER5 for all methods	39

FIGURE

PAGE	C
------	---

4.20	Time evolution of λ for PER6 for all methods	41
4.21	Time evolution of λ for PER7 for all methods	42
A.1	Forecast surface air temperature in April from EdGCM model for a) CTRL and b) PER1	52
A.2	Forecast surface air temperature in April from EdGCM model for a) CTRL and b) PER2	54
A.3	Forecast surface air temperature in April from EdGCM model for a) CTRL and b) PER3	56
A.4	Forecast surface air temperature in April from EdGCM model for a) CTRL and b) PER4	58
A.5	Forecast surface air temperature in April from EdGCM model for a) CTRL and b) PER5	60
B.1	The differences of the forecast values of average surface air temperature (°C) between PER1 and CTRL	63
B.2	The differences of the forecast values of average surface air temperature (°C) between PER2 and CTRL	66
B.3	The differences of the forecast values of average surface air temperature (°C) between PER3 and CTRL	69
B.4	The differences of the forecast values of average surface air temperature (°C) between PER4 and CTRL	72
B.5	The differences of the forecast values of average surface air temperature (°C) between PER5 and CTRL	75
B.6	The differences of the forecast values of average surface air temperature (°C) between PER6 and CTRL	78
B.7	The differences of the forecast values of average surface air temperature (°C) between PER7 and CTRL	81

LIST OF SYMBOLS

SYMBOL

C

Ε evaporation Ν number of grid points time integration of the numerical scheme М gas constant R \vec{R} radiation vector S latent heating temperature Т \vec{V} velocity drag force of the earth F_d R_d dry air gas constant S_q phase-change source acceleration due to gravity g diffusion coefficients k pressure р specific humidity qW weight heat capacity at constant pressure C_p

conductive heating

- d_t distance between the trajectories at the time
- \hat{x}_i forecast value
- x_i observed value
- ρ density
- δ deviation from the trajectory
- λ Lyapunov exponent
- ϕ geopotential height
- Ω rotation of the earth
- α_i rescaling parameter

LIST OF TECHNICAL TERMS AND ABBREVIATIONS

CTRL	Control Run
EdGCM	Educational Global Climate Model
FSLE	Finite Size Lyapunov Exponent
FTLE	Finite Time Lyapunov Exponent
GCM	Global Climate Model
GISS GCM Model II	Goddard Institute for Space Studies General Circulation Model II
GHG	Greenhouse Gas
IPCC	Intergovernmental Panel on Climate Change
LE	Lyapunov Exponents
LLE	Local Lyapunov Exponent
MLE	Maximum Lyapunov Exponent
MoLE	Modified Lyapunov Exponent
NASA/GISS	NASA's Goddard Institute for Space Studies
NWP	Numerical Weather Prediction
PER	Perturbed Run
RMSE	Root Mean Square Error
SLE	Supremum Lyapunov Exponent
med	Median