TABLE OF CONTENTS

			Page
ABSTRACT (I	N THA	(I)	i
ABSTRACT (IN ENGLISH)			ii
DEDICATION		iii	
ACKNOWLEDGEMENTS		iv	
LIST OF TABLES		vii	
LIST OF FIGURES		ix	
CHAPTER I INTRODUCTION			1
	1.1	Rationale	1
	1.2	The objectives of the research	2
	1.3	Scope and limitation of the research	3
	1.4 ′	The anticipated outcome	3
CHAPTER II	LITEI	RATURE REVIEWS	4
	2.1	Ethanol or ethyl alcohol	4
	2.2	Ethanol production	4
	2.3	Raw materials for bioethanol production	8
	2.4	Jerusalem artichoke (Helianthus tuberosus L.)	9
	2.5	Thermotolerant yeasts and their ethanol production	12
	2.6	Factors influencing ethanol fermentation	14
CHAPTER III	ISOL	ATION AND SELECTION OF	20
	THER	RMOTOLERANT YEAST CAPABLE OF	
	PROE	DUCING ETHANOL FROM	
	JERU	SALEM ARTICHOKE JUICE	
	3.1 I	Introduction	20
	3.2	Materials and methods	21
	3.3 I	Results and discussion	23
	3.4 0	Conclusion	30
	3.5	Acknowledgements	30
	3.6	References	31

TABLE OF CONTENTS (Cont.)

	Page
CHAPTER IV BIOETHANOL PROD	UCTION FROM 34
JERUSALEM ARTICH	OKE TUBERS JUICE
BY THERMOTOLERA	NT YEAST KLUYVEROMYCES
MARXIANUS DBKKU	Y-102
4.1 Introduction	34
4.2 Materials and met	hods 35
4.3 Results and discus	ssion 37
4.4 Conclusion	52
4.5 Acknowledgemen	ts 52
4.6 References	52
CHAPTER V CONCLUSIONS AND	SUGGESTIONS 58
REFERENCES	60
APPENDICES	71
APPENDIX A Media	72
APPENDIX B Reagents for D	NA isolation 74
APPENDIX C Reagents for el	ectrophoresis 77
APPENDIX D Analytical met	nods 79
APPENDIX E Standard curve	s 89
APPENDIX F Nucleotide seq	uences of the selected 92
thermotolerant	yeasts
APPENDIX G Research public	cations 96
VITAE	110

LIST OF TABLES

		Page
Table 2.1	The physical and chemical properties of ethanol	4
Table 2.2	Factors in the cellar environment that could influence	15
	alcoholic fermentation	
Table 3.1	Ethanol production from Jerusalem artichoke by	28
	the isolated yeasts at various temperatures under	
	static and shaking conditions	
Table 4.1	Comparison of ethanol fermentation by the six isolates	41
	of yeast in Jerusalem artichoke juice at various temperatures	
Table 4.2	Ethanol production by K. marxianus DBKKU Y-102 in	42
	Jerusalem artichoke juice supplemented with 230 g/l total	
	sugar with various pHs at 37 and 40°C	
Table 4.3	Ethanol production by K. marxianus DBKKU Y-102	43
	in Jerusalem artichoke juice supplemented with various	
	initial total sugars with pH 5.5 at 37 and 40°C	
Table 4.4	Ethanol production by K. marxianus DBKKU Y-102 in	44
	Jerusalem artichoke juice supplemented with 250 g/l	
	total sugar and pH 5.5 with various initial cell	
	concentrations at 37 and 40°C	
Table 4.5	Ethanol production by K. marxianus DBKKU Y-102	45
	in Jerusalem artichoke juice supplemented with 250 g/l	
	total sugar, initial cell concentration of 1×10^8 cells/ml	
	and pH 5.5 with various nitrogen sources at different	
	concentrations at 37°C	

LIST OF TABLES (Cont.)

		Page
Table 4.6	Ethanol production by K. marxianus DBKKU Y-102	47
	in Jerusalem artichoke juice supplemented with 250 g/l	
	total sugar, initial cell concentration of 1×10^8 cells/ml	
	and pH 5.5 with various nitrogen sources at different	
	concentrations at 40°C	
Table 4.7	Ethanol production by K. marxianus DBKKU Y-102	48
	in Jerusalem artichoke juice supplemented with 250 g/l	
	total sugar, initial cell concentration of 1×10^8 cells/ml,	
	0.5 g/l diammonium phosphate, and pH 5.5 with	
	magnesium sulfate at various concentrations at 37°C	
Table 4.8	Ethanol production by K. marxianus DBKKU Y-102	49
	in Jerusalem artichoke juice supplemented with 250 g/l	
	total sugar, initial cell concentration of 1×10^8 cells/ml,	
	0.5 g/l diammonium phosphate, and pH 5.5 with	
	magnesium sulfate at various concentrations at 40°C	
Table 4.9	The ethanol production profiles from various substrates	51
	using the different strains of K. marxianus	

LIST OF FIGURES

		Page
Figure 2.1	EMP pathway: Metabolic pathway of ethanol	6
	fermentation in S. cerevisiae	
Figure 2.2	ED pathway: Carbohydrate metabolic pathways in	7
	Z. mobilis	
Figure 3.1	Growth properties of the type strain, K. marxianus,	24
	and newly isolated yeast, DBKKU Y-102, DBKKU Y-103,	
	DBKKU Y-104, DBKKU Y-105, DBKKU Y-106 and	
	DBKKU Y-107 on YM agar plates and incubated at the	
	indicated temperatures for 24 h	
Figure 3.2	Exponentially growing yeast cultures of K. marxianus,	25
	DBKKU Y-102, DBKKU Y-103, DBKKU Y-104,	
	DBKKU Y-105, DBKKU Y-106 and DBKKU Y-107	
	were spotted in 10-fold serial dilutions onto YM agar	
	plates and grown at 30 (A), 37 (B), 40 (C) and $45^{\circ}C$ (D)	
	for 24 h	
Figure 3.3	Exponentially growing yeast cultures of K. marxianus,	26
	DBKKU Y-102, DBKKU Y-103, DBKKU Y-104,	
	DBKKU Y-105, DBKKU Y-106 and DBKKU Y-107	
	were spotted in 10-fold serial dilutions onto inulin agar	
	plates and grown at 30°C for 24 (A) and 48 h (B)	
Figure 3.4	Light microscopy image showing the cell morphology of	27
	DBKKU Y-102 (A), DBKKU Y-103 (B), DBKKU Y-104	
	(C), DBKKU Y-105 (D), DBKKU Y-106 (E) and DBKKU	
	Y-107 (F) when grown on a YM medium for 24 h at 30°C	
	under 400x magnification and bar $(-) = 10 \ \mu m$	

LIST OF FIGURES (Cont.)

		Page
Figure 3.5	Phylogenetic tree of the D1/D2 domain of	30
	26S rDNA from neighbor-joining depicting	
	relationships among type strains of selected	
	species of the yeast	
Figure 4.1	Exponentially growing yeast cultures of K. marxianus,	38
	DBKKU Y-102, DBKKU Y-103, DBKKU Y-104,	
	DBKKU Y-105, DBKKU Y-106 and DBKKU Y-107	
	were spotted in 10-fold serial dilutions onto YM agar	
	plates and grown at 30 (A), 37 (B), 40 (C) and $45^{\circ}C$ (D)	
	for 24 h	
Figure 4.2	Ethanol production by DBKKU Y-102 (\bullet),	40
	DBKKU Y-103 (○), DBKKU Y-104 (▲),	
	DBKKU Y-105 (△), DBKKU Y-106 (■),	
	and DBKKU Y-107 (\Box) in a Jerusalem artichoke	
	juice under shaking speed at 100 rpm and incubated	
	at 30, 37, 40 and 45°C	
Figure 4.3	Ethanol production (\blacksquare), total sugar (\triangle),	50
	reducing sugar (\bullet), log viable cell (\bigcirc) and	
	total soluble solids (°Bx) (\blacktriangle) by <i>K. marxianus</i>	
	DBKKU Y-102 in a Jerusalem artichoke juice	
	medium supplemented with 250 g/l total sugar,	
	1×10 ⁸ cells/ml initial cell number, 0.5 g/l diammonium	
	phosphate and adjusted pH to 5.5 at 37°C in a 2L fermenter	

LIST OF FIGURES (Cont.)

		Page
Figure A1	(A) Haemacytometer, (B) Chamber of haemacytometer	80
	(top view and side view)	
Figure A2	Counting grid of haemacytometer	81
Figure A3	Steps of the measurement of total soluble solids by	86
	hand-held refractometer	
Figure A4	A standard curve of total sugar by phenol-sulfuric method	90
Figure A5	A standard curve of reducing sugar by DNS method	90
Figure A6	A standard curve of ethanol concentration by	91
	gas chromatography	
Figure A7	26S rDNA sequence of the K. marxianus DBKKU Y-102	93
Figure A8	26S rDNA sequence of the K. marxianus DBKKU Y-103	93
Figure A9	26S rDNA sequence of the K. marxianus DBKKU Y-104	94
Figure A10	26S rDNA sequence of the K. marxianus DBKKU Y-105	94
Figure A11	26S rDNA sequence of the K. marxianus DBKKU Y-106	95
Figure A12	26S rDNA sequence of the K. marxianus DBKKU Y-107	95