CONTENTS

	Page
Acknowledgement	i
Abstract in Thai	ii
Abstract in English	iv
List of Tables	viii
List of Figures	X
List of Abbreviations	xiii
Chapter 1 Introduction	1
1.1 Background	1
1.2 Research objectives	3
1.3 Research hypothesis	3
1.4 Significance of the research	3
1.5 Scope of study	4
1.6 Experiment design	4
1.7 Definitions	5
Chapter 2 Literature Review	7
2.1 Probiotics	7
2.2 Lactic acid bacteria (LAB)	14
2.3 Short chain fatty acids (SCFAs)	24
2.4 Cholesterol reducing activity	29
2.5 Mycotoxins	32
2.6 Soybean	37
2.7 Honey	44
Chapter 3 Methodology	46
3.1 Materials	46
3.2 Methods	49
3.3 Statistical analysis	61
Chapter 4 Results and Discussion	62
4.1 Growth profile, pH changes, sugar utilisation and	SCFA
production by probiotic Lb. pentosus strains	62
4.2 Screening for BSH activity	89

	Page
4.3 In vitro cholesterol binding activity	92
4.4 ZEA binding ability by Lb. pentosus strains in phosphate buffer	94
4.5 Adhesion ability	99
4.6 Fermented soya milk characteristic	101
4.7 Soya beverage properties	112
Chapter 5 Conclusions	118
References	122
Appendices	140
Appendix A Culture media and chemical for tests	141
Appendix B Questionnaires for sensory evaluation 9-point hedonic scale	144
Appendix C Instrument and soya beverage products	146
Appendix D Linear equation and standard curve	154
Biography	157

List of Tables

			Page
Table	2.1	List of lactobacilli were separated by their different	
		fermentation patterns	16
Table	2.2	Key characteristics of strains Lb. pentosus and Lb. plantarum	23
Table	3.1	Correspondences between McFarland scale/Bacteria	
		concentration/Optical density	51
Table	4.1	The capacity of glucose utilisation, lactic acid, and SCFAs	
		production by probiotic Lb. pentosus 8 strains in glucose-MRS	
		medium 24 h incubation period.	75
Table	4.2	The capacity of lactose utilisation, lactic acid, and SCFASs	
		production by probiotic Lb. pentosus 8 strains in Lactose-MRS	
		medium 24 h incubation period.	78
Table	4.3	The capacity of raffinose utilisation, lactic acid, and SCFAs	
		production by probiotic Lb. pentosus 8 strains in Raffinose-MRS	
		medium 24 h incubation period.	82
Table	4.4	The capacity of FOS utilisation, lactic acid, and SCFAs	
		production by probiotic Lb. pentosus 8 strains in FOS-MRS	
		medium 24 h incubation period.	85
Table	4.5	Sugar utilisation from different carbohydrates (glucose, lactose,	
		raffinose, and FOS) as a carbon source in modified-MRS media	
		and inoculated with probiotic Lb. pentosus 8 strains in 24 h	
		incubation.	88
Table	4.6	BSH activity of probiotic Lb. pentosus strains	91
Table 4.7	The ZEA binding ability of Lb. pentosus strains in buffer		
		solution pH 5.0, ZEA Remaining concentration (C, remaining; μg/m	nl)
		and amout of ZEA adsorbtion (C, adsorbtion; µg/ml), and percentag	e
		of ZEA binding (%) at each initial toxin concentration.	98
Table	4.8	Enumeration of Lb. pentosus strains in fermented soya milk at 2 h	
		intervals over 24 h of fermentation.	101
Table	4.9	Sugar contents in fermentated soya milk by Lb. pentosus (VM095,	
		VM096, YM122) strains 24 h fermentation period	107

			Page
Table	4.10	SCFAs production in fermentated soya milk by Lb. pentosus	
		(VM095, VM096, YM122) strains 24 h fermentation period	111
Table	4.11	Comparative sensory evaluation of fermented soy milk (SF)	
		with Lb. pentosus strains (VM095, VM096, and YM122),	
		and soya beverage (SB) supplementation with 10% (w/v)	
		honhey syrup (H).	115
Table	4.12	Survival of Lb. pentosus strains in fermented soya milk and soya	
		beverage added 10% honey syrup	117

List of Figures

			Page
Figure	2.1	Qualitative aspects of probiotic food products	12
Figure	2.2	Probiotics consumption and health benefits	13
Figure	2.3	Bacterial growth curve showing changes in cell numbers of	
		Pediococcus acidilactici H during 32 h incubation at 37°C	
		in a broth.	18
Figure	2.4	Structure of Gram-positive and negative bacteria.	20
Figure	2.5	Cell wall characteristic of Gram-positive via Gram-negative	
		bacteria. (a) Gram- positive bacteria have a thick wall composed	
		of peptidogycans; and (b) Gram-negative bacteria have an outer	
		membrane and a thin wall composed of peptidoglycans	21
Figure	2.6	Effects of short chain fatty acids (SCFAs) on colonic morphology	
		and function (facts and hypotheses).	26
Figure	2.7	The carbohydrates as substrate fermented in the distalileum	
		and colon	27
Figure	2.8	Carbohydrate fermentation in the human colon	28
Figure	2.9	Mechanisms of hypocholesterolemic effect	31
Figure	2.10	Cholesterol as the precursor for the synthesis of new bile acids	
		and the role of bile salt hydrolase for hypocholesterolemic	32
Figure	2.11	Chemical structure of ZEA and its major metabolites	34
Figure	2.12	Structure of a soybean seed	39
Figure	2.13	A general outline of soybean food use based on classification	
		of oil and food beans	40
Figure	2.14	Soybean oligosaccharides are extracted directly from soybean	
		whey. The trisaccharide raffinose and the tratasaccharide	
		stachyose are the major oligosaccharide structures	42
Figure	4.1	Growth profiles (A) and the pH changes (B) in glucose-MRS	
		medium by 8 Lb. pentosus strains (◆DM068, ■JM0812,	
		▲ JM085,×UM054,*UM055, ● VM095, * VM096, ○YM122).	
		The results showed mean measurements from triplicate	
		experiments $(n = 3)$ Incubation at 37 °C for 24 h was performed	64

			Page
Figure 4	4.2	Growth profiles (A) and the pH changed (B) in lactose-MRS	
		medium by 8 Lb. pentosus strains (◆DM068, ■JM0812,	
		▲ JM085, ×UM054,*UM055, ● VM095, * VM096, ○YM122).	
		The results showed mean measurements from triplicate	
		experiments ($n = 3$). Incubation at 37 °C for 24 h was performed.	66
Figure	4.3	Growth profiles (A) and the pH changed (B) in raffinose-MRS	
		medium by Lb. pentosus 8 strains (◆DM068, ■JM0812, ▲JM085,	
		×UM054,*UM055, ●VM095, *VM096, ○YM122). The results	
		showed mean measurements from triplicate experiments ($n = 3$).	
		Incubation at 37 °C for 24 h was performed.	68
Figure	4.4	Growth profiles (A) and the pH changed (B) in FOS-MRS	
		medium by Lb. pentosus 8 strains (◆DM068, ■JM0812, ▲JM085,	
		×UM054,*UM055, ●VM095, *VM096, ○YM122).	
		The results showed mean measurements from triplicate	
		experiments ($n = 3$). Incubation at 37 °C for 24 h was performed.	70
Figure	4.5	Growth behaviors of 8 Lb. pentosus strains in MRS with various	
		sugars, lactose (OD= \blacksquare ; pH= \square), raffinose (OD= \blacktriangle ; pH= \triangle),	
		and FOS (OD= \bullet ; pH= \diamondsuit) as a carbon source and gluclose-MRS	
		medium (OD=●; pH=○) as control. Results were shown as mean	
		measurements from triplicate experiments ($n = 3$).	73
Figure	4.6	Characteristic of BSH activity by probiotic 8 Lb. pentosus strains	
		on tested medium. The letters A was a control (MRS medium	
		without 0.5% (w/v) TDCA as positive control), B-I were BSH	
		activity by DM068, JM0812, JM085, UM054, UM055, VM095,	
		VM096, YM122, respectively on MRS medium with 0.5% (w/v)	
		TDCA. The sterile filter disces spotted with 10 μL cell suspensions	
		of each strain (No. 1-3), and without spotted cell suspensions	
		(No. 4) as a negative control.	90

		ľ	age
Figure 4.7		Percentage of cholesterol removed by 8 probiotic Lb. pentosus	
		strains after 24 h incubation. The error bars indicated the standard	
		deviation (SD) and different superscript letters showed significant	
		different means (p < 0.05), n=3.	94
Figure 4.8	4.8	The binding ability (%) of ZEA by Lb. pentosus strains at 5 levels	
		of ZEA concentration in 0.05 M sodium acetate buffer (pH 5.0).	
		The error bars indicated the standard deviation (SD), n=2	97
Figure 4.	4.9	Cell surface hydrophobicity of 8 Lb. pentosus strains. The values	
		are Mean \pm SD of 3 independent experiments performed in duplicates.	
		The error bars indicate the standard deviation (SD) and different	
		superscript letters are significant different (p < 0.05), $n=6$.	99
Figure	4.10	The pH change and acid production of Lb. pentosus strains	
		VM095 (\bullet =TA; \bigcirc = pH), VM096 (\blacksquare = TA; \square = pH), and	
		YM122 (\triangle = TA; \triangle = pH) in fermented soya milk	104

LIST OF ABBREVIATION

ANOVA Analysis of Variance

BSH Bile Salt Hydrolase

CRD Completely randomized design

CFU Colony Forming Units

DMRT Duncan's Multiple Range Test

DP Degree of Polymerization
EMP Embden-Meyerhof-Parnas

FOS Fructo-oligosaccharides

GRAS Generally Recognized as Safe

GIT Gastrointestinal tract

h hour

HCl hydrochloric acid

HDL high-density lipoprotein

HPLC High Performance Liquid Chromatography

L Litre

Lb. Lactobacillus

LDL low-density lipoprotein

LAB Lactic Acid Bacteria

mL Milliliter
mg Milligram
min minute(s)

MRS medium De Man, Rogosa and Sharpe medium

NSPs non-starch polysaccharides
PBS Sodium phosphate buffer

OD Optical density

RS resistant starches

SCFA Short chain fatty acid

SD Standard Deviation

s second(s)

TDCA Taurodeoxycholic acid

UV ultraviolet

v/v volume by volume w/v weight by volume

 $ZEA \qquad \qquad Zealare none \\ \mu L \qquad \qquad microlitre(s)$