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Abstract

Nowadays, the thermal performance of heat transfer equipment can be improved by
using heat transfer enhancement techniques. In general, heat transfer enhancement
techniques are classified into two groups: active methods and passive methods. The
rough surface technique is a passive method that usually involves surface modification
to promote turbulent flow and increases the heat transfer surface area. Normally, smooth
tubes are replaced by corrugated tubes in many heat exchangers. In the previous works,
the heat transfer and flow characteristics of refrigerants have been studied by a large
number of researchers, both theoretically and experimentally, mostly in horizontal
smooth tubes. For this study, the aim is to experimentally investigation on the heat
transfer and flow characteristics of the pure refrigerant HFC-134a during evaporation
and condensation inside a vertical corrugated tube. The double tube test sections are 0.5
m long with refrigerant flowing in the inner tube and water flowing in the annulus. The
inner tubes are one smooth tube and five corrugated tubes, which are constructed from
smooth copper tube of 8.7 mm inner diameter. For the evaporation condition, the test
runs are performed at evaporating temperatures of 10, 15, and 20 °C, heat fluxes of 20,
25, and 30 kW/mz, and mass fluxes of 200, 300, and 400 kg/mzs. In case of
condensation condition, the test runs are done at condensing temperature of 40, 45, and
50 °C, heat fluxes of 20, 25, and 30 kW/m?, and mass fluxes of 300, 400, and 500
kg/m’s. The quality of the refrigerant in the test section is calculated using the
temperature and pressure obtained from the experiment. The pressure drop across the
test section is measured directly by a differential pressure transducer. The effects of heat
flux, mass flux, and saturation temperature on the heat transfer coefficient and pressure

drop are also discussed. The results obtained from the corrugated tube are compared



111

with those obtained from the smooth tube. It is observed that the heat transfer
coefficient and pressure drop achieved from the corrugated tube are evidently higher
than those obtained from the smooth tube. For the evaporation condition, the maximum
heat transfer and two-phase friction factor enhancement is obtained up to 22 percent and
280 percent in comparison with the smooth tube, respectively. For the condensation
condition, the maximum percentage increases of the heat transfer coefficient and the
frictional pressure drop of the corrugated tubes compared with those of the smooth tube

are 28 percent and 70 percent, respectively.

Keywords : Corrugated Tube/ Heat Transfer Coefficient/ Two-Phase Friction Factor/
Vertical/ HFC-134a
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