บทที่ 4 ผลการวิจัยและอภิปรายผล

ในงานวิจัยนี้เป็นการศึกษาสมบัติของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยการเกลือบฟิล์มบางของสารกึ่งตัวนำ CuO โดยวิธีรีแอ็กทีฟดีซีแมกนีตรอน สปัตเตอริง ลงบนฟิล์มบางของสารกึ่งตัวนำ CdS ซึ่งได้เกลือบไว้บนแผ่นฐานรองรับที่เป็นกระจก FTO นำสิ่งประดิษฐ์รอยต่อแบบพี-เอ็นมาทำการศึกษาสมบัติทางไฟฟ้า โดยการวัดก่ากวามสัมพันธ์ระหว่าง กระแสไฟฟ้ากับแรงดันไฟฟ้าที่อุณหภูมิห้องและที่อุณหภูมิต่ำในช่วง 10 - 300 เกลวิน และวัดกวาม สัมพันธ์ระหว่างก่ากวามจุไฟฟ้ากับกวามถี่ในช่วง 20 เฮิรตซ์ ถึง 2 เมกกะเฮิรตซ์ ที่อุณหภูมิในช่วง 25 – 60 องศาเซลเซียส เพื่อศึกษาพฤติกรรมของกับคักพาหะที่บริเวณผิวเชื่อมต่อของรอยต่อวิวิธพันธุ์ของฟิล์ม บางของสารกึ่งตัวนำ n-CdS กับ p-CuO

4.1ผลของอัตราการใหลของก๊าซอาร์กอนและแรงดันใฟฟ้าระหว่างขั้วอิเล็กโทรดที่มีต่อการโกล ดิสชาร์จ

้ห้องสุญญากาศที่ใช้เคถือบฟิล์มบางคอปเปอร์ออกไซด์มีรูปร่างเป็นทรงกระบอก เส้นผ่าน ศูนย์กลางเท่ากับ 25 เซนติเมตร และสูง 30 เซนติเมตร ติดตั้งเป้าทองแดงกวามบริสุทธิ์สูง (99.99%) เส้น ้ผ่านศูนย์กลาง 5.0 เซนติเมตร ที่ขั้วแคโทด พร้อมภาคจ่ายไฟฟ้ากระแสตรงแรงคันไฟฟ้าสูงสุด 630 โวลต์ การเคลือบจะใช้ก๊าซอาร์กอนความบริสุทธิ์สูง (99.999%) เป็นก๊าซสปัตเตอร์และก๊าซออกซิเจนความ ้บริสุทธิ์สูง (99.999%) เป็นก๊าซไวปฏิกิริยา ปั้มสุญญากาศประกอบไปด้วยปั้มแพร่ไอน้ำมันและปั้มกลโร ตารี การง่ายก๊าซในกระบวนการเคลือบจะควบคุมด้วยเครื่องควบคุมอัตราการไหลมวลก๊าซ (mass flow meter) ยี่ห้อ AALBORG กำหนดให้ระยะห่างระหว่างเป้าสารเคลือบกับแผ่นฐานรองรับเท่ากับ 9 เซนติเมตร ความดันพื้นฐานเท่ากับ 3.0x10⁻⁵ ทอร์ เริ่มทำการทดลองโดยการให้อัตราการไหลของก๊าซ อาร์กอนเท่ากับ 50 ถูกบาศก์เซนติเมตร ความคันของห้องสุญญากาศที่อ่านใค้จากเกจพิรานิ (Pirani gauge) ในที่นี้จะเรียกว่าความคันตัวบน อ่านได้เท่ากับ 2.3x10⁻¹ ทอร์ ส่วนความคันที่อ่านได้จากเกจเพน นิง (Penning gauge) ซึ่งในที่นี้จะเรียกว่าความดันตัวล่าง อ่านได้เท่ากับ 3.0x10⁻³ ทอร์ ทำการเพิ่ม แรงคันไฟฟ้าอย่างช้าๆ จนถึง 237 โวลต์ การโกลวดิสชาร์จจึงเกิดขึ้น แรงคันไฟฟ้าที่เริ่มทำให้เกิดการ ดิสษาร์จนี้จะเรียกว่า แรงคันพังทะลายทาวน์เซนด์ (Townsend breakdown voltage) การเรื่องแสงของ พลาสมาให้สีม่วง เมื่อทำการลดอัตราการไหลของก๊าซอาร์กอนลงต่อไปอีก พบว่าลำพลาสมาจะเรียวเล็ก ้อง ดังนั้นจึงต้องเพิ่มแรงดันไฟฟ้าดิสชาร์จเพื่อทำให้ลำพลาสมาพองโตขึ้นและการโกลวดิสชาร์จจะคงตัว ้อยู่ได้ การถดอัตราการไหลของก๊าซอาร์กอนลงก็จะส่งผลให้ความคันภายในห้องสุญญากาศลดลงไปด้วย เมื่อเพิ่มแรงคันไฟฟ้าคิสชาร์จต่อไปอีก สีของการ โกลวคิสชาร์จจะเป็นสีม่วงที่เข้มขึ้นเรื่อยๆ จนเป็นสี ม่วงอมน้ำเงิน อีกทั้งขนาดของการ โกลวดิสชาร์จจะใหญ่ขึ้นและสว่างมากขึ้น (ลำพลาสมาจะ โตขึ้นและ

ยืดออกมากขึ้น) ดังแสดงในภาพที่ 4.1 กระแสดิสชาร์จจะเพิ่มขึ้นตามแรงดันไฟฟ้าโกลวดิสชาร์จที่ เพิ่มขึ้นดังแสดงในตารางที่ 4.1

Ar flow rate = 50 sccm

Voltage = 291 V

Ar flow rate = 35 sccm Voltage = 337 V

Ar flow rate = 45 sccm

Voltage = 320 V

Ar flow rate = 35 sccm Voltage = 350 V

Ar flow rate = 40 sccm

Voltage = 330 V

Ar flow rate = 32 sccm Voltage = 365 V

ภาพที่ 4.1 ภาพถ่ายของการโกลวดิสชาร์จเมื่อมีการเปลี่ยนแปลงอัตราการไหลของก๊าซอาร์กอนเข้าห้อง สุญญากาศ

Flow	Pressure	Voltage	Current	Characteristics
Rate	(torr)	(V)	(A)	
(sccm)				
50	ตัวบน = 2.3x10 ⁻¹	237.2	0.013	แรงคันพังทะลายทาวน์เซนค์ ซึ่งกี่กือแรงคัน
	ตัวถ่าง = 3.0x10 ⁻³			ที่จุดติดพลาสมา
	ตัวบน = 2.3x10 ⁻¹	253.9	0.024	พลาสมาสีม่วง
	ตัวถ่าง = 3.0x10 ⁻³			
	ตัวบน = 2.3x10 ⁻¹	291.0	0.052	พลาสมาสีม่วงเข้ม
	ตัวถ่าง = 2.8x10 ⁻³			
	ตัวบน = 2.4x10 ⁻¹	300.0	0.059	พลาสมาสีม่วงอมน้ำเงิน
	ตัวถ่าง = 2.9x10 ⁻³			
	ตัวบน = 2.3x10 ⁻¹	310.0	0.067	พลาสมาสีม่วงอมน้ำเงินมากขึ้น
	ตัวถ่าง = 2.9x10 ⁻³			
45	ตัวบน = 2.0x10 ⁻¹	320.0	0.068	-
	ตัวถ่าง = 2.1x10 ⁻³			
	ตัวบน = 2.0x10 ⁻¹	330.0	0.070	-
	ตัวถ่าง = 1.7x10 ⁻³			
40	ตัวบน = 1.7x10 ⁻¹	330.0	0.065	-
	ตัวถ่าง = 1.4x10 ⁻³			
35	ตัวบน = 1.6x10 ⁻¹	337.0	0.069	พลาสมามีน้ำเงินเข้มใหญ่ขึ้น
	ตัวถ่าง = 1.4x10 ⁻³			
30	ตัวบน = 1.4x10 ⁻¹	340.0	0.071	พลาสมาสีม่วงลดลง
	ตัวถ่าง = 1.2x10 ⁻³			
	ตัวบน = 1.3x10 ⁻¹	350.0	0.075	พลาสมาสึม่วงอมน้ำเงินลดลง แสงสว่างมาก
	ตัวถ่าง = 1.1x10 ⁻³			ขึ้น
32	ตัวบน = 1.4x10 ⁻¹	360.0	0.085	เพิ่มอาร์กอนจาก 30 sccm เป็น 32 sccm
	ตัวถ่าง = 9.8x10 ⁻⁴			พลาสมาสีม่วงอมน้ำเงิน สว่างมากขึ้น
	ตัวบน = 1.5x10 ⁻¹	360.0	0.081	-
	ตัวถ่าง = 8.2x10 ⁻⁴			
	ตัวบน = 1.4x10 ⁻¹	360.0	0.080	-
	ตัวถ่าง = 7.5x10 ⁻⁴			
	ตัวบน = 1.5x10 ⁻¹	360.0	0.080	-
	ตัวถ่าง = 7.2x10 ⁻⁴			
	ตัวบน = 1.4x10 ⁻¹	363.0	0.082	พลาสมาสีม่วงสว่างมากขึ้น
	ตัวล่าง = 9.2x10 ⁻⁴			
	ตัวบน = 1.4x10 ⁻¹	365.0	0.085	พลาสมาสว่างมากขึ้น
	ตัวถ่าง = 9.2x10 ⁻⁴			

ตารางที่ 4.1 ค่าพารามิเตอร์ต่างๆ ของการเตรียมฟิล์มบางกอปเปอร์ด้วยวิธีดีซีแมกนีตรอนสปัตเตอริง

จากการทดลองเตรียมฟิล์มบางคอปเปอร์ โดยวิธีดีซีแมกนีตรอนสบัตเตอริง พบว่าเมื่ออัตราการ ใหลของก๊าซอาร์กอนเท่ากับ 50 ลูกบาศก์เซนติเมตรต่อนาที ต้องใช้แรงดันพังทลายทาวน์เซนต์ประมาณ 237 โวลต์ การโกลวดิสชาร์จจึงจะปรากฏขึ้น เป้าหมายต่อไปคือการสร้างสภาวะโกลวดิสชาร์จให้คงตัว อยู่ได้ที่อัตราการไหลของก๊าซมีค่าต่ำสุด วิธีการคือทำการลดอัตราการไหลของก๊าซอาร์กอนลง ใขณะ เดียวกันก็ต้องเพิ่มแรงดันไฟฟ้าดิสชาร์จด้วย พบว่าเมื่อลดอัตราการไหลของก๊าซอาร์กอนลงมาเหลือ 32 ลูกบาศก์เซนติเมตรต่อนาทีต้องปรับแรงดันไฟฟ้าดิสชาร์จขึ้นไปเป็น 360 โวลต์ ความดันตัวบนและตัว ล่างเท่ากับ 4.7x10⁻³ และ 1.1x10⁻⁴ ทอร์ ทำการสปัตเตอร์ 20 นาที จะให้ฟิล์มบางที่มีคุณภาพดีที่สุด จาก การทำการทดลองซ้ำหลายครั้งพบว่ากวามดันตัวบนควรจะอยู่ในช่วง 4.7-7.0x10⁻³ ทอร์ จึงจะได้ฟิล์ม คอปเปอร์ที่มีคุณภาพดี

สำหรับการเตรียมฟิล์มบางคอปเปอร์ออกไซด์โดยวิธีรีเเอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง จะเริ่ม จากการให้อัตราการไหลของก๊าซอาร์กอนเท่ากับ 35 ลูกบาศก์เซนติเมตรต่อนาที ป้อนแรงดันไฟฟ้าอย่าง ช้าๆ ให้กับขั้วค่าโทรด จนกระทั่งถึง 290 โวลต์ สภาพโกลวดิสชาร์จจึงเกิดขึ้น จากนั้นจึงปล่อยก๊าซ ออกซิเจนให้ไหลเข้าสู่ห้องสุญญากาศด้วยอัตราการไหล 1 ลูกบาศก์เซนติเมตรต่อนาที ความดันในห้อง สุญญากาซจะเพิ่มขึ้นเล็กน้อย ดังนั้นจึงทำการลดอัตราการไหล 1 ลูกบาศก์เซนติเมตรต่อนาที ความดันในห้อง สุญญากาซจะเพิ่มขึ้นเล็กน้อย ดังนั้นจึงทำการลดอัตราการไหล 1 ลูกบาศก์เซนติเมตรต่อนาที ความดันในห้อง สุญญากาซจะเพิ่มขึ้นเล็กน้อย ดังนั้นจึงทำการลดอัตราการไหล 1 ลูกบาศก์เซนติเมตรต่อนาที ความดันในห้อง ส่องสุญญากาศเท่ากับ 8.5x10⁻¹ ทอร์ ตามต้องการ จากนั้นจะทำการเตรียมฟิล์มบางคอปเปอร์ออกไซด์ ด้วยอัตราการไหลของก๊าซออกซิเจนก่าต่างๆ ตั้งแต่ 0.5 ถึง 20 ลูกบาศก์เซนติเมตรต่อนาที เงื่อนไขการ เตรียมฟิล์มบางกอปเปอร์ออกไซด์โดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง จะแสดงดังตารางที่ 4.2 ส่วนรูปที่ 4.2 จะแสดงภาพถ่ายของฟิล์มบางกอปเปอร์ออกไซด์ที่เตรียมได้ที่อัตราการไหลของก๊าซ ออกซิเจนก่าต่างๆ อัตราการไหลของก๊าซออกซิเจนที่เพิ่มขึ้นจะส่งผลทำให้ความดันตัวบนของห้อง สุญญากาศเพิ่มขึ้น ดังนั้นจำเป็นต้องลดอัตราการไหลของก๊าซอาร์กอนลงเพื่อให้ความดันตวบนจงห้อง สุญญากาศไม่สูงกว่า 10⁻³ กอร์ ฟิล์มบางที่เตรียมได้จึงจะมีสีน้ำตาลเข้ม

	Flow	Rate	Pressure	Voltage	Current	Power	Sputtering time	Sheet	Film
#	(sco	cm)	(torr)	(V)	(A)	(W)	(min)	Resistance	Characteristic
	Ar	O_2						(Ω/sq)	
1	31.5	1.0	ตัวบน = 2.2x10 ⁻²	360.0	0.060	21.60	20	2.0x10 ⁵	ฟิล์มสีน้ำตาล
			ตัวถ่าง = 2.5x10 ⁻⁴						เหลืองไม่ทึบแสง
									ส่องผ่านได้
2	27.0	1.0	ตัวบน = 8.5x10 ⁻³	360.0	0.041	14.76	25	83.3	ฟิล์มสีน้ำตาล
			ตัวถ่าง = 1.6x10 ⁻⁴						เหลืองไม่ทึบแสง
									ส่องผ่านได้
3	25.0	0.5	ตัวบน = 7.0x10 ⁻³	370.0	0.045	16.65	20	18.7	ฟิล์มสีน้ำตาลอม
			ตัวถ่าง = 1.5x10 ⁻⁴						เหลือง ไม่ทึบ
									แสง แสงส่อง
									ผ่านได้
									(เข้มกว่า 1 กับ 2
									นิดหน่อย)
4	22.0	1.0	ตัวบน = 5.7x10 ⁻³	385.0	0.045	17.33	30	88.0	ฟิล์มสีน้ำตาล
			ตัวถ่าง = 1.3x10 ⁻⁴						แดง
5	22.0	2.0	ตัวบน = 5.2x10 ⁻³	385.0	0.040	15.40	40	94.8	ฟิล์มน้ำตาลแดง
			ตัวถ่าง = 1.3x10 ⁻⁴						เข้ม ไม่ทึบแสง
6	22.0	3.0	ตัวบน = 5.5x10 ⁻³	385.1	0.040	15.40	40	130.0	ฟิล์มน้ำตาลแดง
			ตัวถ่าง = 1.3x10 ⁻⁴						ไม่ทึบแสง
7	22.0	4.0	ตัวบน = 6.1x10 ⁻³	385.0	0.042	16.17	30	$1.1 x 10^{4}$	ฟิล์มสีน้ำตาล
			ตัวถ่าง = 1.3x10 ⁻⁴						อ่อนอมเหลือง
									ไม่ทึบแสง
8	22.0	5.0	ตัวบน = 5.9x10 ⁻³	390	0.045	17.55	15	$7.1 \text{x} 10^4$	ฟิล์มสีน้ำตาลเข้ม
			ตัวถ่าง = 1.3x10 ⁻⁴						ไม่ทึบแสง
9	22.0	5.0	ตัวบน = 6.1x10 ⁻³	390.1	0.045	17.55	30	$2.4 \text{x} 10^4$	ฟิล์มสีน้ำตาลเข้ม
			ตัวถ่าง = 1.4x10 ⁻⁴						อมเหลือง ไม่ทึบ
									แสง
10	22.0	6.0	ตัวบน = 6.4x10 ⁻³	390.0	0.050	19.50	30	$3.7 \text{x} 10^4$	ฟิล์มสีน้ำตาลแก่
			ตัวถ่าง = 1.3x10 ⁻⁴						เข้ม
11	13.0	8.0	ตัวบน = 5.6x10 ⁻³	410.0	0.048	19.68	30	6.3x10 ⁵	ฟิล์มสีน้ำตาลเข้ม
			ตัวถ่าง = 1.4x10 ⁻⁴						ออกคำเล็กน้อย
12	20.0	10.0	ตัวบน = 1.3x10 ⁻²	390.0	0.062	24.18	30	$1.7 \text{x} 10^4$	ฟิล์มสีน้ำตาล
			ตัวล่าง = 1.4x10 ⁻⁴						
13	17.0	10.0	ตัวบน = 7.5x10 ⁻³	390.1	0.054	21.06	30	2.9×10^4	ฟิล์มสีน้ำตาลเข้ม
			ตัวถ่าง = 1.2x10 ⁻⁴						

ตารางที่ 4.2 เงื่อนไขการเตรียมฟิล์มบางกอปเปอร์ออกไซด์โดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง

ตารางที่ 4.2 (ต่อ) แสดงถึงเงื่อนไขการเตรียมฟิล์มบางคอปเปอร์ออกไซด์โดยวิธีรีแอ็กทีฟดีซีแมกนี ตรอนสป์ตเตริง

14	22.0	10.0	ตัวบน = 5.7x10 ⁻³	410.0	0.057	23.37	30	70.0	ฟิล์มสีน้ำตาลเข้ม
			ตัวล่าง = 9.7x10 ⁻⁵						ออกคำ
15	13.0	15.0	ตัวบน = 5.6x10 ⁻³	410.0	0.048	19.68	30	19.9	ฟิล์มสีน้ำตาล
			ตัวถ่าง = 1.1x10 ⁻⁴						เหลืองไม่ทึบแสง
16	22.0	18.0	ตัวบน = 7.0x10 ⁻³	400.0	0.074	29.6	30	313.0	ฟิล์มสีน้ำตาล
			ตัวถ่าง = 9.4x10 ⁻⁵						เหลืองไม่ทึบแสง
17	7.5	20.0	ตัวบน = 8.7x10 ⁻³	380.0	0.073	27.74	30	$5.1 \text{x} 10^3$	ฟิล์มสีน้ำตาล
			ตัวถ่าง = 9.2x10 ⁻⁵						เหลืองไม่ทึบแสง
18	8.0	15.0	ตัวบน = 6.5x10 ⁻³	400.0	0.060	24.00	30	15.0	ฟิล์มสีน้ำตาล
			ตัวล่าง = 1.1x10 ⁻⁴						เหลืองไม่ทึบแสง

ภาพที่ 4.2 ภาพถ่ายของฟิล์มบางคอปเปอร์ออกไซด์ที่เตรียมได้โดยวิธีรีแอ็คทีฟดีซีแมกนีตรอน สปัตเตอริงที่อัตราการไหลของก๊าซออกซิเจนค่าต่างๆ

ภาพที่ 4.3 กราฟแสดงความสัมพันธ์ระหว่างสัมประสิทธิ์การส่งผ่านแสงกับความยาวคลื่นของฟิล์มบาง คอปเปอร์ออกไซด์ที่เตรียมได้โดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริงที่อัตราการไหลของ ก๊าซออกซิเจนก่าต่างๆ

ภาพที่ 4.4 กราฟแสดงความสัมพันธ์ระหว่างค่า (αьν)² กับ ьν ของฟิล์มบางคอปเปอร์ออกไซด์ที่เตรียม ได้โดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริงที่อัตราการไหลของก๊าซออกซิเจนก่าต่างๆ

ตารางที่ 4.3 ค่าช่องว่างแถบพลังงานของฟิล์มบางคอปเปอร์ออกไซด์ที่เตรียมได้โดยวิธีรีแอ็คทีฟดีซี แมกนีตรอนสปัตเตอริงที่อัตราการไหลของก๊าซออกซิเจนค่าต่างๆ

O_2 flow rate (sccm)	$E_{g}(eV)$
0	1.97
2	2.50
4	2.55
6	2.40
8	2.38
10	2.25

ภาพที่ 4.5 กราฟแสดงความสัมพันธ์ระหว่างช่องว่างพลังงานกับอัตราการใหลของก๊าซออกซิเจนค่า ต่างๆ

จากการทคสอบชนิดการนำไฟฟ้าของฟิล์มบางคอปเปอร์ออกไซด์ที่เตรียมได้โดยขั้วความร้อน (hot probe) พบว่าชนิดการนำไฟฟ้าเป็นแบบพี (p-type) ค่าความด้านทานแผ่นจะแสดงดังตารางที่ 4.3 ส่วนภาพที่ 4.6 แสดงสภาพด้านทานไฟฟ้าของฟิล์มบางคอปเปอร์ออกไซด์ที่เปลี่ยนไปตามอัตราการไหล ของก๊าซออกซิเจน

$Ar: O_2$	Sheet Resistance	Resistivity
Flow Rate	(Ω/sq)	$(\Omega.cm)$
(sccm)		
31.5 : 0	38.00	7.6×10^{-3}
22:2	94.6	1.7×10^{-2}
22 : 4	$1.1 x 10^4$	2.2
22 : 6	$3.7 \text{x} 10^4$	7.2
13 : 8	6.5x10 ⁵	1.3×10^{2}
12:10	$1.7 \mathrm{x10}^{4}$	3.4

ตารางที่ 4.4 ความต้านทานแผ่นและสภาพด้านทานไฟฟ้าของฟิล์มบางคอปเปอร์ออกไซด์ซึ่งเตรียมโดย วิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง ที่อัตราการไหลของก๊าซออกซิเจนก่าต่างๆ

ภาพที่ 4.6 ค่าสภาพต้านทานไฟฟ้าของฟิล์มบางคอปเปอร์ออกไซด์ซึ่งเตรียมโดยวิธีรีแอ็คทีฟดีซีแมกนี ตรอนสปัตเตอริงที่อัตราการไหลของก๊าซออกซิเจนค่าต่างๆ

4.3 ลักษณะของฟิล์มบางที่เคลือบอยู่บนแผ่นฐานรองรับที่เป็นกระจกสไลด์ของสารกึ่งตัวนำ CdS และ CuO และสิ่งประดิษฐ์รอยต่อวิวิชพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่ง เตรียมโดยวิชีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง

ลักษณะผิวหน้าของฟิล์มบางของสารกึ่งตัวนำ CdS ที่เกลือบอยู่บนแผ่นฐานรองรับที่เป็นแผ่น กระจก FTO จะปรากฏดังภาพที่ 4.7 พบว่าฟิล์มบาง CdS มีสีเหลืองส้มเป็นมันวาวยึดติดกับแผ่นกระจก FTO ใด้ดี ส่วนฟิล์มบางของสารกึ่งตัวนำ CuO ซึ่งเตรียมโดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริงนั้นมี น้ำตาลเข้มเกลือบบนฟิล์มบางของสารกึ่งตัวนำ CdS จะแสดงดังภาพที่ 4.8

ภาพที่ 4.7 ฟิล์มบางของสารกึ่งตัวนำ CdS ที่เคลือบลงบนแผ่นฐานรองรับที่เป็นกระจก FTO ซึ่งเตรียม โดยวิธีการระเหยสารเคมีด้วยความร้อนในระบบสุญญากาศ

ภาพที่ 4.8 ฟิล์มบางของสารกึ่งตัวนำ CuO ที่เคลือบลงบนแผ่นฐานรองรับที่เป็นฟิล์มบางของสารกึ่ง ตัวนำ CdS ซึ่งเตรียมโดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง

4.4 การศึกษาสมบัติทางฟิสิกส์ของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียม โดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง

4.4.1 ผลการศึกษาโครงสร้างของผลึกเชิงจุลภาคด้วยวิธีการเลี้ยวเบนรังสีเอกซ์ของสิ่งประดิษฐ์ รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ที่เคลือบบนแผ่น ฐานรองรับที่เป็นกระจก FTO ซึ่งเตรียมโดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง

ภาพที่ 4.9 แสดงสเปกตรัมการเลี้ยวเบนของรังสีเอกซ์ของฟิล์มบางของสารกึ่งตัวนำ CdS ที่เกลือบอยู่บนแผ่นฐานรองรับที่เป็นกระจกส ไลด์ซึ่งเตรียม โดยวิธีการระเหยสารเกมีด้วยความร้อน ในระบบสุญญากาศ พบว่าระนาบการเลี้ยวเบนคือ (002) และ (004) ซึ่งเป็นระนาบของโครงผลึก แบบเฮกซะ โกนัล ส่วนภาพที่ 4.10 แสดงสเปกตรัมการเลี้ยวเบนของรังสีเอกซ์ของฟิล์มบางของสาร กึ่งตัวนำ CuO ที่เกลือบอยู่บนแผ่นฐานรองรับที่เป็นกระจกส ไลด์ซึ่งเตรียม โดยวิธีรีแอ็กทีฟดีซี แมกนีตรอนสป์ตเตอริง

ภาพที่ 4.9 พีคความเข้มการเลี้ยวเบนของรังสีเอกซ์ของฟิล์มบางของสารกึ่งตัวนำ CdS ที่เคลือบอยู่บน แผ่นฐานรองรับที่เป็นกระจกสไลด์ซึ่งเตรียมโดยวิธีการระเหยสารเคมีด้วยความร้อนในระบบ สุญญากาศ

ภาพที่ 4.10 พีคความเข้มการเลี้ยวเบนของรังสีเอกซ์ของฟิล์มบางของสารกึ่งตัวนำ CuO ที่เคลือบอยู่บน แผ่นฐานรองรับที่เป็นกระจกส ไลด์ซึ่งเตรียม โดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง

4.4.2 ผลการศึกษาโครงสร้างผลึกเชิงมหภาคด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดของ สิ่งประดิษฐ์รอยต่อวิวิชพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ที่เคลือบบน แผ่นฐานรองรับที่เป็นกระจก FTO ซึ่งเตรียมโดยวิชีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง

ภาพที่ 4.11 ภาพถ่ายบริเวณผิวหน้าของฟิล์มบางของสารกึ่งตัวนำ CdS ที่เกลือบอยู่บนแผ่นฐานรองรับที่ เป็นกระจกส ไลด์ซึ่งถ่ายด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด

ภาพที่ 4.12 ภาพถ่ายบริเวณผิวหน้าของฟิล์มบางของสารกึ่งตัวนำ CuO ที่เคลือบอยู่บนแผ่นฐานรองรับ ที่เป็นกระจกส ไลด์ซึ่งถ่ายด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด

ภาพที่ 4.13 ภาพถ่ายบริเวณผิวหน้าของฟิล์มบางของสารกึ่งตัวนำ CuO ที่เคลือบอยู่บนฟิล์มบางของสาร กึ่งตัวนำ CdS ซึ่งถ่ายด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด

4.4.3 ผลการศึกษาการส่งผ่านแสงของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่ง ตัวนำ n-CdS/p-CuO ที่เคลือบบนแผ่นฐานรองรับที่เป็นกระจก FTO ซึ่งเตรียมโดยวิธีรี แอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง

จากการศึกษาสเปกตรัมการส่งผ่านแสงของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบาง ของสารกึ่งตัวนำ n-CdS/p-CuO ที่เคลือบอยู่บนแผ่นฐานรองรับที่เป็นกระจก FTO ซึ่งเตรียมโดยวิธีรี แอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง พบว่าขอบการดูดกลืนจะปรากฏที่ความยาวกลื่นประมาณ 550 และ 580 นาโนเมตร ซึ่งสอดกล้องกับก่าช่องว่างแถบพลังงานของฟิล์มบางของสารกึ่งตัวนำ CdS และ CuO ตามลำดับ

ภาพที่ 4.14 กราฟความสัมพันธ์ระหว่างค่าเปอร์เซ็นต์การส่งผ่านแสงกับความยาวคลื่นแสงของ ฟิล์มบางของสารกึ่งตัวนำ Cu_xO พิจารณาที่ความยาวคลื่น 400-1000 นาโนเมตร

ภาพที่ 4.15 กราฟความสัมพันธ์ระหว่างค่าเปอร์เซ็นต์การส่งผ่านแสงกับความยาวคลื่นแสงของฟิล์มบาง ของสารกึ่งตัวนำ CdS พิจารณาที่ความยาวคลื่น 400-1000 นาโนเมตร

 4.5 การศึกษาสมบัติทางไฟฟ้าของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ที่เคลือบบนแผ่นฐานรองรับที่เป็นกระจก FTO ซึ่งเตรียม โดยวิธีรีแอ็คทีฟดีซี แมกนีตรอนสปัตเตอริง

การศึกษาสมบัติทางไฟฟ้าของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่ง เตรียมโดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสบัตเตอริง กระทำโดยการวัดก่าความ สัมพันธ์ระหว่าง กระแสไฟฟ้ากับแรงดันไฟฟ้า ที่อุณหภูมิห้องและที่อุณหภูมิต่ำในช่วงอุณหภูมิ 10 – 300 เกลวิน ตลอดจน การศึกษากวามสัมพันธ์ระหว่างก่ากวามจุไฟฟ้ากับกวามถี่ และวัดก่าอิมพีแดนซ์ที่อุณหภูมิในช่วง อุณหภูมิ 25-60 องศาเซลเซียส เพื่อใช้ในการกำนวณหาก่าพารามิเตอร์ที่สำคัญต่างๆ

4.5.1 ผลการศึกษาสมบัติทางไฟฟ้าโดยการวัดปรากฏการณ์ฮอลล์ของฟิล์มบางของสารกึ่งตัวนำ CuO ซึ่งเตรียมโดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง

ผลการศึกษาสมบัติทางไฟฟ้าโดยการวัดปรากฏการณ์ฮอลล์ (Hall effect) เมื่อทำการวัดที่ อุณหภูมิห้อง ของฟิล์มบางของสารกึ่งตัวนำ CuO จะแสดงในตารางที่ 4.5 รูปที่ 4.17 และ รูปที่ 4.18

ตารางที่ 4.5 ผลการวัดปรากฏการณ์ของฮอลล์ของฟิล์มบางของสารกึ่งตัวนำ CuO ซึ่งเตรียมโดยวิธีรีแอ็ก ทีฟดีซีแมกนีตรอนสปัตเตอริง

Temperature (C°)	Current (I) (10 ⁻⁸ A)	V ₂₄ (B=0 T)	V ₂₄ '(B=4600 G)	V _H (mV)
	0.5	20.95	21.4	0.45
	1.0	42.00	42.8	0.80
	1.5	59.24	60.4	1.16
300 [°]	2.0	83.55	85.1	1.55
	2.5	103.10	105.0	1.90
	3.0	122.35	124.6	2.25

ภาพที่ 4.17 ความสัมพันธ์ระหว่างความต่างศักย์ (V₂₄) กับ กระแสไฟฟ้า (I) ของปรากฏการณ์ฮอลล์ ภายใต้สนามแม่เหล็กและไม่มีสนามเหล็กของฟิล์มบางของสารกึ่งตัวนำ CuO

ภาพที่ 4.18 ความสัมพันธ์ระหว่างความต่างศักย์ไฟฟ้า (V_H) กับกระแสไฟฟ้า (I) ของปรากฏการณ์ฮอลล์ ภายใต้สนามแม่เหล็ก และไม่มีสนามเหล็กของฟิล์มบางของสารกึ่งตัวนำ CuO

```
จากการศึกษาสมบัติทางไฟฟ้าโดยปรากฏการณ์ฮอลล์ (Hall effect) ของฟิล์มบางของสารกึ่ง
ตัวนำCuO สามารถคำนวณหาก่าพารามิเตอร์ต่างๆได้ ดังนี้
```

้ก่าสภาพด้านทานไฟฟ้า สามารถกำนวณได้โดย

โอห์ม-

Error! Objects cannot be created from editing field codes.

เซนติเมตร

้ก่าสัมประสิทธิ์ของฮอลล์ สามารถกำนวณได้โดย

Error! Objects cannot be created from editing field codes.

```
Error! Objects cannot be created from editing field codes. ลูกบาศก์
เซนติเมตรต่อคูลอมป์<sup>R</sup><sub>H</sub> = 7.88×10<sup>2</sup> cm<sup>3</sup>/C
```

้จากค่าสัมประสิทธิ์ของฮอลล์สามารถนำมาคำควณหาค่าความหนาแน่นของพาหะ ได้ดังนี้

Error! Objects cannot be created from editing field codes.

Error! Objects cannot be created from editing field codes. ต่อลูกบาศก์

เซนติเมตร

และจากก่าสัมประสิทธิ์ของฮอลล์และก่าสภาพนำไฟฟ้าสามารถนำมาคำนวณหาก่าความกล่องตัวของ พาหะ ได้ดังนี้

Error! Objects cannot be created from editing field codes.

91

Error! Objects cannot be created from editing field codes. ตารางเซนติเมตร

ต่อ(โวลต์-วินาที)

และจากก่าศักย์ไฟฟ้าของฮอลล์ยืนยันได้ว่าฟิล์มบางของสารกึ่งตัวนำ CuO มีชนิดการนำไฟฟ้าเป็นแบบพี (p-type)

4.5.2 ผลการศึกษาความสัมพันธ์ระหว่างค่ากระแสไฟฟ้ากับแรงดันไฟฟ้าของสิ่งประดิษฐ์ รอยต่อวิวิธพันธุ์ของสารกึ่งตัวนำ n-CdS/p-CuO ที่เคลือบบนแผ่นฐานรองรับที่เป็น กระจก FTO ซึ่งเตรียม โดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริงเมื่อทำการวัดที่ อุณหภูมิห้อง

ผลการศึกษาสมบัติทางไฟฟ้าของรอยต่อวิวิธพันธุ์ของสารกึ่งตัวนำ n-CdS/p-CuO โดยการวัด กวามสัมพันธ์ระหว่างก่ากระแสไฟฟ้ากับแรงดันไฟฟ้าในช่วง -0.5 ถึง 1.0 โวลต์ เมื่อทำการวัดที่ อุณหภูมิห้องดังปรากฏในภาพที่ 4.19 พบว่ามีการเรียงกระแสไฟฟ้าทางเดียวเหมือนไดโอด โดยมีก่า แรงดันขีดเริ่ม (threshold voltage) อยู่ที่ 0.5 โวลต์ แต่เนื่องจากก่ากวามหนาแน่นของพาหะอิสระของฟิล์ม บางของสารกึ่งตัวนำ CuO และของฟิล์มบางของสารกึ่งตัวนำ CdS อยู่ในระดับ 10¹⁶ และ 10¹³ ต่อ ถูกบาศก์เซนติเมตร ตามลำดับ ดังนั้นจะประมาณได้ว่ารอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO เป็นแบบรอยต่อ p⁺ -n ซึ่งกลไกการนำกระแสจะอธิบายได้เช่นเดียวกับรอยต่อชอตต์กิโดย บริเวณพร่องพาหะอิสระตรงบริเวณรอยต่อเกือบทั้งหมดจะปรากฏอยู่ตรงเนื้อของฟิล์มบางของสารกึ่ง ตัวนำ CdS

กลไกของกระแสไฟฟ้าที่ไหลข้ามกำแพงศักย์ตรงบริเวณรอยต่อวิวิธพันธุ์ของฟิล์มบางของ สารกึ่งตัวนำ n-CdS/p-CuO ที่ช่วงแรงดันไฟฟ้า -0.5 ถึง 1.0 โวลต์ พิจารณาจากความสัมพันธ์ระหว่าง lnI กับ lnV ของรอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ที่อุณหภูมิห้องพบว่า ที่ แรงดันไฟฟ้าน้อยกว่า 0.15 โวลต์ เป็นกลไกการนำกระแสไฟฟ้าเป็นไปตามกฎของโอห์ม ส่วนที่ช่วง แรงดันไฟฟ้า 0.15 ถึง 0.45 โวลต์ เป็นกลไกการนำกระแสไฟฟ้าเป็นไปตามกฎของโอห์ม ส่วนที่ช่วง และช่วงแรงดันไฟฟ้ามากกว่า 0.45 โวลต์ เป็นกลไกการนำกระแสไฟฟ้าเป็นไปตามกลไกเทอร์มิออนิกอิมิสชัน และช่วงแรงดันไฟฟ้ามากกว่า 0.45 โวลต์ เป็นกลไกการนำกระแสไฟฟ้าเป็นไปตามกลไกเทอร์มิออนิกอิมิสชัน และช่วงแรงดันไฟฟ้ามากกว่า 0.45 โวลต์ เป็นกลไกการนำกระแสไฟฟ้าเป็นไปตามกลไกเทอร์มิออนิกอิมิสชัน ถ้างที่เกิดจากกับดักประจุในเนื้อสารที่มีการแจกแจงแบบเอกซ์โพเนนเชียล ดังภาพที่ 4.20 เมื่อเขียนกราฟ กวามสัมพันธ์ระหว่าง lnI กับ V ดังภาพที่ 4.21 เพื่อหาค่าแฟกเตอร์อุดมกติและก่ากระแส ไฟฟ้าอิ่มตัว ข้อนกลับ การหาค่าความด้านทานอนุกรมด้วยวิธีของชวงนั้น จะเขียนกราฟแสดงความสัมพันธ์ระหว่าง dV/dnI กับ I ดังภาพที่ 4.22 ซึ่งจากกราฟนี้จะได้ค่าแฟกเตอร์อุดมกติและก่าความต้านทานอนุกรม และ จากกราฟความสัมพันธ์ระหว่าง H(I) กับ I ดังภาพที่ 4.23 จะได้ก่าความสูงกำแพงศักย์ที่แรงดันไบแอส เป็นสูนย์ สำหรับก่ากระแสไฟฟ้าอิ่มตัวข้อนกลับ ก่าแฟกเตอร์อุดมกติ ก่าความสูงกำแพงศักย์ และก่า กวามด้านทานไฟฟ้าอนุกรมที่ได้จากกลไกเทอร์มิออนิกอิมิสชัน และวิธีของชวงจะแสดงในตารางที่ 4.6

ภาพที่ 4.19 กราฟความสัมพันธ์ระหว่างค่ากระแสไฟฟ้ากับแรงคันไฟฟ้าเมื่อทำการวัดที่อุณหภูมิห้อง ของรอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรีแอ็กทีฟ ดีซีแมกนีตรอนสปัตเตอริง

ภาพที่ 4.20 กราฟที่ใช้ในการอธิบายกลไกการนำกระแสไฟฟ้าแต่ละช่วงแรงคันไฟฟ้าเมื่อทำการวัคที่ อุณหภูมิห้องของรอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียม โดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง

ภาพที่ 4.21 กราฟความสัมพันธ์ระหว่าง lnI กับ V เมื่อทำการวัคที่อุณหภูมิห้องของรอยต่อวิวิธพันธุ์ของ ฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียม โดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอ ริง

จากรูป 4.20 จะเห็นได้ว่ากลไกการนำกระแสไฟฟ้าของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของ ฟิล์มบางของสารกึ่งด้วนำ n-CdS/p-CuO แบ่งออกเป็น 3 บริเวณอย่างชัดเจนกล่าวคือ บริเวณที่ 1 จะอยู่ ในช่วงแรงดัน -0.5 ถึง 0.15 โวลต์ ซึ่งกลไกการนำไฟฟ้าจะเป็นไปตามกฎของโอห์ม บริเวณที่ 2 จะอยู่ ในช่วงแรงดัน 0.15 ถึง 0.45 โวลต์ ซึ่งกลไกการนำไฟฟ้าจะเป็นแบบเทอร์มิออนิกอิมิสชัน ส่วนบริเวณที่ 3 จะอยู่ในช่วงแรงดัน 0.45 ถึง 1.0 โวลต์ ซึ่งกลไกการนำไฟฟ้าจะเป็นแบบเทอร์มิออนิกอิมิสชัน ส่วนบริเวณที่ 3 จะอยู่ในช่วงแรงดัน 0.45 ถึง 1.0 โวลต์ ซึ่งกลไกการนำไฟฟ้าจะเป็นแบบกระแสถูกจำกัดโดยประจุก้าง จากภาพที่ 4.21 คือกราฟความสัมพันธ์ก่าลอกาลิทึมของกระแสและแรงดันไฟฟ้าเพื่อใช้ใน การกำนวณหาก่ากระแสอิ่มตัวย้อนกลับ (I₂) และก่าแฟกเตอร์ในอุดมคติ (n) โดยอาศัยกราฟเส้นตรงช่วง ที่มีการนำกระแสที่เป็นกลไกแบบเทอร์มิออนิกอิมิสชันดังสมการ

$$\mathbf{I} = \mathbf{I}_{\mathbf{S}} \left[\exp\left(\frac{q\mathbf{V}}{\mathbf{n}\mathbf{k}\mathbf{T}}\right) - 1 \right]$$
(4.1)

เมื่อ \mathbf{I}_{ς} คือ กระแสไฟฟ้าอิ่มตัวข้อนกลับมีก่าเท่ากับ

$$I_{s} = AA^{*}T^{2} \exp\left(-\frac{q\Phi_{B0}}{kT}\right) - 1$$
(4.2)

เขียนกราฟความสัมพันธ์ระหว่าง ln I กับ V เพื่อหาค่ากระแสไฟฟ้าอิ่มตัวย้อนกลับได้จากการลากเส้น ตรงผ่านบริเวณกราฟที่เป็นกลไกเทอร์มิออนิกอิมิสชันตัดแกน ln I โดยจุดตัดมีค่าเท่ากับ ln I, และความ ชั้นของกราฟเท่ากับ <u>q</u> ซึ่งสามารถนำมาคำนวณหาแฟกเตอร์อุคมคติ (n) ได้จากสมการที่ (4.2) จะได้ ก่ากวามสูงของกำแพงศักย์คือ

$$\Phi_{B0} = -\frac{kT}{q} \ln \left(\frac{AA^*T^2}{I_s} \right)$$
(4.3)

ความสูงกำแพงศักย์ $oldsymbol{\varphi}_{_{
m B0}}$ ของสมการที่ (4.3) จะเป็นค่าในขณะแรงคันไบแอสเป็นศูนย์ที่อุณหภูมิใดๆ และ A* เท่ากับ 19.8 แอมแปร์ต่อตารางเซนติเมตรต่อเกลวินยกกำลังสอง

นอกจากนี้ยังสามารถที่จะหาแฟกเตอร์อุคมคติ (n) ของใคโอคที่ขึ้นกับแรงคันใบแอสโคย อาศัยความสัมพันธ์คังนี้

$$n = \frac{q}{kT} \frac{dV}{d(\ln I)}$$
(4.4)

ในความเป็นจริงแล้วสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO มักจะมีความด้านทานไฟฟ้าอนุกรม (R_s) เกิดขึ้นเสมอ ซึ่งเป็นผลเนื่องมาจากความด้านทานของเนื้อ สารและขั้วไฟฟ้าด้านหลัง จึงต้องทำการวัดค่ากระแสไฟฟ้าในช่วงแรงดันสูงๆ (Region III) เพื่อให้ความ ด้านทานอนุกรมนั้นแสดงผลออกมา ดังนั้นความสัมพันธ์ระหว่างกระแสไฟฟ้ากับแรงดันไฟฟ้าของ รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ที่มีความด้านทานไฟฟ้าอนุกรมมา เกี่ยวข้องจะเป็น

$$I = I_{s} \left\{ exp\left(\frac{q}{nkT} (V - IR_{s})\right) - 1 \right\}$$
(4.5)

เมื่อ กระแสไฟฟ้าอิ่มตัวข้อนกลับ คือ

$$I_{s} = AA^{*}T^{2}exp\left(-\frac{q\phi_{BO}}{kT}\right)$$
(4.6)

อาจเขียนสมการที่ (4.5) อีกรูปหนึ่งได้เป็น

$$I = I_{s} \left\{ exp \frac{q}{nkT} (V - IR_{s}) [1 - exp(-qV/kT)] \right\}$$
(4.7)

วิธีการหาก่ากวามต้านทานไฟฟ้าอนุกรมของชวง (Cheung's Method) พิจารณาในช่วงแรงดัน ใบแอสไปข้างหน้าโดยการแทนสมการที่ (4.6) ลงในสมการที่ (4.5) แล้วจะได้ว่า

$$V = IR_{s} + n\Phi_{B} + \frac{nkT}{q}ln\left(\frac{I}{AA^{*}T^{2}}\right)$$
(4.8)

หาอนุพันธ์ของ V เทียบกับ lnI เพื่อหาค่าความด้านทานอนุกรม จากสมการที่ (4.8) จัครูปใหม่ ได้เป็น

$$\frac{\mathrm{dV}}{\mathrm{d}(\ln \mathrm{I})} = \frac{\mathrm{nkT}}{\mathrm{q}} + \mathrm{IR}_{\mathrm{s}} \tag{4.9}$$

ซึ่งจะสอดคล้องกับกราฟเส้นตรงจากกราฟความสัมพันธ์ระหว่าง dV/d(lnI) กับ I ดังภาพที่ 4.22 โดย ความชันของกราฟนั้นคือค่าความต้านทานอนุกรมของวงจร (R_s) และจุดตัดแกน dV/d(lnI) มีค่าเท่ากับ nkT/q

ส่วนการหาความสูงของกำแพงศักย์นั้นจะหาได้โดยการจัดรูปของสมการที่ (4.8) ให้อยู่ในรูป ฟังก์ชันของ H(I) ดังนี้

$$H(I) = V - n \left(\frac{kT}{q}\right) ln \left(\frac{I}{AA^*T^2}\right)$$
(4.10)

แล้วสมการที่ (4.10) จะกลายเป็น

$$H(I) = n\Phi_{B} + IR_{s}$$
(4.11)

เมื่อทำการคำนวณค่า H(I) จากข้อมูลของกระแสไฟฟ้าและแรงคันไฟฟ้าแล้วนำมาวาคกราฟ ความสัมพันธ์ระหว่าง H(I) กับ I ก็จะได้ผลคังภาพที่ 4.23 โดยจะคำนวณหาค่าความสูงของกำแพงศักย์ ได้จากจุดตัดแกนตั้ง (n_{φ_B}) ของกราฟความสัมพันธ์ดังกล่าวแล้ว นอกจากนี้ความชันของกราฟที่เขียน ขึ้นในรูปของฟังก์ชัน H(I) นั้นก็คือค่าความต้านทานอนุกรมเช่นเดียวกับความสัมพันธ์ในสมการที่ (4.9) ซึ่งจะส่งผลให้ก่าความต้านทานอนุกรมที่ได้นั้นมีก่าใกล้เกียงกัน

กลไกการนำไฟฟ้าชนิดกระแสถูกจำกัดโดยประจุค้าง (SCLC) มักจะเขียนความสัมพันธ์ ระหว่างกระแสไฟฟ้า-แรงคันไฟฟ้า ดังนี้คือ

$$\mathbf{I} = \mathbf{kV}^{\mathrm{m}} \tag{4.12}$$

$$\ln \mathbf{I} = m \ln \mathbf{V} + \ln \mathbf{k} \tag{4.13}$$

เมื่อ m คือความชันของกราฟ ถ้า m มีค่าเท่ากับ 1.5 กลไกการนำไฟฟ้าชนิดกระแสถูกจำกัด โดยประจุ ค้างจะเป็นไปตามกฎของ ไชด์-แลงมัวร์ (Child-Langmuir's law) แต่ถ้า m เท่ากับ 2 จะเป็นไปตามกฎของ มอตต์-เกอร์นีย์ (Mott-Gurney's law) แต่ถ้า m > 2 จะหมายถึงว่ากับคักประจุมีระคับพลังงานต่อเนื่อง และมีการแจกแจงแบบเอกซ์โพเนนเชียล ซึ่งจากผลการทคลองได้ค่า m เท่ากับ 2.03 แสดงว่ากับคักประจุ เป็นไปตามกฎของมอตต์-เกอร์นีย์

ภาพที่ 4.22 กราฟความสัมพันธ์ระหว่าง dV/d(lnI) กับ I เมื่อทำการวัดที่อุณหภูมิห้องของสิ่งประดิษฐ์ รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรีแอ็คทีฟดีซี แมกนีตรอนสปัตเตอริง

ภาพที่ 4.23 กราฟความสัมพันธ์ระหว่าง H(I) กับ I เมื่อทำการวัดที่อุณหภูมิห้องของสิ่งประดิษฐ์รอยต่อ วิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuOซึ่งเตรียมโดยวิธีรีแอ็กทีฟดีซีแมกนีต รอนสปัตเตอริง

ตารางที่ 4.6 ค่ากระแสไฟฟ้าอิ่มตัวข้อนกลับ (I_s) ค่าแฟกเตอร์อุคมคติ (n) ค่าความสูงของกำแพงศักข์ใน ขณะที่ไบแอสเป็นศูนย์ (\$\mathcal{phi}_{B0}\$) และค่าความต้านทานอนุกรม (R_s) ที่ได้จากการคำนวณโดยใช้ กลไกเทอร์มิออนิกอิมิสชัน และวิธีของชวง เมื่อทำการวัดที่อุณหภูมิห้องของสิ่งประดิษฐ์ รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรีแอ็คทีฟดีซี แมกนีตรอนสป์ตเตอริง

	Saturation	Ideality Factor		Barrier Height $\Phi_{_{\rm B0}}$ (eV)		Series Resista R _s (Ω)	nce
Sample	Sample	TE	Cheung	TE	Cheung	Cheung	Cheung
	I _s (A)	I-V	[dV/d(lnI)]-I	I-V	H(I)-I	H(I)-I	[dV/d(lnI)]-I
CdS/CuO	7.41 x 10 ⁻⁶	5.19	5.79	0.534	0.709	0.31	0.18

4.5.3 ผลการศึกษาความสัมพันธ์ระหว่างค่ากระแสไฟฟ้ากับแรงดันไฟฟ้าของสิ่งประดิษฐ์ รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ที่เคลือบบนแผ่น ฐานรองรับที่เป็นกระจก FTO ซึ่งเตรียม โดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริงเมื่อ ทำการวัดที่อุณหภูมิต่ำในช่วงอุณหภูมิ 10-300 เกลวิน

ผลการศึกษาสมบัติทางไฟฟ้าของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO โดยวัดก่าความสัมพันธ์ระหว่างก่ากระแสไฟฟ้ากับแรงคันไฟฟ้าช่วง -0.5 ถึง 1.0 โวลต์ เมื่อทำ การวัดที่อุณหภูมิต่ำในช่วงอุณหภูมิ 10 ถึง 300 เคลวิน พบว่าที่แรงคันไฟฟ้าเท่ากัน กระแสไฟฟ้าที่ไหล ้ข้ามกำแพงศักย์ตรงบริเวณรอยต่อมีก่าถุคลงตามอุณหภูมิที่ลุคลง แสดงดังภาพที่ 4.24 และก่าแรงคันขีด เริ่มของใคโอคมีค่ามากขึ้นเมื่ออุณหภูมิลคลงจาก 0.5 เป็น 0.4 โวลต์ การศึกษากลไกของกระแสไฟฟ้าที่ ใหลข้ามกำแพงศักย์ตรงบริเวณรอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ที่ช่วง แรงคันไฟฟ้า -0.5 ถึง 1.0 โวลต์ ที่อุณหภูมิห้อง พบว่าที่แรงคันไฟฟ้าน้อยกว่า 0.15 โวลต์ เป็นกลไกการนำ ้ไฟฟ้าที่เป็นไปตามกฎของโอห์ม ส่วนช่วงแรงคันไฟฟ้า 0.15 ถึง 0.45 โวลต์เป็นกลไกการนำกระแสไฟฟ้า ้เป็นไปตามกลไกเทอร์มิออนิกอิมิสชัน และที่แรงคันไฟฟ้าบริเวณมากกว่า 0.45 โวลต์ จะเป็นกลไกการนำ ้ไฟฟ้าชนิดกระแสถูกจำกัดโคยประจุค้างที่เกิดจากกับคักประจุในเนื้อสารที่มี การแจกแจงแบบเอกซ์ โพเนนเชียล เมื่อเขียนกราฟความสัมพันธ์ระหว่าง ln I กับ V เพื่อหาค่าแฟกเตอร์อุดมคติและค่า ้กระแสไฟฟ้าอิ่มตัวย้อนกลับ แล้วนำไปใช้เป็นค่าเริ่มต้นในการจำลองข้อมูล เพื่อเทียบกับผลจากการวัด ้ค่าความสัมพันธ์ระหว่าง กระแสไฟฟ้ากับแรงคันไฟฟ้าในช่วงการไหลของกระแสไฟฟ้าข้ามรอยต่อวิวิธ พันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ที่เป็นกลไกเทอร์มิออนิกอิมิสชันเพื่อใช้ช่วยหาค่า กระแสไฟฟ้าอิ่มตัวย้อนกลับ และ แฟกเตอร์อุคมคติให้ถูกต้องยิ่งขึ้น การหาค่าความต้านทานไฟฟ้า ้อนุกรมจะใช้วิธีของชวง โดยก่ากระแสไฟฟ้าอิ่มตัวย้อนกลับ ก่าแฟกเตอร์อุดมคติ ก่ากวามสูงของกำแพง

ศักย์ และค่าความต้านทานไฟฟ้าอนุกรมที่อุณหภูมิต่ำในช่วง 10 ถึง 300 เคลวิน ที่คำนวนได้จากกลไก เทอร์มิออนิกอิมิสชันและวิธีของชวง แสดงในตารางที่ 4.7

ภาพที่ 4.24 กราฟความสัมพันธ์ระหว่างค่ากระแสไฟฟ้ากับแรงคันไฟฟ้าเมื่อทำการวัดที่อุณหภูมิต่ำ ในช่วงอุณหภูมิ 10-300 เคลวิน ของรอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง

ตารางที่ 4.7 ค่ากระแสไฟฟ้าอิ่มตัวข้อนกลับ ค่าแฟกเตอร์อุดมคติ ค่าความสูงของกำแพงศักย์และ ค่าความต้านทานไฟฟ้าอนุกรม ที่ได้จากการคำนวณโดยใช้กลไกเทอร์มิออนิกอิมิสชัน และวิธี ของชวง เมื่อทำการวัดที่อุณหภูมิต่ำในช่วงอุณหภูมิ 10 ถึง 300 เคลวิน ของสิ่งประดิษฐ์ รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ที่เคลือบบนแผ่นฐานรองรับ ที่เป็นกระจก FTO ซึ่งเตรียมโดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง

Temperature	Saturation Current(Is)	Ideality Factor (n)		Barrier Height (eV)		Series Resistance (Ω)	
(K)	(A)	TE Cheung		TE	Cheung	Cheung	Cheung
		I-V	dV/d(lnI)-I	I-V	H(I)-I	H(I)-I	dV/d(lnI)-I
10	1.99E-04	94.03	89.61	0.375	0.381	6.98	5.07
20	2.18E-04	51.17	63.38	0.376	0.386	5.73	4.20
40	2.32E-04	24.16	23.12	0.385	0.401	4.41	3.32
60	2.49E-04	17.92	13.86	0.401	0.410	3.70	2.83

ตารางที่ 4.7 (ต่อ) ค่ากระแสไฟฟ้าอิ่มตัวข้อนกลับ ค่าแฟกเตอร์อุดมคติ ค่าความสูงของกำแพงศักย์และ ค่าความด้านทานไฟฟ้าอนุกรม ที่ได้จากการคำนวณโดยใช้กลไกเทอร์มิออนิกอิมิสชัน และวิธีของชวง เมื่อทำการวัดที่อุณหภูมิต่ำในช่วงอุณหภูมิ 10 ถึง 300 เคลวิน ของ สิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ที่เคลือบบน แผ่นฐานรองรับที่เป็นกระจก FTO ซึ่งเตรียมโดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอ ริง

80	2.67E-04	14.24	11.01	0.408	0.415	3.25	2.56
100	2.77E-04	11.95	9.35	0.418	0.426	2.99	2.39
120	2.96E-04	10.91	8.05	0.429	0.435	2.83	2.23
140	3.07E-04	10.13	7.79	0.435	0.447	2.70	2.11
160	3.12E-04	9.61	7.27	0.446	0.453	2.35	1.84
180	3.19E-04	9.35	6.75	0.458	0.468	2.06	1.52
200	3.23E-04	8.05	6.75	0.464	0.475	1.70	1.24
220	3.31E-04	7.53	6.49	0.475	0.483	1.57	1.08
240	3.37E-04	7.27	5.97	0.490	0.498	1.38	0.81
260	3.76E-04	6.75	5.71	0.495	0.503	1.06	0.47
280	4.19E-04	5.71	5.19	0.504	0.514	0.87	0.30
300	5.08E-04	5.19	4.15	0.520	0.534	0.31	0.18

จากผลการทดลองพบว่ากระแส ไฟฟ้าอิ่มตัวย้อนกลับมีค่าน้อยลงตามอุณหภูมิที่ลดลง ส่วนค่า แฟกเตอร์อุดมคติที่ได้จากกลไกเทอร์มิออนิกอิมิสชันและวิธีของชวงมีค่ามากขึ้น เมื่ออุณหภูมิลดลงและมี ลักษณะไม่เป็นเชิงเส้น แสดงดังภาพที่ 4.25

ค่าความสูงกำแพงศักย์ที่คำนวณได้จากกลไกเทอร์มิออนิกอิมิสชันและวิธีของชวงมีค่าน้อยลง ตามอุณหภูมิที่ลดลงเหมือนกัน แสดงดังภาพที่ 4.27 ส่วนค่าความสูงกำแพงศักย์ที่ได้จากวิธีของชวงมีค่า ใกล้เคียงกับกลไกเทอร์มิออนิกอิมิสชัน

การที่ค่าแฟกเตอร์อุดมคติและค่าความสูงกำแพงศักย์ที่มีค่าเปลี่ยนแปลงตามอุณหภูมิ เนื่องจากได้ใช้การวัดกระแสไฟฟ้าที่ไหลข้ามกำแพงศักย์ชอตต์กีมาคำนวณหาค่าตัวแปรเหล่านี้ ดังนั้นค่า ของตัวแปรจะขึ้นอยู่กับปริมาณของกระแสไฟฟ้าที่วัดได้ที่อุณหภูมิสูงจะมีพลังงานความร้อนไปกระตุ้น ให้พาหะอิสระให้มีระดับพลังงานสูงและมีจำนวนมากขึ้น เมื่อมีการให้แรงคันใบอัสไปหน้าหรือพลังงาน กระตุ้นจากภายนอกเพียงเล็กน้อย พาหะอิสระที่มีระดับพลังงานสูงเหล่านี้ก็สามารถข้ามกำแพงศักย์ที่มีค่า สูงได้ ดังนั้นจะได้ค่ากำแพงศักย์ที่มากและค่าแฟกเตอร์อุดมคติที่เข้าใกล้หนึ่ง แต่ที่อุณหภูมิต่ำระดับ พลังงานของพาหะอิสระมีค่าน้อยจึงจำเป็นต้องใช้แรงดันไฟฟ้าเพิ่มขึ้นเพื่อจะข้ามกำแพงศักย์ ซึ่งกำแพง ศักย์ที่สามารถข้ามได้นั้นก็เป็นกำแพงศักย์ที่มีค่าน้อยเนื่องจากไม่มีพลังงานเพียงพอที่จะข้ามกำแพงศักย์ มีค่าสูงได้ ดังนั้นที่อุณหภูมิต่ำจึงมีค่าความสูงของกำแพงศักย์น้อยและค่าแฟกเตอร์อุดมคติจะมีค่ามากที่ อุณหภูมิสูงพาหะอิสระที่สามารถข้ามกำแพงศักย์ที่มีค่าต่ำก็ยังมีอยู่ แต่เนื่องจากมีปริมาณน้อยเมื่อเทียบ กับปริมาณพาหะอิสระที่มีระดับพลังงานที่สามารถข้ามกำแพงศักย์ที่มีค่าสูงได้

ค่าความต้านทานไฟฟ้าอนุกรมที่คำนวนได้จากวิธีของชวง พบว่ามีค่าลดลงเมื่ออุณหภูมิ เพิ่มขึ้น ดังภาพที่ 4.28 การที่ค่าความต้านทานไฟฟ้าอนุกรมเพิ่มขึ้นเมื่ออุณหภูมิลดลงนั้น มีสาเหตุมาจาก การที่ความหนาแน่นของพาหะอิสระลดลง ซึ่งเกิดจากการที่กับดักพาหะได้จับพาหะอิสระเอาไว้ที่บริเวณ ผิวรอยต่อและการที่พาหะอิสระมีพลังงานน้อยลงเมื่ออุณหภูมิลดลงจึงทำให้พาหะอิสระอยู่กับที่ (freeze out - carrier) การที่จะให้พาหะอิสระเคลื่อนที่ข้ามรอยต่อ p⁺ - n ได้นั้นจำเป็นต้องให้แรงดันไฟฟ้าเพิ่มขึ้น

ภาพที่ 4.25 กราฟความสัมพันธ์ระหว่างค่าแฟกเตอร์อุดมคติกับอุณหภูมิที่คำนวณได้จากกลไกเทอร์มิออ นิกอิมิสชันและวิธีของชวงที่เป็นความสัมพันธ์ระหว่าง dV/d(lnl) กับ T เมื่อทำการวัดที่ อุณหภูมิต่ำในช่วงอุณหภูมิ 10-300 เกลวิน ของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของ สารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรีแอ็กทีฟดีซี แมกนีตรอนสปัตเตอริง

ภาพที่ 4.26 การหาค่า E₀₀ โดยการฟิตกราฟความสัมพันธ์ระหว่างก่าแฟกเตอร์อุดมคติกับอุณหภูมิ เมื่อ ทำการวัดที่อุณหภูมิต่ำในช่วงอุณหภูมิ 10-300 เกลวิน ของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของ ฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอ ริง

ภาพที่ 4.27 กราฟความสัมพันธ์ระหว่างค่าความสูงกำแพงศักย์กับอุณหภูมิที่คำนวณได้จากกลไกเทอร์มิ ออนิกอิมิสชันและวิธีของชวงเมื่อทำการวัดที่อุณหภูมิต่ำในช่วงอุณหภูมิ 10-300 เคลวิน ของ สิ่งประคิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรี แอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง

ภาพที่ 4.28 กราฟความสัมพันธ์ระหว่างค่าความต้านทานไฟฟ้าอนุกรมกับอุณหภูมิที่ได้จากวิธีของชวงเมื่อ ทำการวัดที่อุณหภูมิต่ำในช่วงอุณหภูมิ 10-300 เคลวิน ของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของ ฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอ ริง

ภาพที่ 4.29 กราฟอาร์เรเนียสของ n[lnI_s] เมื่อทำการวัดที่อุณหภูมิต่ำในช่วงอุณหภูมิ 10-300 เกลวิน ของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียม โดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสป์ตเตอริง

จากก่ากวามชั้นของกราฟในภาพที่ 4.29 สามารถกำนวณหาก่าพลังงานกระตุ้นของรอยต่อได้จาก สมการ ที่ (4.14)

$$n\ln(J_0) = -E_a\left(\frac{1}{kT}\right) \tag{4.14}$$

พลังงานกระตุ้น E ูหาได้จากความชั้นของภาพที่ 4.26

จากผลการทดลองพบว่ากระแส ไฟฟ้าอิ่มตัวย้อนกลับมีก่าเพิ่มขึ้นตามอุณหภูมิที่เพิ่มขึ้น ส่วน ก่าแฟกเตอร์อุดมคติที่ได้จากกล ไกเทอร์มิออนิกอิมิสชัน และวิธีของชวงมีก่าลดลง เมื่ออุณหภูมิเพิ่มขึ้น และมีลักษณะ ไม่เป็นเชิงเส้น แสดงดังภาพที่ 4.29 และเมื่อนำกราฟกวามสัมพันธ์ไปเทียบเกียงกับสมการ ที่ (4.14) เพื่อหาก่าลักษณะเฉพาะของพลังงานการขุดอุโมงก์ทะลุผ่านกำแพงศักย์ (E₀₀) พบว่ามีก่าเท่ากับ 0.4431 อิเล็กตรอนโวลต์

4.5.4 การศึกษาสมบัติทางไฟฟ้ากระแสสลับในช่วงความถี่ 10 กิโลเฮิรตซ์ถึง 2 เมกะเฮิรตซ์ ของ สิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ที่เคลือบบน แผ่นฐานรองรับที่เป็นกระจก FTO ซึ่งเตรียม โดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง

ผลการศึกษาอิมพีแคนซ์สเปกโตสโคปี เมื่อทำการวัคที่อุณหภูมิในช่วง 25 ถึง 60 องศา เซลเซียส ของสิ่งประคิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO

ภาพที่ 4.30 กราฟความสัมพันธ์ระหว่างก่าความจุไฟฟ้ากับความถี่ที่อุณหภูมิในช่วง 25 ถึง 60 องศา เซลเซียส ของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง

ภาพที่ 4.31 กราฟความสัมพันธ์ระหว่างค่าความนำไฟฟ้ากับความถี่ที่อุณหภูมิในช่วง 25 ถึง 60 องศา เซลเซียส ของสิ่งประคิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง

ภาพที่ 4.32 กราฟกวามสัมพันธ์ระหว่างก่าจำนวนจริงของอิมพีแดนซ์เชิงซ้อนกับกวามถี่ที่อุณหภูมิ ในช่วง 25 ถึง 60 องศาเซลเซียส ของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสาร กึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง

ภาพที่ 4.33 กราฟความสัมพันธ์ระหว่างค่าจินตภาพของอิมพีแคนซ์กับความถี่ที่อุณหภูมิในช่วง 25 ถึง 60 องศาเซลเซียส ของสิ่งประคิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง

ภาพที่ 4.34 กราฟความสัมพันธ์ของค่าอิมพีแคนซ์เชิงซ้อนที่อุณหภูมิในช่วง 25 ถึง 60 องศาเซลเซียส ของสิ่งประคิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียม โดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง

ภาพที่ 4.35 กราฟกวามสัมพันธ์ระหว่าง -dC/dlnf กับ f เพื่อหาก่า @ ที่อุณหภูมิ 25 องศาเซลเซียส ของ สิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรี แอ็กทีฟดีซีแมกนีตรอนสป์ตเตอริง

ภาพที่ 4.36 กราฟความสัมพันธ์ระหว่างค่า ln(@,/T²) กับ (1000/T) ที่ได้จากการหาค่า @, ของกราฟ ความสัมพันธ์ของ -dC/dlnf กับความถี่เมื่อทำการวัดในช่วงอุณหภูมิ 25 ถึง 60 องศา เซลเซียส ของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง

ภาพที่ 4.37 กราฟความสัมพันธ์ระหว่างค่า ln(W,/T²) กับ (1000/T) ที่ได้จากการหาค่า W₀ ของ อิมพีแดนซ์เชิงซ้อนในช่วงอุณหภูมิ 25 ถึง 60 องศาเซลเซียส ของสิ่งประดิษฐ์รอยต่อวิวิธ พันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรีแอ็คทีฟดีซีแมกนีต รอนสปัตเตอริง

ภาพที่ 4.38 กราฟความสัมพันธ์ระหว่างค่าความหนาแน่นของสถานะผิวเชื่อมต่อกับช่วงอุณหภูมิในช่วง 25 ถึง 60 องศาเซลเซียสของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง

จากกราฟความสัมพันธ์ $\ln(\Omega_o/T^2)$ กับ (1000/T) สามารถคำนวณหาค่าพลังงานกระตุ้น (E_a) และพารามิเตอร์ต่างๆ ได้ดังตารางที่ 4.8

ตารางที่ 4.8 ค่าความถี่เฉพาะ พลังงานกระตุ้น และตัวแปรต่างๆ ที่คำนวณได้จากสองวิธีของสิ่งประดิษฐ์ รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรีแอ็คทีฟดี ซีแมกนีตรอนสปัตเตอริง

Method	T (°C)		E _a (eV)	$\xi_0 (s^{-1}K^{-2})$	$\mathbf{\sigma}_{\mathrm{T}}(\mathrm{cm}^{2})$	
	25	340,830				
	30	320,840		66.6	2.6×10 ⁻²⁴	
(-dC/dlnf)-f	40	320,840	0.082			
	50	290,855				
	60	310,845				
	25	100,950				
	30	110,945			4.54×10 ⁻¹⁸	
Z'-Z"	40	510,745	0.466	1.16×10^{6}		
	50	120,940				
	60	110,045				

4.5.5 ผลการศึกษาสภาพนำไฟฟ้าเชิงแสงของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่ง ตัวนำ n-CdS/p-CuO ที่เคลือบบนแผ่นฐานรองรับที่เป็นกระจก FTO ซึ่งเตรียม โดยวิธีรีแอ็ค ทีฟดีซีแมกนีตรอนสปัตเตอริง

ภาพที่ 4.39 กราฟความสัมพันธ์ระหว่างกระแสโฟโตกับเวลาภายใต้แรงคันไบอัส -0.5 กับ 0.3 โวลต์ ของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดย วิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง

จากกราฟในรูปที่ 4.39 เมื่อนำไปหาความสัมพันธ์ระหว่าง ln I_p กับ t ของสภาพนำไฟฟ้า เชิงแสงทั้งช่วงกระแสขาขึ้นและช่วงกระแสขาลงทำให้ทราบค่าช่วงชีวิตพาหะได้ จากนั้นจึงนำค่าช่วง ชีวิตพาหะนี้ไปเป็นค่าเริ่มต้นในการฟิตกราฟโดยใช้มัลติเพิลเอ็กซ์โพเนนเชียลฟังก์ชัน เพื่อหา ค่าพารามิเตอร์ต่างๆ ดังแสดงในตารางที่ 4.9 และพล็อตกราฟความสัมพันธ์ระหว่างกระแสนอร์มัลไลซ์ กับเวลาของกระแสโฟโตขาขึ้นและขาลงจะแสดง ดังภาพที่ 4.41 และภาพที่ 4.42 ตามลำดับ ส่วนตารางที่ 4.10 จะแสดงก่าความหนาแน่นของกับดักพาหะของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่ง ตัวนำ n-CdS/p-CuO ในช่วงกระแสขาลง

ภาพที่ 4.40 กราฟความสัมพันธ์ระหว่างกระแสนอร์มัลไลซ์ขาขึ้นกับเวลา ของสิ่งประดิษฐ์รอยต่อวิวิธ พันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรีแอ็คทีฟดีซีแมกนีตรอน สปัตเตอริง

ภาพที่ 4.41 กราฟความสัมพันธ์ระหว่างกระแสนอร์มัลไลซ์ขาลงกับเวลาของสิ่งประคิษฐ์รอยต่อวิวิธ พันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรีแอ็คทีฟดีซีแมกนีต รอนสปัตเตอริง

ตารางที่ 4.9 ค่าพารามิเตอร์ต่างๆของสภาพนำไฟฟ้าเชิงแสงคื้อรั้นของสิ่งประคิษฐ์รอยต่อวิวิธพันธุ์ของ ฟิล์มบางของสารกึ่งตัวนำn-CdS/p-CuO ซึ่งเตรียมโคยวิธีรีแอ็กทีฟคีซีแมกนิตรอนสปัตเตอ ริง ที่ได้จากการฟิตกราฟ ให้เข้ากับพึงก์ชันมัลติเพิลเอกซ์โพแนนเชียล

Rise Time	Bias Voltage (V)		Decay	Bias Voltage (V)	
(s)	-0.5	0.3	Time (s)	-0.5	0.3
1 st T	$A_1 = 5.06$	$A_1 = 4.52$	1 st T	$A_1 = 0.15$	$A_1 = 0.05$
1 Term	$\tau_{r1} = 42.03 (s)$	$\tau_{\rm rl} = 38.05 (\rm s)$	1 Term	$\tau_{d1} = 42.90 \text{ (s)}$	$\tau_{d1} = 50.45 (s)$
2 nd Trans	A2 = -142.40	$A_1 = 4.52$	2 nd Tame	$A_2 = -1.01$	$A_2 = -0.04$
2 Term	$\tau_{r2} = 125.78 \text{ (s)}$	$\tau_{r1} = 38.05 (s)$	2 Term	$\tau_{d2} = 268.10 \text{ (s)}$	$\tau_{d2} = 423.73$ (s)
2 rd T	A3 = 356.30	$A_3 = 42.90$	2 rd T	$A_3 = -6.13$	$A_3 = 0.03$
3 Term	$\tau_{r3} = 233.10 \text{ (s)}$	$\tau_{r_3} = 180.18 \text{ (s)}$	5 Term	$\tau_{d3} = 900.90 \text{ (s)}$	$\tau_{d3} = 578.03 \text{ (s)}$
	A4 = -3680	A ₄ = -667.50		A ₄ = 7.96	$A_4 = 0.94$
4 th Term	$\tau_{r4} = 980.39 (s)$	$\tau_{r4} = 862.06 (s)$	4 th Term	$\tau_{d4} = 1156.07 \text{ (s)}$	$\tau_{d4} = 2832.86 \text{ (s)}$
	$\beta = 0.136$	$\beta = 0.135$		$\beta = 0.700$	$\beta = 0.089$

ตารางที่ 4.10 ความหนาแน่นของกับคักพาหะชนิคต่างๆ ที่ได้จากการวัคสภาพนำไฟฟ้าเชิงแสง คื้อรั้นของสิ่งประคิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่ง เตรียมโคยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง

Sample Conditions			Bias Voltage (V)		
			-0.5	0.3	
		I ₁ (A)	2.15E-05	3.48E-05	
	1 st Term	$\tau_{_{r1}}(s)$	42.90	50.45	
		σ_{t1} (cm ⁻²)	3.02E+13	8.16E+13	
		I ₂ (A)	1.72E-05	2.72E-05	
lent	2 nd Term	$\tau_{r^2}(s)$	268.10	423.73	
umpor		σ_{t^2} (cm ⁻²)	2.42E+13	6.38E+13	
ay Cc	3 rd Term	I ₃ (A)	1.53E-05	2.65E-05	
Deci		$\tau_{r_3}(s)$	900.90	578.03	
		$\sigma_{13} (cm^{-2})$	2.15E+13	6.21E+13	
		I ₄ (A)	1.50E-05	2.40E-05	
	4 th Term	$\tau_{r4}(s)$	1156.07	2832.86	
		$\sigma_{t5}(cm^{-2})$	2.11E+13	5.63E+13	

จากข้อมูลการทดลองที่ผ่านมาทั้งหมด ได้แก่ ค่าช่องว่างแถบพลังงานของฟิล์มบางของสาร กึ่งตัวนำ CdS และ CuO และพลังงานกระตุ้นของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่ง ตัวนำ CdS/CuO สามารถนำมาเขียนโครงสร้างแถบพลังงานของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์ม บางของสารกึ่งตัวนำ n-CdS/p-CuO ได้ดังภาพที่ 4.42

ภาพที่ 4.42 แผนภาพแถบพลังงานของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO

ภาพที่ 4.43 ความสัมพันธ์ระหว่างกระแส-แรงดันไฟฟ้าของรอยต่อวิวิธพันธุ์ n-CdS/p-CuO ซึ่งเตรียม โดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริงเมื่อทำการวัดภายใต้การฉายแสงที่ความเข้มก่า ต่างๆ

ตารางที่ 4.11 แสดงค่าพารามิเตอร์ต่างๆที่สำคัญของรอยต่อวิวิธพันธุ์ n-CdS/p-CuO เมื่อทำการวัด กระแส- แรงคันไฟฟ้าที่อุณหภูมิห้องภายใต้การฉายแสงด้วยความเข้มค่าต่างๆ

Illumination	I _{SC}	V _{oc}	F.F.	η	R _s	R _{sh}
Intensity	(A)	(V)		(%)	$(\times 10^4 \Omega)$	$(\times 10^4 \Omega)$
$\left(mW/cm^{2} ight)$						
60	$8.0 \mathrm{x10}^{-6}$	0.30	0.20	2.67	1.10	8.89
70	1.2×10^{-5}	0.31	0.25	2.65	1.01	7.75
80	1.5×10^{-5}	0.32	0.26	3.24	0.87	5.89
90	1.8×10^{-5}	0.33	0.34	3.71	0.80	5.67
100	2.3×10^{-5}	0.32	0.36	4.22	0.77	3.68