บทที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

สมบัติทางฟิสิกส์พื้นฐานของผลึกนั้นขึ้นกับลักษณะของโครงสร้างผลึก และความไม่สมบรูณ์ของ ผลึก การวัคสมบัติทางไฟฟ้าต่างๆ ก็จะต้องคำนึงถึงสมบัติพื้นฐานของผลึกด้วยเพื่อให้ได้ผลการวัคที่ ถูกต้อง ในบทนี้จึงจะกล่าวถึงทฤษฎีที่เกี่ยวข้องต่างๆ เทคนิคการเตรียมผลึกของฟิล์มบางและเทคนิคการ วัคสมบัติทางไฟฟ้าต่างๆต่อไป

วัสดุของแข็งสารกึ่งตัวนำ (งามนิตย์, 2531; งามนิตย์, 2551; ฐิตินัย, 2530; ฐิตินัย, 2545)

วัสดุในสถานะของแข็งสามารถแบ่งได้เป็น 3 ชนิดคือ ฉนวน สารกึ่งตัวนำ และตัวนำ ดังรูปที่ 2.1 แสดงสภาพนำไฟฟ้าของวัสดุที่สำคัญในแต่ละชนิด วัสดุที่เป็นฉนวนเช่น ผลึกควอตซ์ (fused quartz) และกระจกสไลด์ (slide glass) ที่เป็นอะมอร์ฟัส มีสภาพนำไฟฟ้าต่ำในช่วง 10⁻¹⁸-10⁻⁸ ซีเมนต์ต่อ เซนติเมตร ส่วนวัสดุที่เป็นตัวนำเช่นอะลูมินัมและเงิน มีสภาพนำไฟฟ้าสูงในช่วง 10⁴-10⁶ ซีเมนต์ต่อ เซนติเมตร ส่วนวัสดุที่เป็นตัวนำเช่นอะลูมินัมและเงิน มีสภาพนำไฟฟ้าสูงในช่วง 10⁴-10⁶ ซีเมนต์ต่อ เซนติเมตร ส่วนวัสดุที่เป็นสารกึ่งตัวนำจะตอบสนองต่ออุณหภูมิ การฉายแสง สนามแม่เหล็ก ซึ่งสมบัติ ดังกล่าวมีความสำคัญกับการนำไปประยุกต์ใช้ในงานอิเล็กทรอนิกส์

2.2 โครงสร้างของผลึก (งามนิตย์, 2531; ฐิตินัย, 2546; งามนิตย์, 2545; ฐิตินัย, 2550; ฐิตินัย, 2552; ฐิตินัย, 2556; Kittel, 2005; Runyan, 1975)

สารกึ่งตัวนำแต่ละชนิดจะมีโครงสร้างผลึกที่แตกต่างกันขึ้นอยู่กับการจัดเรียงตัวของอะตอมที่อยู่ ภายในโครงผลึก การที่มีโครงผลึกที่แตกต่างกันนี้ทำให้สารกึ่งตัวนำมีสมบัติทางฟิสิกส์แตกต่างกันไป ด้วย เช่น สมบัติการทางไฟฟ้า สมบัติทางแสง เป็นต้น

2.2.1 โครงสร้างผลึกของสารประกอบที่เกิดจากอะตอมของธาตุกลุ่ม II และกลุ่ม VI

โครงผลึก คือ ดำแหน่งที่เป็นที่อยู่ของเบสิส (basis) ในระบบ 3 มิติ ส่วนเบสิส คืออะตอม หรือกลุ่มของอะตอมที่อยู่ภายในโครงผลึก ส่วนโครงสร้างผลึกของสารประกอบที่เกิดจากอะตอมของ ธาตุกลุ่ม II และกลุ่ม VI เกิดจากการสร้างพันธะเคมีระหว่างอะตอมของธาตุกลุ่ม II (อะตอม A) และกลุ่ม VI (อะตอม C) ซึ่งมีอิเล็กตรอนวาเลนซ์ต่ออะตอมเท่ากับ 4 ในโครงผลึกแต่ละอะตอม A หรืออะตอมของ ธาตุ C จะมีอะตอมของธาตุ C หรืออะตอมของธาตุ A ที่อยู่ใกล้เกียงที่สุดล้อมรอบอยู่ 4 อะตอม ซึ่งมีการ สร้างพันธะเคมีระหว่างอะตอมเป็นแบบพันธะโควาเลนท์ (covalent bond) และมีพันธะเคมีของโมเลกุล เป็นแบบพันธะสี่หน้าหรือพันธะเตตระฮีดรัล (tetrahedral bond) ดังแสดงในรูปที่ 2.2 จากลักษณะการ จัดเรียงอะตอมดังกล่าวทำให้สามารถแบ่งโครงสร้างผลึกได้ 2 แบบคือ โครงสร้างแบบซิงค์เบลนด์ (zinc blende structure) และโครงสร้างแบบเวอร์ทไซท์ (wurtzite structure) ซึ่งจากการศึกษาพบว่าโครงสร้าง ผลึกของแคดเมียมเซลิไนด์ (CdSe) จะมีลักษณะ 2 แบบ คือ เป็นกิวบิก (cubic structure) หรือแบบซิงค์ เบลนด์ (zinc blende structure) และโครงสร้างผลึกแบบเฮกซะโกนัล หรือแบบเวิร์ทไซท์ (hexagonal structure or wurtzite)

ภาพที่ 2.2 พันธะสี่หน้าหรือพันธะเตตระฮิดรัล

2.2.1.1 โครงสร้างผลึกแบบซิงค์เบลนด์

โครงสร้างผลึกแบบนี้มักพบในสารกึ่งตัวนำที่ประกอบด้วยอะตอมของธาตุสองชนิด หรือเรียกว่าเป็นสารประกอบกึ่งตัวนำเชิงกู่ (binary compound semiconductor) ได้แก่ สารประกอบของ สารกึ่งตัวนำในกลุ่ม III-V เช่น GaAs และ InSb และสารประกอบของสารกึ่งตัวนำในกลุ่ม II-VI เช่น ZnSe, ZnS เป็นต้น โครงสร้างผลึกแบบนี้มีลักษณะคล้ายโครงสร้างผลึกแบบเพชร คือ อาจพิจารณาว่า เป็นโครงสร้างผลึกแบบเฟสเซนเตอร์คิวบิกสองโครงซ้อนกันอยู่แต่โครงหนึ่งเป็นธาตุหมู่ II (หรือ III) ส่วนอีกโครงผลึกแบบเฟสเซนเตอร์คิวบิกสองโครงซ้อนกันอยู่แต่โครงหนึ่งเป็นธาตุหมู่ II (หรือ III) ส่วนอีกโครงผลึกเป็นธาตุหมู่ VI (หรือ V) สำหรับสารประกอบของสารกึ่งตัวนำเชิงกู่ II-VI (หรือ III-V) ในหนึ่งหน่วยเซลล์ประกอบด้วยอะตอมสองชนิดแต่ละชนิดมีสี่อะตอม เช่นในสารกึ่งตัวนำ CdTe อะตอมของธาตุ Cd จะอยู่ที่ตำแหน่ง (0,0,0), (0,1/2,1/2), (1/2,0,1/2) และ (1/2,1/2,0) ส่วนตำแหน่งของ อะตอมของธาตุ Te จะอยู่ที่ (1/4,1/4,1/4), (1/4,3/4,3/4), (3/4,1/4,3/4) และ (3/4,3/4,1/4) สารกึ่งตัวนำที่มี โครงสร้างผลึกแบบนี้ได้แก่ ZnS, CuCl, AgI, CuF, SiC และ CdS เป็นต้น ซึ่งเป็นสารประกอบกึ่งตัวนำที่ มีกวามสำคัญ เหมาะสำหรับนำมาประยุกต์เพื่อประดิษฐ์เป็นอุปกรณ์อิเล็กทรอนิกส์และเป็นอุปกรณ์ อิเล็กทรอนิกส์เชิงแสง

ภาพที่ 2.3 โครงสร้างผลึกแบบคิวบิกหรือซิงค์เบลนด์ของสารกึ่งตัวนำ CdS

2.2.1.2 โครงสร้างผลึกแบบเวอร์ทไซท์

โครงสร้างผลึกแบบเวอร์ทไซท์จัดอยู่ในระบบโครงสร้างผลึกแบบเฮกซะโกนัล ซึ่งเกิดจาก การนำโครงสร้างผลึกแบบเฮกซะโกนัลที่มีอะตอมของธาตุต่างๆ สองชนิดวางซ้อนเหลื่อมกันเป็นระยะ 5/8 ตามแนวแกน c (c - axis) หนึ่งหน่วยเซลล์จะมี 8 อะตอม มีอะตอมเพื่อนบ้านอยู่ 4 อะตอม มีพันธะเคมีของ โมเลกุลเป็นแบบพันธะเตตระฮิดรัล และมีพันธะเคมีระหว่างอะตอมเป็นแบบพันธะโกวาเลนท์ ดังนั้นจึงมี การจัดเรียงระนาบของอะตอมคล้ายกับโครงสร้างผลึกแบบซิงค์เบลนด์ แต่จะมีความแตกต่างกัน คือ ใน โครงสร้างผลึกแบบเวอร์ทไซท์ จะมีการจัดเรียงระนาบของพันธะเตตระฮิดรัลเป็นแบบ ABAB... หรือ 0101... ส่วนในโครงสร้างผลึกแบบซิงค์เบลนด์จะมีการจัดเรียงระนาบของพันธะเตตระฮิดรัลเป็นแบบ ABCABC... หรือ 012012... สารที่มีโครงสร้างผลึกแบบนี้ได้แก่ CdS และ ZnS เป็นต้น

ภาพที่ 2.4 โครงสร้างผลึกแบบเวิร์ทไซท์ของสารกึ่งตัวนำ CdS

2.2.1.3 โครงสร้างผลึกของสารกึ่งตัวนำ Cu₂O และ CuO (ฐิตินัย, 2557; Bugarinovic et al., 2011)

หนึ่งหน่วยเซลล์ของ Cu₂O จัดอยู่ในระบบคิวบิกซึ่งประกอบขึ้นจากซับแลตทิซของ บอดีเซนเตอร์คิวบิก (bcc) ของอะตอมออกซิเจนกับซับแลตทิซเฟซเซนเตอร์คิวบิก (fcc) ของอะตอมของ ธาตุ Cu ซับแลตทิซทั้งสองจะอยู่ซ้อนกันโดยที่ซับแลตทิซที่สองจะอยู่เยื้องไปในแนวทแยงมุมของซับ แลตทิซแรกเป็นระยะ 1/4 ^{11/2}/₂₂₂ เก่ากับ 4.26964 อังสตรอม ในหนึ่งหน่วยเซลล์จะมีอะตอมของธาตุ Cu จำนวน 4 อะตอม และอะตอม ของธาตุ O จำนวน 2 อะตอม รูปที่ 2.5 แสดงโครงสร้างผลึกของสารกึ่งตัวนำ Cu₂O แต่ละอะตอมของ ธาตุ Cu จะสร้างพันธะกับอะตอมของธาตุ Cu จำนวน 4 อะตอม เป็นแนวเส้นตรงแต่ละอะตอมของธาตุ O จะสร้างพันธะกับอะตอมของธาตุ Cu จำนวน 4 อะตอม สารประกอบสารกึ่งตัวนำ Cu₂O มีมวลโมเลกุล เท่ากับ 143.09 กรัมต่อโมล มีความหนาแน่น 6.0 กรัมต่อลูกบาศก์เซนติเมตร จุดหลอมเหลวและจุดเดือด อยู่ที่อุณหภูมิ 1,408 และ 2,073 เคลวิน ตามลำดับ ไม่ละลายในน้ำ แต่ละลายได้ในกรดเข้มข้น สารกึ่ง ตัวนำ Cu₂O มีสีแดง พบได้ในธรรมชาติ มักใช้ทำสีทาบ้านและสารกำจัดเชื้อราสารกึ่งตัวนำ Cu₂O เกย นำไปทำเป็นไดโอดก่อนที่จะถูกแทนที่ด้วยสารกึ่งตัวนำ Si

ภาพที่ 2.5 โครงสร้างผลึกของสารกึ่งตัวนำ Cu₂O

สารกึ่งตัวนำ CuO มีสีดำ พบได้ในธรรมชาติ มีโครงสร้างผลึกเป็นแบบโมโนกลินิกใน หนึ่งหน่วยเซลล์มีอะตอมของธาตุ Cu และอะตอมของธาตุ O อย่างละ 4 อะตอม โครงสร้างผลึกของสาร กึ่งตัวนำ CuO จะมีลักษณะ โดดเด่นเฉพาะตัว กล่าวกือแต่ละอะตอมของธาตุ Cu จะมีอะตอมของธาตุ O ล้อมรอบอยู่ 4 อะตอม กลายเป็นระนาบของสี่เหลี่ยมจัตุรัส โดยมีอะตอมของธาตุ O อยู่ที่มุมของสี่เหลี่ยม จัตุรัส และแต่ละอะตอมของธาตุ O จะมีอะตอมของธาตุ Cu ล้อมรอบอยู่ 4 อะตอม ดังแสดงในรูปที่ 2.6 มวลโมเลกุลเท่ากับ 79.54 กรัมต่อโมล อุณหภูมิของจุดหลอมเหลวเท่ากับ 1,603 เกลวิน มีความเสถียร สูงแต่ชื้นได้ง่ายที่อุณหภูมิห้อง ละลายได้อย่างช้าๆในสารละลายแอมโมเนีย แต่จะละลายได้อย่างรวดเร็ว ในสารละลายแอมโมเนียการ์บอเนต อีกทั้งยังละลายได้ในกรดโฟมมิกร้อน (formic acid) และละลายได้ ได้ในกรดอะซิติกเดือด เป็นต้น สารประกอบ CuO สามารถสลายตัวเป็น สารประกอบ Cu₂O ได้ที่ อุณหภูมิ 1,303 เกลวินในอากาศความดันปกติ ส่วนปฏิกิริยารีดักชันนี้จะเกิดขึ้นที่อุณหภูมิลดลงเมื่ออยู่ใน สุญญากาศกวามดันต่ำ

ก๊าซไฮโครเจนและคาร์บอนมอนอกไซค์สามารถรีคิวซ์สารประกอบ CuO ให้ กลายเป็นโลหะ Cu ที่อุณหภูมิ 523 เกลวิน และสามารถรีคิวซ์ให้กลายเป็นสารประกอบ Cu₂O ที่อุณหภูมิ 423 เกลวิน ส่วนก๊าซแอมโมเนียสามารถรีคิวซ์สารประกอบ CuO ให้กลายเป็นสารประกอบ Cu₂O ที่ อุณหภูมิ 698 - 973 เกลวิน สารประกอบ CuO มีสีคำ ใช้เป็นส่วนผสมทำเป็นไฟเบอร์และเซรามิก ตัว ตรวจรู้แก๊สชนิคต่างๆและฟลักซ์สำหรับใช้เชื่อมโลหะ ใช้กำจัดเชื้อรา และเป็นส่วนผสมสำคัญในสีทา เรือเพื่อป้องกันตะ ไคร่น้ำ สารประกอบ CuO มีการจัดเรียงอิเล็กตรอนเป็นแบบ 3d' ดังนั้นจึงมีสมบัติเป็น สารแม่เหล็กแอนติเฟอร์ โรที่อุณหภูมิห้อง (Korzhavyi and Johansson, 2011)

ภาพที่ 2.6 โครงสร้างผลึกของสารกึ่งตัวนำ Cu₂O

ภาพที่ 2.7 แผนภาพเฟสของสารประกอบ CuO แสดงความสัมพันธ์ระหว่างความดันย่อยและอุณหภูมิ ของแผ่นฐานรองรับในการเตรียมฟิล์มบางคอปเปอร์ออกไซด์ในระบบสุญญากาศ เฟสที่ เกิดขึ้นได้ คือCu, Cu₂O และ CuO

2.2.2 หลักเกณฑ์ในการระบุชื่อระนาบของผลึก (ฐิตินัย, 2530; ฐิตินัย, 2551; งามนิตย์, 2530; Kittel, 2005; Runyan, 1975)

เนื่องจากสมบัติทางฟิสิกส์ของผลึกขึ้นกับตำแหน่งของทิศทางและระนาบของผลึก ดังนั้นจึง ต้องระบุแน่นอนว่ากำลังศึกษาลักษณะส่วนใดของผลึกอยู่ การระบุลักษณะดังกล่าวจะบอกถึงตำแหน่ง ของทิศทางและระนาบของผลึกที่กำลังศึกษาอยู่นั้น มีเกณฑ์พื้นฐานดังนี้

2.2.2.1 การระบุตำแหน่ง

ในกรณีทั่วไปจะเขียนเป็น (x,y,z) โดยสังเกตเครื่องหมาย "," ซึ่งคั่นอยู่ระหว่างค่าแต่ ละค่า ตัวอย่างเช่น จุด (1,2,3) หมายความว่าเป็นตำแหน่งอยู่ที่พิกัด x =1, y =2, z =3

2.2.2.2 การระบุทิศทาง

ในกรณีทั่วไปจะเขียนเป็น [u v w] โดยสังเกตว่าใช้วงเล็บสี่เหลี่ยม และไม่มี เครื่องหมาย "," คั่นอยู่ระหว่างค่าแต่ละค่า ถ้าเป็นทิศทางที่เป็นวงเล็บก็จะใส่เครื่องหมาย "-" หรือ บาร์ (bar) ไว้บนตัวเลขนั้นๆ เช่นทิศทาง [121] แสดงว่าในแนวแกน z มีค่าเป็นลบ

2.2.2.3 การระบุชื่อระนาบ

การระบุชื่อระนาบ จะใช้อักษร (bkl) โดยให้สังเกตการใช้วงเล็บ และไม่มีเครื่องหมาย "," กั่นอยู่ระหว่างค่า (bkl) เรียกว่า ดัชนีมิลเลอร์ (Miller indices) ระนาบของผลึกเป็นสิ่งที่สำคัญที่สุดใน การศึกษาผลึก เพราะในแต่ละระนาบจะประกอบไปด้วยอะตอมไอออนหรือ โมเลกุลเรียงตัวกันอยู่บน ระนาบนั้น อาจกล่าวได้ว่าระนาบแต่ละระนาบจะมีความแตกต่างกันเช่นเดียวกับทิศทาง จุดที่ระนาบ หนึ่งๆ ตัดแกนผลึกจะได้มาจากค่าส่วนกลับของดัชนีมิลเลอร์ เช่น ระนาบ (010) จะตัดแกน (x,y,z) ที่จุด (1/0,1/1,1/0) หรือ จุด (∞,1,∞) นั่นเอง (ระยะอนันต์หมายถึงระนาบนั้นขนานกับแกนนั้นและไปตัดแกน นั้นที่ระยะอนันต์) ดังแสดงในรูปที่ 2.8 ซึ่งสรุปความสัมพันธ์ระหว่างระนาบต่างๆ กับระยะตัดแกน อ้างอิง

ภาพที่ 2.8 การบอกชื่อระนาบต่างๆ ของผลึก

2.3 การศึกษาโครงสร้างผลึกเชิงจุลภาคด้วยการเลี้ยวเบนรังสีเอกซ์ (Cullity, 1956; ฐิตินัย, 2530;
 งามนิตย์, 2531; Kittel, 2005; Runyan, 1975; ฐิตินัย, 2550; ฐิตินัย, 2551)

การศึกษาโครงสร้างผลึกโดยการเลี้ยวเบนของรังสีเอกซ์ด้วยเครื่องเอกซ์เรย์ดิฟแฟรกโตร-มิเตอร์ โดยใช้รังสีเอกซ์ความยาวคลื่นเดียวตกกระทบตัวอย่าง ซึ่งอาจเป็นผลึกเดี่ยวหรือผลึกพหุพันธ์ก็ได้ สาร ตัวอย่างจะหมุนไปเป็นมุม 0 ในขณะที่อุปกรณ์ตรวจจับสัญญาณ รังสีเอกซ์จะเคลื่อนที่ไปเป็นมุม 20 เพื่อให้การเลี้ยวเบนสอคคล้องกับกฎของแบรกก์

ในปี พ.ศ. 2455 (ค.ศ. 1912) W.H. Bragg และ W.L. Bragg ได้เสนอแนวคิคว่าเราสามารถมองได้ ว่าผลึกจัดเรียงตัวเป็น ชั้น (layer) หรือระนาบ (plane) ของอะตอมซึ่งสามารถสะท้อนคลื่น ที่ตกกระทบ โดยมุมตกกระทบเท่ากับมุมสะท้อนทั้งนี้ลำคลื่นที่สะท้อนออกไปจากระนาบต่างๆดังกล่าวจะมีความเข้ม สูงและแทรกสอดแบบเสริมกัน ถ้าหากความแตกต่างระหว่างทางเดินของคลื่นที่สะท้อนจากระนาบที่อยู่ ข้างเคียง (path difference) มีค่าเป็นจำนวนเท่าของความยาวคลื่นที่ตกกระทบดังสมการ

$$2d_{hkl}\sin\theta = n\lambda \tag{2.1}$$

เมื่อ λ คือ ความยาวคลื่นของรังสีเอกซ์

- d_{ькі} คือ ระยะระหว่างระนาบที่ขนานกัน
- heta คือ มุมของรังสีสะท้อนจากระนาบแบรกก์ของรังสีเอกซ์ ซึ่งจะเท่ากับมุมของรังสีตกกระทบ
- n คือ ลำคับที่ของการเลี้ยวเบน มีก่าเป็นเลขจำนวนเต็ม คือ 1, 2, 3,...
- 2 heta คือ มุมเลี้ยวเบนที่เป็นมุมระหว่างรังสีตกกระทบทำกับรังสีสะท้อน

14

ระนาบต่าง ๆ ของผลึกที่ก่อให้เกิดการเลี้ยวเบนของรังสีเอกซ์ต้องสอดคล้องกับกฎของแบรกก์ เรียกว่าระนาบแบรกก์ (Bragg plane) และมุมที่รังสีสะท้อนทำกับแนวที่ขนานกับรังสีตกกระทบเรียกว่า มุมเลี้ยวเบน (diffraction angle) ซึ่งมีค่าเป็นสองเท่าของมุมตกกระทบ (20) ดังรูปที่ 2.9

ภาพที่ 2.9 การเลี้ยวเบนของรังสีเอกซ์บนระนาบของผลึกที่เป็นไปตามกฎของแบรกก์

2.3.1 การวิเคราะห์โครงสร้างผลึก

ข้อมูลที่ได้จากกราฟริ้วการเลี้ยวเบนของรังสีเอกซ์ ดังในรูปที่ 2.10 แสดงความสัมพันธ์ ระหว่างความเข้มของรังสีเอกซ์และมุมเลี้ยวเบน เรียกว่า รูปแบบการเลี้ยวเบน (diffraction pattern) ซึ่ง สำหรับแต่ละธาตุหรือสารประกอบต่างชนิดกันก็จะมีรูปแบบการเลี้ยวเบนแตกต่างกันซึ่งสามารถสังเกต ได้จากพีค (peak) ของการเลี้ยวเบน จากกราฟริ้วการเลี้ยวเบนของรังสีเอกซ์สามารถทำการวิเคราะห์ โครงสร้างผลึกได้โดยการคำนวณหาค่ากงที่ของโครงผลึก ขนาดของเกรนและความเครียดในระดับ จุลภาคได้

สมการสำหรับหาค่าคงที่ของโครงผลึก (lattice constant) สำหรับโครงสร้างผลึกแบบ ซิงค์ เบลนค์สามารถหาได้จากสมการที่ (2.2)

$$\frac{1}{d_{hkl}^2} = \frac{h^2 + k^2 + l^2}{a^2}$$
(2.2)

และสำหรับโครงสร้างผลึกแบบเฮกซะโกนัลหาใด้จากสมการที่ (2.3)

$$\frac{1}{d_{hkl}^2} = \frac{4}{3} \left[\frac{h^2 + hk + k^2}{a^2} \right] + \frac{1^2}{c^2}$$
(2.3)

เมื่อ a, c คือ ค่าคงที่ของโครงผลึก

h, k, l คือ คัชนีมิลเลอร์ที่ใช้บอกชื่อระนาบของผลึก

2.3.2 การหาขนาดของเกรน

การหาขนาดของเกรนจากสเปกตรัมของการเลี้ยวเบนของรังสีเอกซ์สามารถหาโดยเลือกพีคที่มี ความเข้มสูงสุด คังในรูปที่ 2.11 และใช้สมการของเชอร์เรอร์ (Scherer) คำนวณหาขนาดของเกรนคังนี้

$$D = \frac{k\lambda}{\beta_{2\theta}\cos\theta}$$
(2.4)

เมื่อ D คือ ขนาดของเกรน

K คือ ค่าคงที่ซึ่งขึ้นกับขนาดและรูปร่างของเกรน

 $\beta_{2\theta}$

คือ ระยะความกว้างของพีคที่ความเข้มที่ค่าเป็นครึ่งหนึ่งของความเข้มสูงสุด (full width at half-maximum of the diffraction peak)

ภาพที่ 2.11 ค่า $\beta_{2\theta}$ เพื่อนำไปหาขนาดของเกรนจากสเปกตรัมของการเลี้ยวเบนของรังสีเอกซ์

2.4 การศึกษาโครงสร้างผลึกเชิงมหภาคด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (ฐิตินัย, 2550;
 งามนิตย์, 2543; Schroder, 1990; ฐิตินัย, 2551; งามนิตย์, 2552)

ในปี พ.ศ. 2478 แมก นอลล์ (Max Knoll) ได้กิดค้นหลักการและวิธีการในการประดิษฐ์กล้อง จุลทรรศน์อิเล็กตรอนแบบส่องกราดขึ้น และต่อมา แมนเฟรด วอน อาเคนเน (Manfred Von Ardenne) ได้ประดิษฐ์กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดเครื่องแรกสำเร็จในปี พ.ศ.2481 โดยเครื่องมือที่ ประดิษฐ์ได้นั้นยังมีกำลังขยายไม่สูงมากนัก ต่อมาในปี พ.ศ. 2498 ชารเลส์ วิลเลียม แอ็ทเลย์ (Charles William Oatley) และทีมงานจากเกมบริดจ์ ได้สร้างกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดที่มีความ ละเอียดสูงถึง 250 อังสตรอม

การทำงานของกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด ดังแสดงในรูปที่ 2.12 เริ่มจาก แหล่งกำเนิดอิเล็กตรอนซึ่งมีหน้าที่ผลิตอิเล็กตรอนจากไส้หลอด กลุ่มอิเล็กตรอนที่ได้จะถูกเร่งด้วย สนามไฟฟ้า พร้อมทั้งบังกับกลุ่มอิเล็กตรอนให้มีลักษณะเป็นลำ โดยลำอิเล็กตรอนจะกราดไปบนพื้นผิว ของตัวอย่างโดยขดลวดสนามแม่เหล็กบนระนาบเอกซ์ -วาย เพื่อทำให้เกิดอิเล็กตรอนทุติยภูมิ และจะถูก ตรวจจับโดยเซนเซอร์ เพื่อแปลงเป็นสัญญาณไฟฟ้าเพื่อส่งต่อไปให้ระบบสร้างภาพต่อไป

ภาพที่ 2.12 ส่วนประกอบของกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด

2.5 การส่งผ่านแสง (งามนิตย์, 2531; ฐิตินัย, 2546; งามนิตย์, 2545; ฐิตินัย, 2549; ฐิตินัย, 2550; ฐิตินัย, 2552)

การศึกษาวิธีวัคสเปกตรัมการสะท้อนและการส่งผ่านแสงนี้จะกล่าวถึงสัมประสิทธิ์การส่งผ่าน แสงและองค์ประกอบของการวัคสเปกตรัมการส่งผ่านแสง เมื่อแสงเดินทางไปกระทบฟิล์มบางแสง บางส่วนจะสะท้อนกลับที่ผิวของฟิล์มบาง บางส่วนของแสงจะเดินทางเข้าไปในแผ่นฟิล์มบางและถูก ดูดกลืนดังรูปที่ 2.13

ภาพที่ 2.13 ภาพจำลองเมื่อแสงตกกระทบลงบนแผ่นฟิล์มบาง

- เมื่อ I₀ คือ ความเข้มแสงตกกระทบแผ่นฟิล์มบาง
 - I_{R} คือ ความเข้มแสงสะท้อนจากฟิล์มบาง
 - \mathbf{I}_{T} คือ ความเข้มแสงส่งผ่านออกมาจากฟิล์มบาง
 - I คือ ความเข้มแสงที่เดินทางเข้าสู่แผ่นฟิล์มบาง
 - R คือ สัมประสิทธิ์การสะท้อนแสง (reflectivity)
 - T คือ สัมประสิทธิ์การส่งผ่านแสง (transmittance)
 - α คือ สัมประสิทธิ์การดูดกลืนแสง (absorption coefficient)
 - d คือ ระยะทางที่แสงเดินทางในแผ่นฟิล์มบาง

สัมประสิทธิ์การสะท้อนของแสงมีค่าเท่ากับ

$$R = \frac{I_r}{I_0}$$
(2.5)

หรือ

 $\mathbf{I}_{\mathbf{x}} = \mathbf{R}\mathbf{I}_{0} \tag{2.6}$

เพราะฉะนั้น ความเข้มแสงที่เดินทางเข้าสู่แผ่นฟิล์มบางมีค่า

$$I_i = I_0 - I_r = I_0 - RI_r = (1 - R)$$
 (2.7)

เมื่อแสงนี้เดินทางเข้าสู่แผ่นฟิล์มบางจะถูกดูดกลืนทำให้ความเข้มแสงภายในแผ่นฟิล์มบางลดลงแบบ เอกซ์โพเนนเชียลตามระยะทาง ดังนั้นความเข้มแสงที่ส่งผ่านฟิล์มบางมีก่าดั งสมการ

$$I_{t} = I_{i}e^{-\alpha d} = (1 - R)I_{0}e^{-\alpha d}$$
(2.8)

ถ้าไม่มีการสะท้อนแสงที่ผิวค้านหลังสัมประสิทธิ์การส่งผ่านของแสงจะมีค่าเท่ากับ

$$T = \frac{I_t}{I_0} = (1 - R) e^{-\alpha d}$$
(2.9)

การหาค่าของช่องว่างแถบพลังงานสามารถพิจารณาจากสัมประสิทธิ์การดูดกลืนแสง (α) ของ สารกึ่งตัวนำจะสัมพันธ์กับค่าสัมประสิทธิ์การส่งผ่านแสง (T) จากรูปที่ 2.14 แสดงภาพจำลองเมื่อแสงตก กระทบจากด้านซ้ายของฟิล์มบาง (I_o) ความเข้มแสงภายในฟิล์มบางจะลดลงแบบเอกซ์ โพเนนเชียล และ มีค่าสัมประสิทธิ์การส่งผ่านแสง โดยทั่วไป (R) มีค่าน้อยมากจะได้

$$T = e^{-\alpha d} \tag{2.10}$$

ดังนั้น
$$\alpha = -\frac{1}{d} \ln T$$
 (2.11)

ที่กล่าวมา เป็นการคำนวณหาสัมประสิทธิ์การดูดกลืนแสงจากสัมประสิทธิ์การส่งผ่านแสงโดยไม่คิดถึง การสะท้อนของแสงสำหรับกรณีการคำนวณสัมประสิทธิ์การดูดกลืนแสง เนื่องจากการย้ายสถานะ พลังงานของอิเล็กตรอนแสดงเป็นกราฟความสัมพันธ์ระหว่างสัมประสิทธิ์การดูดกลืนแสงกับค่าช่องว่าง แถบพลังงาน ซึ่งมีลักษณะเป็นพาราโบลาช่องว่างแถบพลังงานของแผ่นฟิล์มบางประมาณได้ โดยการ คำนวณสัมประสิทธิ์การดูดกลืนแสง ซึ่งจะถูกดูดกลืนเมื่อแสงที่ตกกระทบบนแผ่นฟิล์มบางมีก่า พลังงานโฟตอนสูงกว่าค่าของแถบพลังงานต้องห้ามที่ขอบของการดูดกลืนค่าสัมประสิทธิ์การดูดกลืนจะ มีค่าเป็น

$$(\alpha hv)^2 = A(hv - Eg)$$
(2.12)

เมื่อ A คือ ค่าคงที่ และสมการที่ (2.12) ใช้กับสารที่มีสถานะพลังงานแบบตรง

$$(\alpha hv)^{1/2} = B(hv - Eg)$$
(2.13)

เมื่อ B คือ ค่าคงที่ และสมการที่ (2.13) ใช้กับสารที่มีสถานะพลังงานแบบเฉียง

 2.6 รอยต่อพี-เอ็น ของสารกึ่งตัวนำ (p-n junction) (ฐิตินัย, 2545; ฐิตินัย, 2552; ฐิตินัย, 2557; Muller and Kamins, 1986; Singh, 1994; Schroder, 1990)

รอยต่อพี-เอ็น คือบริเวณที่ชนิดการนำไฟฟ้าของสารเปลี่ยนจากชนิดพีเป็นชนิดเอ็นหรือเปลี่ยน จากชนิดเอ็นเป็นชนิดพี โดยที่โครงสร้างของผลึกไม่มีการเปลี่ยนแปลงแต่อย่างใด รอยต่อพี-เอ็น เป็น ส่วนที่สำคัญมากในสิ่งประดิษฐ์สารกึ่งตัวนำแทบทุกชนิด และคุณสมบัติของรอยต่อพี-เอ็น ดังกล่าวนี้จะ ขึ้นกับกระบวนการผลิตซึ่งมีมากมายหลายแบบ วิธีการประดิษฐ์รอยต่อที่สำคัญๆ ในปัจจุบันมีดังนี้คือ วิธีการแพร่ซึม วิธีอิพิแท็กซี (epitaxy) วิธีฝั่งไอออน (ion implantation) และแบบหลอมผสม (alloying) เป็นต้น

2.6.1 รอยต่อในสภาวะสมดุลเชิงความร้อน

แบบจำลองของรอยต่อพี-เอ็น ในเชิงอุดมกติจะเริ่มพิจารณาที่รอยต่อแบบโฮโม (homo junction) ซึ่งทั้งสารกึ่งตัวนำชนิดพีและสารกึ่งตัวนำชนิดเอ็นเป็นวัสดุชนิดเดียวกัน จึงมีก่าช่องว่าง แถบพลังงานเท่ากัน โดยเริ่มจากอิเล็กตรอนที่มีอยู่จำนวนมากในสารกึ่งตัวนำชนิดเอีนจะแพร่ซึมไปยัง สารกึ่งตัวนำชนิดพี ซึ่งมีอิเล็กตรอนอยู่น้อยมาก ในทำนองเดียวกันโฮลที่มีอยู่เป็นจำนวนมากในสารกึ่ง ตัวนำชนิดพีจะแพร่ซึมไปยังด้านเอ็นซึ่งมีโฮลอยู่น้อยมาก การแพร่ซึมของพาหะเหล่านี้จะทำให้เนื้อสาร ขาดความเป็นกลางทางไฟฟ้านั่นคือทางสารกึ่งตัวนำชนิดเอ็นจะสูญเสียอิเล็กตรอนอิสระไป ทำให้บริเวณ สารกึ่งตัวนำชนิดพีจะแพร่ซึมไปยังด้านเอ็นซึ่งมีโฮลอยู่น้อยมาก การแพร่ซึมของพาหะเหล่านี้จะทำให้เนื้อสาร ขาดความเป็นกลางทางไฟฟ้านั่นคือทางสารกึ่งตัวนำชนิดเอ็นจะสูญเสียอิเล็กตรอนอิสระไป ทำให้บริเวณ สารกึ่งตัวนำชนิดเอ็นที่ใกล้รอยต่อ แสดงอำนาจไฟฟ้าเป็นบวกเนื่องจากมีประจุบวกของไอออนของ อะตอมผู้ให้ถูกทิ้งไว้ สำหรับทางสารกึ่งตัวนำชนิดพีก็จะมีลักษณะคล้ายากัน คือมีไอออนของอะตอม ผู้รับซึ่งมีประจุเป็นลบปรากฎอยู่ ยังผลให้เกิดสนามไฟฟ้าที่รอยต่อโดยที่สนามไฟฟ้ามีทิสจากทางสารกึ่ง ดัวนำชนิดเอ็นไปทางสารกึ่งตัวนำชนิดพี ดังนั้นการแพร่ซึมของโฮลและอิเล็กตรอนจะลดลงเนื่องจาก อิทธิพลของสนามไฟฟ้าที่ค้านกรแพร่ซึม บริเวณรอยต่อนี้จึงปลอดจากพาหะอิสระและเรียกบริเวณนี้ว่า เขตปลอดพาหะ (depletion region) หรือบางกรั้งเรียกว่า บริเวณประจุก้าง (space charge region) เนื่องจากมีประจุของไอออนสารเจืออยู่ซึ่งเป็นประจุที่ถูกตรึงอยู่กับที่ (tixed charge) ไม่ใช่ประจุอิสระ

ลักษณะการแพร่ซึมของอิเล็กตรอนและโฮลที่รอยต่ออาจแสดงได้โดยแผนภาพลักษณะของ โกรงสร้างแถบพลังงานดังรูปที่ 2.14 โดยที่รูป 2.14 (ก) แสดงลักษณะของโครงสร้างแถบพลังงานของ สารกึ่งตัวนำทั้งสองชนิดที่ยังไม่ได้สัมผัสกันเป็นรอยต่อวิวิธพันธุ์ รูปที่ 2.14 (ข) แสดงลักษณะของ โกรงสร้างแถบพลังงานของสารกึ่งตัวนำทั้งสองชนิดที่ถูกนำมาทำเป็นรอยต่อวิวิธพันธุ์ ซึ่งจะเกิดการแพร่ ของอิเล็กตรอนและโฮล จนกระทั่งเข้าสู่สภาวะสมดุลเชิงความร้อน ดังแสดงในรูปที่ 2.14 (ค) โดยที่ **¢** คือ ศักย์ไฟฟ้าที่รอยต่อ และ ٤ คือสนามไฟฟ้าที่รอยต่อ

(ค)

ภาพที่ 2.14 ลักษณะของโครงสร้างแถบพลังงานของสารกึ่งตัวนำชนิดพีและชนิดเอ็น ก. ขณะที่สารกึ่งตัวนำทั้งสองชนิดยังไม่ได้สัมผัสกันเป็นรอยต่อวิวิธพันธุ์ ข. ขณะที่สารกึ่งตัวนำทั้งสองชนิดที่ถูกนำมาทำเป็นรอยต่อวิวิธพันธุ์ ค. ขณะที่สารกึ่งตัวนำทั้งสองชนิดถูกนำมาทำเป็นรอยต่อวิวิธพันธุ์และอยู่ใน สภาวะสมดุลเชิงความร้อน

2.6.2 รอยต่อแบบขั้นบันได (step junction)

รอยต่อแบบขั้นบัน ใดเป็นรอยต่อในเชิงอุดมคติ ที่พิจารณาว่าปริมาณกวามเข้มข้นของสารเจือ ในสารกึ่งตัวนำชนิดเอ็นและทางสารกึ่งตัวนำชนิดพีต่างมีก่ากงที่ (แต่ก่าไม่เท่ากัน) จนกระทั่งถึงจุด เชื่อมต่อระหว่างสารกึ่งตัวนำชนิดเอ็นกับสารกึ่งตัวนำชนิดพี ดังแสดงในรูปที่ 2.15

- ข. ความหนาแน่นของพาหะอิสระ
- ค. ประจุค้าง
- ง. สนามไฟฟ้าที่บริเวณรอยต่อ
- จ. ศักย์ไฟฟ้าที่บริเวณรอยต่อ

ประจุไฟฟ้าจะมีค่าไม่เป็นศูนย์เฉพาะที่บริเวณเขตปลอดพาหะ จะหาสนามไฟฟ้าทางสารกึ่ง ตัวนำชนิดเอ็นได้โดยใช้สมการของปั๊วซอง (Poisson's equation) นั่นคือ

$$\frac{d^2 \varphi}{dx^2} = \frac{-d^2 \xi}{dx} = \frac{-q N_d}{\epsilon_s}$$
(2.14)

$$\xi(x) = \frac{-qN_d}{\epsilon_s} (x_n - x); 0 < x < x_n$$
(2.15)

แล้ว

สนามไฟฟ้าของสารกึ่งตัวนำชนิดเอ็นมีเกรื่องหมายเป็นลบ แสดงว่ามีทิศไปทางซ้ายมือและสัมพันธ์กับ ระยะทางแบบเชิงเส้นและสิ้นสุดที่ระยะทาง x_n ดังนั้นสนามไฟฟ้าจะต้านการแพร่ซึมของอิเล็กตรอนที่จะ แพร่ซึมจากขวาไปซ้าย ในทำนองเดียวกันสนามไฟฟ้าทางด้านสารกึ่งตัวนำชนิดพีจะมีความสัมพันธ์กับ ระยะทางแบบเชิงเส้นดังนี้

$$\xi(x) = \frac{-qNa}{\epsilon_{s}}(x - x_{p}); -x_{p} < x < 0$$
(2.16)

ซึ่งสนามไฟฟ้าทางด้านสารกึ่งตัวนำชนิดพีจะมีทิศต้านการแพร่ซึมของโฮลด้วยเหมือนกันที่ระยะ x = 0 สนามไฟฟ้าจะต้องต่อเนื่อง นั่นคือ

$$\mathbf{N}_{\mathbf{a}}\mathbf{x}_{\mathbf{p}} = \mathbf{N}_{\mathbf{d}}\mathbf{x}_{\mathbf{n}} \tag{2.17}$$

ซึ่งแสดงว่าความกว้างของเขตปลอดพาหะทั้งทางด้านสารกึ่งตัวนำชนิดพีและทางด้านสารกึ่งตัวนำชนิด เอ็นจะแปรผกผันกับความเข้มข้นของสารเจือ กล่าวคือถ้าด้านใดมีความหนาแน่นของอะตอมของสารเจือ สูง เขตปลอดพาหะจะยื่นเข้าในเนื้อสารด้านนั้นน้อย ในทางตรงกันข้าม ถ้าด้านใดมีความเข้มข้นของ สารเจือต่ำ เขตปลอดพาหะส่วนใหญ่จะตกอยู่ในเนื้อสารของด้านนั้น แต่ถ้าให้ความเข้มข้นของสารเจือ ของอะตอมผู้ให้ทางด้านสารกึ่งตัวนำชนิดเอ็นมีค่ามากกว่าความเข้มข้นของสารเจือของอะตอมผู้รับ ทางด้านสารกึ่งตัวนำชนิดพีมากๆ สารกึ่งตัวนำชนิดเอ็นที่ถูกเจืออย่างหนัก (heavily doped n-type) จะถือ ใด้ว่า เขตปลอดพาหะที่รอยต่อเข้าไปอยู่ในเนื้อสารกิ่งตัวนำชนิดพี และจะเรียกรอยต่อชนิดนี้ว่า รอยต่อ แบบขั้นบันไดด้านเดียว (one-sided step junction)

ศักย์ไฟฟ้าที่รอยต่อทางด้านสารกึ่งตัวนำชนิดเอ็นสามารถหาได้โดยการอินทิเกรต สมการที่ (2.15) เทียบกับ x นั่นคือ

$$\phi(x) = \phi_n - \frac{qN_d}{2 \epsilon_s} (x_n - x)^2; 0 < x < x_n$$
(2.18)

$$\phi_{n} = \frac{kT}{q} \ln \left(\frac{N_{d}}{n_{i}} \right)$$
(2.19)

ในทำนองเดียวกัน ศักย์ไฟฟ้าที่รอยต่อทางด้านสารกึ่งตัวนำชนิดพี คือ

$$\phi(x) = \phi_p + \frac{qN_a}{2 \in s} (x + x_p)^2; -x_p < x < 0$$
(2.20)

โดยที่
$$\phi_p = \frac{-kT}{q} \ell n \left(\frac{N_a}{n_i} \right)$$
 (2.21)

โดยที่

φ_p คือ ศักย์ไฟฟ้าในเนื้อของสารกึ่งตัวนำชนิดพีนอกเขตปลอดพาหะอิสระและมีค่าเป็นลบ ผลต่างของ ศักย์ไฟฟ้าระหว่าง φ_n – φ_p จะมีก่าดังนี้ คือ

$$\phi_{i} = \phi_{n} - \phi_{p} = \frac{kT}{q} \ell n \left(\frac{N_{d}}{n_{i}} \right) + \frac{kT}{q} \ell n \left(\frac{N_{a}}{n_{i}} \right) = \frac{kT}{q} \ell n \left(\frac{N_{d}N_{a}}{n_{i}^{2}} \right)$$
(2.22)

และเรียก ϕ_i ว่าแรงคันในตัว (built-in potential) ซึ่งจะมีเครื่องหมายเป็นบวก

ในกรณีที่มีการเจือสารด้วยความเข้มข้นสูงมาก ≈10¹⁹ ต่อลูกบาศก์เซนติเมตร สมการที่ (2.22) จะไม่เป็นจริงอีกต่อไป เพราะว่ากรณีที่มีการเจือสารอย่างสูง เราจะประมาณฟังก์ชันการแจกแจง ของเฟอร์มิ-ดิแรก ด้วยฟังก์ชันการแจกแจงของแม็กเวลล์-โบลต์ซมานน์ไม่ได้ เนื่องจากระดับเฟอร์มิของ สารกึ่งตัวนำจะเลื่อนเข้าหาขอบของแถบพลังงาน (ในสารกึ่งตัวนำชนิดพีระดับเฟอร์มิจะเลื่อนเข้าหาขอบ บนสุดของแถบวาเลนซ์ เป็นต้น) นั่นคือระดับเฟอร์มิของสารที่ถูกเจืออย่างหนัก จะเลื่อนไปจาก ระดับเฟอร์มิของสารกึ่งตัวนำอินทรินสิกเท่ากับ E_g/2q หรือราวๆ 0.56 อิเล็กตรอนโวลต์ ในอะตอมของ ธาตุ Si ดังนั้นในรอยต่อ p⁺ -n ศักย์ในตัวจะมีก่าดังนัทนคือ

$$\left|\phi_{i}\right| = 0.56 + \frac{kT}{q} \ln\left(\frac{N_{d}}{n_{i}}\right)$$
(2.23)

และที่บริเวณเขตปลอดพาหะเกือบทั้งหมดจะปรากฎในเนื้อสารกึ่งตัวนำชนิดเอ็นของหัวต่อแต่ถ้าเป็น หัวต่อพี-เอ็นปกติ จะพบว่าความกว้างของบริเวณเขตปลอดพาหะคือ

$$\mathbf{x}_{p} + \mathbf{x}_{n} = \left[\frac{2 \in_{\mathbf{S}}}{q} \phi_{i} \left(\frac{1}{N_{a}} + \frac{1}{N_{d}}\right)\right]^{\frac{1}{2}}$$
(2.24)

ซึ่งจะเห็นได้ชัดว่ากวามกว้างของบริเวณเขตปลอดพาหะขึ้นกับส่วนกลับของรากที่สองของกวามเข้มข้น ของสารเจือโดยประมาณ

2.6.3 รอยต่อพี-เอ็น ภายใต้สภาวะการใบอัสย้อนกลับ

ถ้าให้แรงดันไฟ V_a แก่รอยต่อในลักษณะที่ขั้วลบต่อเข้ากับสารสารกึ่งตัวนำชนิดพีและ ขั้วบวกต่อเข้ากับสารกึ่งตัวนำชนิดเอ็น และประมาณว่าแรงดัน V_a ทั้งหมดไปตกกร่อมอยู่ที่บริเวณรอยต่อ ดังนั้น แรงดันในตัว φ_i ของสมการที่ (2.25) จะถูกแทนที่ด้วย (φ_i-V_a)

$$x_{d} = x_{n} + x_{p} = \left[\frac{2 \in_{s}}{q} \phi_{i} \left(\frac{1}{N_{a}} + \frac{1}{N_{d}}\right) (\phi_{i} - V_{a})\right]^{\frac{1}{2}}$$
 (2.25)

ถ้า V มีค่ามากกว่า ϕ_i แล้วความกว้างของเขตบริเวณเขตปลอดพาหะจะแปรผันตรงกับรากที่สองของ V จากรูปที่ 2.15 (ง) สนามไฟฟ้ามีค่าสูงสุดเมื่อ

$$\frac{1}{2}\xi_{\max} x_{d} = (\phi_{i} - V_{a})$$

$$\xi_{\max} = \frac{2(\phi_{i} - V_{a})}{x_{d}}$$
(2.26)

2.7 ค่าความจุไฟฟ้า

ดังนั้น

ค่าความจุไฟฟ้าของสัญญาณขนาดเล็กต่อหนึ่งหน่วยพื้นที่ของบริเวณรอยต่อ จะแสดงอยู่ในรูปของ ประจุ Q, (ต่อหนึ่งหน่วยพื้นที่) ในบริเวณเขตปลอดพาหะ ดังความสัมพันธ์

$$Q_s = qN_d x_n = qN_a x_p \tag{2.27}$$

จากนิยามของค่าความจุไฟฟ้าคือ

$$C = \frac{dQ}{dV_a} = qN_d \frac{dx_n}{dV_a} = qN_a \frac{dx_p}{dV_a}$$
(2.28)

แต่เนื่องจาก $\mathbf{x}_p = (\mathbf{N}_d / \mathbf{N}_a) \mathbf{x}_n$ และ $\mathbf{x}_d = \mathbf{x}_n + \mathbf{x}_p$ รวมทั้งพิจารณาสมการที่ (2.25) จะใด้ว่า

$$\frac{\mathrm{dx}_{\mathrm{n}}}{\mathrm{dV}_{\mathrm{a}}} = \frac{1}{\mathrm{N}_{\mathrm{d}}} \left[\frac{\varepsilon_{\mathrm{s}}}{2\mathrm{q} \left(\frac{1}{\mathrm{N}_{\mathrm{a}}} + \frac{1}{\mathrm{N}_{\mathrm{d}}} \right) (\phi_{\mathrm{i}} - \mathrm{V}_{\mathrm{a}})} \right]^{\frac{1}{2}}$$
(2.29)

ແລະ

$$C = \left[\frac{q \in_{s}}{2q\left(\frac{1}{N_{a}} + \frac{1}{N_{d}}\right)(\phi_{i} - V_{a})}\right]^{\frac{1}{2}}$$
(2.30)

ในกรณีที่ | _{Va} | มีค่ามากกว่า φ_i แล้วค่าความจุไฟฟ้าของรอยต่อแบบขั้นจะลดลงโดยแปรผกผันกับราก ที่สองของ Va ถ้าแทนสมการที่ (2.25) ลงในสมการที่ (2.30) จะได้ว่า C=∈s /Xd ซึ่งเป็นความสัมพันธ์ที่ รู้จักกันแพร่หลายสำหรับไฟฟ้าสลับสัญญาณขนาดเล็ก อย่างไรก็ตาม ถ้าเป็นกรณีที่ความหนาแน่นของสารเจือในบริเวณรอยต่อมีค่าไม่สม่ำเสมอในช่วง -x, ถึง x ดังรูปที่ 2.16 ประจุไฟฟ้าต่อหนึ่งหน่วยพื้นที่ Q ที่ปรากฏอยู่ระหว่าง x และขอบเขตบริเวณ ปลอดพาหะ x จะมีความสัมพันธ์ดังนี้

$$Q = q \int_{x}^{x} Ndx$$
 (2.31)

เมื่อ N คือค่าความหนาแน่นของประจุสุทธิ และมีค่าเท่ากับ N_d-N_a แต่เนื่องจาก $\xi_x(x_n) = 0$ โดยการ ใช้กฎของเกาส์ (Gauss's law) จะได้ว่าสนามไฟฟ้าที่ตำแหน่ง x ใดๆ มีค่าดังนี้คือ

$$-\xi(\mathbf{x}) = \frac{1}{\epsilon_{s}} \int_{\mathbf{x}}^{\mathbf{x}} q \mathbf{N} d\mathbf{x} = \frac{Q}{\epsilon_{s}}$$
(2.32)

ภาพที่ 2.16 โปรไฟล์ของค่าพารามิเตอร์ต่างๆในบริเวณเขตปลอคพาหะ

- ก. แสดงความหนาแน่นอะตอมของสารเจือที่มีค่าไม่สม่ำเสมอภายในเขต ปลอดพาหะ
- ง. ลักษณะของสนามไฟฟ้าในบริเวณเขตปลอดพาหะเมื่อแรงดันไบอัส
 ย้อนกลับมีค่าเปลี่ยนไปเล็กน้อย

จากรูปที่ 2.16 (ข) เมื่อแรงคันไฟย้อนกลับ ∨ู มีค่าเปลี่ยนไป dVู ขอบเขตของบริเวณปลอด พาหะทางค้านสารกึ่งตัวนำชนิดเอ็นจะเปลี่ยนไป dx และประจุไฟฟ้าที่ปรากฎอยู่ในบริเวณตั้งแต่ x จนถึง x ูจะมีค่าดังนี้คือ

$$dQ = qN(x_n)dx_n$$
(2.33)

แล้วสนามไฟฟ้าที่จุด x จะเปลี่ยนไปตามความสัมพันธ์

$$-d\xi_{x} = \frac{dQ}{\epsilon_{s}} = \frac{q}{\epsilon_{s}} N(x_{n}) dx_{n}$$
(2.34)

แต่เนื่องจากพื้นที่กราฟ ξ_x กับ x จะสัมพันธ์กับ φ_i – V_a ดังนั้นแรงดันไฟฟ้าที่เปลี่ยนไปจะสอดคล้อง กับพื้นที่แรเงาของรูปที่ 2.16 (ข) ดังนั้นจะได้ว่า

$$dV_a \approx -x_d d\xi_x = \frac{x_d}{\epsilon_s} dQ$$
 (2.35)

และจากนิยาม ค่าความจุไฟฟ้าของสัญญาณขนาดเล็ก คือ

$$C = \frac{dQ}{dV_a} = \frac{\epsilon_s}{x_d}$$
(2.36)

ภายใต้สภาวะ ใบอัสย้อนกลับ บริเวณขอบเขตปลอดพาหะทั้งด้านสารกึ่งตัวนำชนิดพีและด้านสารกึ่ง ตัวนำชนิดเอ็นจะเลื่อนออกไปจากแนวเดิม สำหรับอนุพันธ์ของสมการที่ (2.36) เทียบกับ x, คือ

$$\frac{\mathrm{dC}}{\mathrm{dx}_{\mathrm{n}}} = \frac{\epsilon_{\mathrm{s}}}{(\mathrm{x}_{\mathrm{n}} + \mathrm{x}_{\mathrm{p}})^2} \left(1 + \frac{\mathrm{dx}_{\mathrm{p}}}{\mathrm{dx}_{\mathrm{n}}}\right)$$
(2.37)

แต่เนื่องจากขนาดของประจุไฟฟ้าทั้งสองข้างของบริเวณรอยต่อที่เปลี่ยนไปต่างต้องมีปริมาณที่เท่ากัน นั่นคือ

$$\left| d\mathbf{Q} \right| = \left| q\mathbf{N}(-\mathbf{x}_{p})d\mathbf{x}_{p} \right| = q\mathbf{N}(\mathbf{x}_{n})d\mathbf{x}_{n}$$
(2.38)

$$\frac{dC}{dx_n} = \frac{-C^2}{\epsilon_s} \left(1 + \frac{N(x_n)}{|N(-x_p)|} \right)$$
(2.39)

ແລະ

แทนค่า dx ของสมการที่ (2.39) ลงในสมการที่ (2.33) จะได้ว่า

$$N(x_{n}) = \frac{C^{2}}{\epsilon_{s} (dC/dV_{a})} \left(1 + \frac{N(x_{n})}{|N(-x_{p})|} \right)$$
(2.40)

ถ้าด้านสารกึ่งตัวนำชนิดพีถูกเจืออย่างหนัก แล้วพจน์ขวามือในวงเล็บของสมการที่ (2.40) จะมีค่าเข้าใกล้ ศูนย์ ซึ่งจะกลายเป็นการหาก่าความเข้มข้นสารเจือของรอยต่อแบบขั้นข้างเดียว (one sided step junction)

2.8 ลักษณะกระแส-แรงดันไฟฟ้าของรอยต่อพี-เอ็น (ฐิตินัย, 2545; ฐิตินัย, 2552; ฐิตินัย, 2557)

จากรูปที่ 2.17 แสดงการป้อนแรงดันไฟตรง V₁ ให้กับไดโอดชนิดรอยต่อพี-เอ็น ไดโอดมี พื้นที่หน้าตัด A ถ้าไม่มีการฉายแสงไปยังไดโอด กระแสที่ไหลผ่านไดโอดจะมีค่าเพิ่มขึ้นอย่างรวดเร็ว ตามขนาดของแรงดัน V₁ แรงดันส่วนใหญ่จะตกคร่อมที่รอยต่อมากกว่าในเนื้อสารซึ่งถือว่าเป็นกลางทาง ไฟฟ้า (quasi-neutral region) และที่ขั้วไฟฟ้า (ohmic contact) แรงดันไฟฟ้าสุทธิที่รอยต่อจะเท่ากับ (ϕ_i -V₁) ถ้า V₁ มีค่าเป็นบวก จะเรียกว่าการไบอัสไปหน้า แต่ถ้า V₁ มีเครื่องหมายเป็นลบเรียกว่าการไบอัส ย้อนกลับ กระแสที่ไหลในวงจรจะมีค่าน้อยมาก และกระแสจะคงที่ไม่ขึ้นกับค่า V₁ ในช่วงของ V₁ ขนาด หนึ่ง

ภาพที่ 2.17 โครงสร้างของไดโอดชนิดรอยต่อพี-เอ็นขณะถูกใบอัสไปหน้าด้วยแรงดัน $V_{_{\rm A}}$

2.9 เงื่อนใบขอบเขตของความเข้มข้นของพาหะข้างน้อย

ภายใต้เงื่อนไขการฉีดกระแสระดับต่ำ ความหนาแน่นของอิเล็กตรอนที่ขอบของเนื้อสารกึ่งตัวนำ ชนิดเอ็นที่ติดกับรอยต่อพี-เอ็น คือที่ระยะ x_n จะเท่ากับความหนาแน่นของอะตอมของสารเจือ ไม่ว่าจะอยู่ ในสภาวะสมดุลเชิงความร้อนหรือภายใต้การไบอัสก็ตาม นั่นคือn_n(x_n)=N_d(x_n) ในทำนองเดียวกันความ หนาแน่นของโฮลที่ขอบของเนื้อสารชนิดกึ่งตัวนำชนิดพีที่ระยะ -x_p จะมีก่า n_{po}(-x_p)=N_a(-x_p) ดังนั้นจะ สรุปได้ว่า

$$n_{po}(-x_{p}) = n_{no}(x_{n}) \exp\left(\frac{-q\phi_{i}}{kT}\right)$$
$$= N_{d}(x_{n}) \exp\left(\frac{-q\phi_{i}}{kT}\right)$$
(2.41)

$$p_{no}(x_{n}) = p_{po}(-x_{p}) \exp\left(\frac{-q\phi_{i}}{kT}\right)$$
$$= N_{a}(-x_{p}) \exp\left(\frac{-q\phi_{i}}{kT}\right)$$
(2.42)

ภายใต้การไบอัสด้วยแรงดันตามเงื่อนไขการฉีดพาหะระดับต่ำจะได้

$$n_{p}(-x_{p}) = N_{d}(x_{n}) \exp\left[\frac{-q(\phi_{i} - V_{a})}{kT}\right]$$
(2.43)

ແລະ

$$p_n(x_n) = N_a(-x_p) \exp\left[\frac{-q(\phi_i - V_a)}{kT}\right]$$
(2.44)

นิยามความหนาแน่นของอิเล็กตรอนส่วนเกิน n'และความหนาแน่นของโฮลส่วนเกิน p' ที่เกิดขึ้นคือ

$$\mathbf{n}' \equiv \mathbf{n} - \mathbf{n}_0 \tag{2.45}$$

$$\mathbf{p}' \equiv \mathbf{p} - \mathbf{p}_0 \tag{2.46}$$

แล้ว

$$n'_{p}(-x_{p}) = n_{po}(-x_{p}) \left[exp\left(\frac{-qV_{a}}{kT}\right) - 1 \right]$$
 (2.47)

$$p_{n}'(x_{n}) = p_{no}(x_{n}) \left[exp\left(\frac{qV_{a}}{kT}\right) - 1 \right]$$
(2.48)

2.10 การวิเคราะห์ไดโอดอุดมคติ

ในเบื้องต้นจะพิจารณาการฉีดโฮลจากด้านสารกึ่งตัวนำชนิดพี่ข้ามรอยต่อเข้าไปในเนื้อสารชนิด สารกึ่งตัวนำชนิดเอ็นแล้วรวมตัวกับอิเล็กตรอนโดยผ่านศูนย์กลางการรวมตัว ดังนั้นสมการความต่อเนื่อง ในเนื้อสารกึ่งตัวนำชนิดเอ็นนอกรอยต่อ คือ

$$\frac{\partial p_n}{\partial t} = D_p \frac{\partial^2 p_n}{\partial x^2} - (G - R)$$
$$= D_p \frac{\partial^2 p_n}{\partial x^2} - U$$

แต่จากสมการ

$$\mathbf{U} = \mathbf{p}'_{\mathbf{n}} / \boldsymbol{\tau}_{\mathbf{p}} = (\mathbf{p}_{\mathbf{n}} - \mathbf{p}_{\mathbf{no}}) / \boldsymbol{\tau}_{\mathbf{p}}$$

ดังนั้น
$$\frac{\partial p_n}{\partial t} = D_p \frac{\partial^2 p_n}{\partial x^2} - \frac{(p_n - p_{no})}{\tau_p}$$
(2.49)

ในสภาวะคงตัว $rac{\partial \mathbf{p}}{\partial \mathbf{t}}=0$ แล้ว จะได้สมการเป็น

$$0 = D_p \frac{d^2 p'_n}{dx^2} - \frac{p'_n}{\tau_p}$$
(2.50)

ผลเฉลยของสมการที่ (2.50) คือ

$$p_{n}'(x) = \operatorname{Aexp}\left(-\frac{(x-x_{n})}{\sqrt{D_{p}\tau_{p}}}\right) + \operatorname{Bexp}\left(\frac{(x-x_{n})}{\sqrt{D_{p}\tau_{p}}}\right)$$
(2.51)

2.10.1 ลักษณะสมบัติของใดโอดยาว (long-base diode characteristics)

จากรูปที่ 2.18 ถ้า W_B มีความยาวมากกว่าความยาวแพร่ซึมของโฮล L_p ≡ √D_pτ_p ในกรณี ที่โฮลที่ถูกฉีดเข้ามาในเนื้อสารกึ่งตัวนำชนิดเอ็นจะรวมตัวกับอิเล็กตรอนจนหมดก่อนที่จะถึงขั้วไฟฟ้า จะ เรียกกรณีนี้ว่าไดโอดยาว เนื่องจาก P_n ควรจะต้องมีค่าน้อยลงตามระยะทาง x ที่เพิ่มขึ้น ด้วยเหตุผลนี้ก่า กงตัว B ในสมการที่ (2.51) จะต้องเป็นศูนย์ ดังนั้น

$$P_{n}'(x) = p_{n0}[e^{(qV_{a}/kT)} - 1]e^{-(x - x_{n})/L}p$$
(2.52)

ภาพที่ 2.18 การถคลงของความหนาแน่นของโฮลส่วนเกินในเนื้อสารกึ่งตัวนำชนิดเอ็นของรอยต่อพี-เอ็นของไดโอดยาวภายใต้การฉีดพาหะระดับต่ำด้วยแรงดันไบแอสไปหน้าค่าเท่ากับ V_ู

ความหนาแน่นของกระแสโฮลที่ใหลในเนื้อสาร จะคิคเฉพาะกระแสที่มาจากกลไกการ แพร่ซึมเท่านั้น เนื่องจากถือว่าแรงคันตกคร่อมในเนื้อสารมีค่าน้อยมาก สนามไฟฟ้าจึงมีค่าเป็นศูนย์ จะ ได้ว่า

$$J_{p}(x) = -qD_{p} \frac{dp_{n}}{dx} = qD_{p} \frac{p_{n0}}{L_{p}} \left[e^{(qV_{a}/kT)} - 1 \right] e^{-(x-x_{n})/L_{p}}$$
$$= qD_{p} \frac{n_{i}^{2}}{N_{d}L_{p}} \left[e^{(qV_{a}/kT)} - 1 \right] e^{-(x-x_{n})/L_{p}}$$
(2.53)

กระแส โฮลจะมีค่าสูงสุดที่ระยะ x = x_n เมื่อระยะทางเพิ่มขึ้นแล้วความหนาแน่นของโฮลจะ ลดลง เนื่องจากรวมตัวกับอิเล็กตรอน แต่กระแสสุทธิจะต้องคงที่เสมอ ดังนั้นกระแสอิเล็กตรอนจะต้องมี ค่าเพิ่มขึ้นเมื่อระยะทาง x เพิ่มขึ้น ดังรูปที่ 2.19

ภาพที่ 2.19 กระแสโฮล (เส้นทึบ) กับกระแสอิเล็กตรอน (เส้นประ) ในเนื้อสารค้านสารกึ่งตัวนำชนิด เอ็นซึ่งอยู่นอกรอยต่อพี-เอ็น ซึ่งประมาณว่าเป็นกลางทางไฟฟ้า (quasi-neutral region) เนื่องจากประมาณว่าไม่ได้รับผลกระทบจากแรงคันไบแอสไปหน้า V

ในทำนองเดียวกันอิเล็กตรอนที่ถูกฉีดเข้าไปในเนื้อสารกึ่งตัวนำชนิดพีของรอยต่อพี-เอ็น อิเล็กตรอนจะกลายเป็นพาหะข้างน้อย จึงเรียกว่าการฉีดพาหะข้างน้อย (minority-carrier injection) ถ้า W_E >> L_n กระแสของอิเล็กตรอนที่ขั้วไฟฟ้าที่ตำแหน่ง -W_E คือ

$$J_{n} = qD_{n} \frac{n_{i}^{2}}{N_{a}L_{n}} \left[e^{(qV_{a}/kT)} - 1 \right] e^{(x+x_{p})/L_{n}}$$
(2.54)

โดยที่ x ในสมการที่ (2.54) จะมีเครื่องหมายเป็นลบ นั่นคือกระแสอิเล็กตรอนจะลคลงเมื่อx ออกห่างจากรอยต่อพี-เอ็น ไปสู่เนื้อสารกึ่งตัวนำชนิดพีมากขึ้น กระแสสุทธิจะหาได้จากการนำเอาสมการ ที่ (2.53) รวมกับสมการที่ (2.54) นั่นคือ

$$J_{t} = J_{p}(x_{n}) + J_{n}(-x_{p}) = qn_{i}^{2} \left(\frac{D_{p}}{N_{d}L_{p}} + \frac{D_{n}}{N_{a}L_{n}} \right) \left[e^{(qV_{a}/kT)} - 1 \right]$$

= $J_{0}[e^{(qV_{a}/kT)} - 1]$ (2.55)
 $J_{0} = qn_{i}^{2} \left(\frac{D_{p}}{N_{d}L_{p}} + \frac{D_{n}}{N_{a}L_{n}} \right)$

และเรียก \mathbf{J}_0 ว่าความหนาแน่นของกระแสอิ่มตัว

เมื่อ

2.10.2 ลักษณะสมบัติของไดโอดสั้น

ถ้าทั้ง W_B และ W_E สั้นกว่า ความยาวแพร่ซึมของโฮล L_p และของอิเล็กตรอน L_n จะมีเพียง บางส่วนของพาหะข้างน้อยที่สูญหายไปในเนื้อสาร เนื่องจากการรวมตัวกับพาหะข้างมากในเนื้อสาร เหล่านั้น แล้วพาหะข้างน้อยนี้จะเกิดการรวมตัวกันหมดที่ขั้วไฟฟ้าที่ตำแหน่ง W_B และW_E สำหรับ ใดโอดสั้น จากการกระจายพจน์ในสมการที่ (2.51) ด้วยอนุกรมเทย์เลอร์ จะได้ว่า

$$p'_{n}(x) = A' + B' \frac{(x - x_{n})}{L_{p}}$$
 (2.56)

ที่ขั้วไฟฟ้า ณ ที่ตำแหน่ง
$$\mathbf{x} = \mathbf{W}_{\mathrm{B}}, \mathbf{p}_{\mathrm{n}}'(\mathbf{W}_{\mathrm{B}}) = 0$$

หรือ
$$A' + B' \frac{(W_B - x_n)}{L_p} = 0$$

$$B' = \frac{-A'L_p}{(W_B - L_n)}$$
(2.57)

ที่ตำแหน่ง
$$\mathbf{x} = \mathbf{x}_n$$
 จะได้ว่า $\mathbf{p}'_n(\mathbf{x}_n) = \mathbf{p}_{no}[\mathbf{e}^{(qV_a/kT)} - 1]$ (2.58)

และที่ตำแหน่ง $\mathbf{x} = \mathbf{x}_{n}$ นี้สมการที่ (2.58) และสมการที่ (2.56) ต้องมีก่าเท่ากัน นั่นคือ

$$A' + B' \frac{(x_n - x_n)}{L_p} = p_{no} [e^{(qV_a/kT)} - 1]$$

$$A' = p_{no} [e^{(qV_a/kT)} - 1]$$
(2.59)

แทนสมการที่ (2.57) และสมการที่ (2.59) ลงในสมการที่ (2.56) จะได้

$$p'_{n}(x) = p_{n0}[e^{(qV_{a}/kT)} - 1] \left(1 - \frac{x - x_{n}}{W'_{B}}\right)$$
(2.60)

เมื่อ $W_{_B}^{'} = W_{_B}$ - x, ความเข้มข้นของโฮลส่วนเกินจะลคลงแบบเชิงเส้นกับระยะทางที่เพิ่มขึ้น ดังรูปที่ 2.20

ภาพที่ 2.20 ความหนาแน่นของโฮลภายในเนื้อสารกึ่งตัวนำชนิดเอ็นของรอยต่อพี-เอ็น ของไดโอดสั้น ภายใต้การไบแอสไปหน้า ∨ู

จะหาความหนาแน่นของกระแสโฮล จะได้ว่า

$$J_{p} = -qD_{p} \frac{dp}{dx} = qD_{p} \frac{p_{no}}{W'_{B}} \left[e^{(qV_{a}/kT)} - 1 \right]$$
$$= qD_{p} \frac{n_{i}^{2}}{N_{d}W'_{B}} \left[e^{(qV_{a}/kT)} - 1 \right]$$
(2.61)

ในทำนองเดียวกันสามารถที่จะหาความหนาแน่นของกระแสอิเล็กตรอนที่ฉีดเข้าไปในเนื้อสารกึ่งตัวนำ ชนิดเอ็น ดังสมการ

$$J_{n} = qD_{n} \frac{n_{i}^{2}}{N_{a}W_{E}'} \left[e^{(qV_{a}/kT)} - 1 \right]$$
(2.62)

ความหนาแน่นกระแสสุทธิในไคโอคสั้น คือ

$$J_{t} = qn_{i}^{2} \left(\frac{D_{p}}{N_{d}W'_{B}} + \frac{D_{n}}{N_{a}W'_{E}} \right) \left[e^{(qV_{a}/kT)} - 1 \right]$$

= $J_{0} \left[e^{(qV_{a}/kT)} - 1 \right]$ (2.63)
 $J_{0} = qn_{i}^{2} \left(\frac{D_{p}}{N_{d}W'_{B}} + \frac{D_{n}}{N_{a}W'_{E}} \right)$

ในทางปฏิบัติไดโอดที่ใช้งานจริงอาจจะเป็นรูปแบบการผสมของไดโอดสั้นกับไดโอดยาวก็ ได้ซึ่งการหาก่ากระแสอิเล็กตรอนและโฮลสามารถนำเอาผลที่ได้จากการวิเคราะห์ไดโอดยาวและไดโอด สั้นมาประยุกต์ใช้ได้ทันที จากสมการที่ (2.55) และสมการที่ (2.63) ภายใต้การไบอัสไปหน้า กระแสจะ เพิ่มขึ้นอย่างมากตามก่าของ V₁ เนื่องจากเป็นการฉีดพาหะข้างมากข้ามรอยต่อ แต่ภายใต้การไบอัส ข้อนกลับจะมีกระแสอิ่มตัวปริมาณเล็กน้อยไหลผ่านไดโอด เนื่องจากเป็นการฉีดพาหะข้างน้อยข้าม รอยต่อ โดยที่กระแสอิ่มตัวนี้ไม่ขึ้นกับแรงดันย้อนกลับ

2.11 กระแสเนื่องจากบริเวณประจุ

เมื่อ

ในกรณีใดโอดอุดมคติซึ่งมีลักษณะสมบัติกระแส-แรงคัน ดังสมการที่ (2.55) และสมการที่ (2.63) นั้นยังไม่ได้คิดถึงผลของกระแสที่อาจจะลดลงภายใต้การไบอัสไปหน้า เนื่องจากพาหะอิสระสูญ หายไปบางส่วนซึ่งเกิดจากกลไกการรวมตัวผ่านศูนย์กลางการรวมตัวในบริเวณประจุก้าง ในทางกลับกัน พาหะอาจถูกสร้างขึ้นได้ภายใต้การไบอัสย้อนกลับ ยังผลให้กระแสอิ่มตัวมีก่ามากกว่าก่าที่ได้ในสมการ ของไดโอดอุดมคติ

จากทฤษฎีของช็อกเลย์-ฮอลล์-รีด สามารถจะหาอัตราการเกิด-การรวมตัวสุทธิ จะได้ว่า

$$U = n_{i}^{2} \frac{\left[e^{(qV_{a}/kT)} - 1\right]}{\left[p + n + 2n_{i}\cosh\left(\frac{E_{t} - E_{i}}{kT}\right)\tau_{0}\right]}$$
(2.64)

้ความหนาแน่นของกระแสเนื่องจากพาหะที่เกิดหรือรวมตัวในบริเวณประจุก้างคือ

$$J_r = q \int_{-X_r}^{X_r} U dx \qquad (2.65)$$

ถ้าประมาณว่า $\mathbf{E}_{\mathrm{t}} pprox \mathbf{E}_{\mathrm{i}}, \mathbf{p} = \mathbf{n} = \mathbf{n}_{\mathrm{i}} \exp(q \mathbf{V}_{\mathrm{a}} \,/ \, 2 \mathrm{kT})$ แล้วแก้สมการ (2.64) จะกลายเป็น

$$U = \frac{n_{i}^{2} \left[e^{(qV_{a} / kT)} - 1 \right]}{2n_{i} \left[e^{(qV_{a} / kT)} + 1 \right] \tau_{0}}$$
(2.66)

แทนสมการที่ (2.66) ลงในสมการที่ (2.65) จะได้

$$J_{r} = \frac{qx'n_{i}^{2} \left[e^{(qV_{a}/kT)} - 1 \right]}{2n_{i} \left[e^{(qV_{a}/kT)} + 1 \right] \tau_{0}}$$
$$\approx \frac{qx'n_{i}}{2\tau_{0}} exp(qV_{a}/2kT)$$
(2.67)

เมื่อ τ₀=1/N₁σV₁₀ ความหนาแน่นของกระแสเนื่องจากกลไกการรวมตัวของพาหะในบริเวณ ประจุก้างภายใต้การไบอัสไปหน้า จะเพิ่มขึ้นตามแรงคันในแบบ exp(qV₄/2kT) ซึ่งจะเพิ่มขึ้นช้ากว่าใน กรณีของไคโอคอุดมคติ อัตราส่วนของ J₁/J₁ ภายใต้การไบอัสไปหน้ากือ

$$\frac{J_{t}}{J_{r}} = \frac{2n_{i}}{x_{d}} \left[\frac{L_{n}}{N_{a}} + \frac{L_{p}}{N_{d}} \right] \exp(qV_{a} / 2kT)$$
(2.68)

ในสารกึ่งตัวนำที่มีข้อบกพร่องหรือตำหนิในผลึกน้อย ค่าความยาวแพร่ซึมจะยิ่งมากขึ้น ยังผลให้ J, ยิ่งเด่นกว่า J, ในกรณีใดโอดหัวต่อด้านเดียวที่มี L_n= 60 ไมโครเมตร, x_d= 0.25 ไมโครเมตร, N_a= 10¹⁶ ลูกบาศก์เซนติเมตร และ J, จะมีค่ามากกว่า J, เมื่อ V_a มากกว่า 0.375 โวลต์

ภายใต้การไบอัสกลับทางตัวเศษของสมการที่ (2.64) จะมีค่าเป็น -n_i² ยังผลให้ U มีค่าเป็นลบ แสดงว่ามีการเกิดพาหะสุทธิ (net generation) ขึ้นในบริเวณประจุด้าง บริเวณความกว้าง x_i ซึ่งมีค่าน้อย กว่าและอยู่ภายในบริเวณประจุด้าง x_d เท่านั้นที่จะมีการเกิดพาหะสุทธิอย่างมีประสิทธิภาพและต้องอยู่ ภายใต้เงื่อนไข p=n << n_i ซึ่งจะทำให้ U ของสมการที่ (2.64) กลายเป็น

$$\mathbf{U} = -\mathbf{n}_i / 2\tau_0$$

แทนค่า U ลงในสมการที่ (2.65) จะได้ว่า

$$J_g = \frac{qn_i x_i}{2\tau_0}$$
(2.69)

โดยประมาณว่าศูนย์กลางการเกิด การรวมตัวจะอยู่ที่บริเวณ E_i ซึ่งจะให้ประสิทธิภาพสูงสุด สำหรับ รอยต่อ p⁺-n บริเวณประจุค้างจะอยู่ในเนื้อสารกึ่งตัวนำชนิดเอ็น ความกว้างของบริเวณประจุค้าง x_a และ บริเวณ x_i ซึ่งจะมีอัตราการเกิดพาหะสูงสุดจะแสดงได้ดังความสัมพันธ์

$$x_{d} = \left[\frac{2 \in_{s}}{q N_{d}} (\phi_{i} - V_{a})\right]^{\frac{1}{2}}$$
$$= \left[\frac{2 \in_{s} kT}{q^{2} N_{d}} \left(\ell n \left(\frac{N_{d} N_{a}}{n_{i}^{2}}\right) - \frac{q V_{a}}{kT}\right)\right]^{\frac{1}{2}}$$
(2.70)

$$\mathbf{x}_{i} = \left(\frac{2 \in \mathbf{k} \mathbf{K}}{q^{2} \mathbf{N}_{a}}\right)^{\frac{1}{2}} \left[\left(\ell n \left(\frac{\mathbf{N}_{d}}{\mathbf{n}_{i}}\right) - \frac{q \mathbf{V}_{a}}{\mathbf{k} \mathbf{T}} \right)^{\frac{1}{2}} - \left(\ell n \frac{\mathbf{N}_{d}}{\mathbf{n}_{i}} \right)^{\frac{1}{2}} \right]$$
(2.71)

ซึ่ง V_a คือแรงคันใบอัส (V_a < 0) ในกรณีใบอัสย้อนกลับ) ทั้ง x_a และ x_i จะขึ้นกับรากที่สอง ของแรงคันใบอัสย้อนกลับ ความแตกต่างระหว่าง x_a และ x_i จะมีก่าน้อยลง เมื่อแรงคันย้อนกลับมีก่ามาก รูปที่ 2.21 อัตราส่วนของ x_i/x_a ที่เป็นฟังก์ชันกับแรงคันย้อนกลับที่กวามหนาแน่นของอะตอมผู้ให้ก่า ต่างๆของรอยต่อแบบขั้นบันไคค้านเดียว p⁺- n

ภาพที่ 2.21 อัตราส่วนของ x_i/x_a เป็นฟังก์ชันกับแรงดันย้อนกลับที่ความหนาแน่นของอะตอมผู้ให้ค่า ต่างๆของรอยต่อ p⁺-n

ແລະ

2.12 เซลล์แสงอาทิตย์ชนิดรอยต่อพี-เอ็น (p-n junction solar cell) (Sze, 1981; ยุทธ, 2530; ฐิตินัย, 2544, ฐิตินัย, 2552)

เซลล์แสงอาทิตย์ชนิดรอยต่อพี-เอ็นของซิลิคอน มีความสำคัญต่อเซลล์แสงอาทิตย์ทุกชนิด ทั้งใน คาวเทียม อวกาศหรือบนพื้นดิน เซลล์แสงอาทิตย์ชนิดแผ่นบางๆ (flate-pate solar cell) ทำมาจากซิลิกอน มีช่วงอายุการใช้งานที่ยาวนาน ซึ่งในเซลล์แสงอาทิตย์ที่ดีนั้นจำเป็นด้องมีประสิทธิภาพสูง และมีความ น่าเชือถือได้ ตัวอย่างเช่น ไม่เกิดความเสื่อมคุณภาพได้ง่ายเมื่อมีการแผ่รังสีอนุภาคที่มีพลังงานสูงจาก ภายนอก นอกจากประสิทธิภาพและความน่าเชื่อถือแล้วจึงต้องกำนึงถึงรากาด้วยเพื่อที่จะได้แข่งขันกับ แหล่งพลังงานอื่นๆ

เซลล์แสงอาทิตย์ชนิดแผ่นบางๆ จำเป็นต้องลดราคาการผลิตให้มากขึ้นเท่าที่จะเป็นไปได้และใน ขณะเดียวกันต้องมีประสิทธิภาพอย่างน้อยสุด 10 เปอร์เซ็นต์ จึงมีการใช้เทคนิคเอดจ์-ดีไฟน์ ฟิล์ม-เฟค-โกรท์ (edge-defined film-fed growth : EFG), กระบวนการริบบอนทูริบบอน (ribbon to ribbon)และ กระบวนการเดนไดรท์-เวบ (dendrite-web) การใช้ผลึกพหุพันธ์ของ ซิลิกอนบนเซรามิกส์หรือบน ซิลิกอนเกรคถลุงแร่ (metallurgical-grade silicon) เป็นการช่วยลดราคาแผ่นฐานรองรับ เซลล์แสงอาทิตย์ ชนิดฟิล์มบางแคดเมียมซัลไฟต์และเซลล์แสงอาทิตย์ชนิดฟิล์มบางอะมอร์ฟัสซิลิกอนเป็นสิ่งสำคัญ สำหรับเซลล์แสงอาทิตย์ชนิดแผ่นบางๆ

2.12.1 การตอบสนองต่อแสง (spectral response)

โครงสร้างของเซลล์แสงอาทิตย์แสดงคังรูปที่ 2.22 ประกอบค้วย รอยต่อพี-เอ็นชนิคตื้น ค้าน บนสุคเป็นขั้วสัมผัสที่ผิวหน้า (front contact) แบบสไตร์ป (stripe) และฟิงเกอร์ (finger) มีชั้นต้านการ สะท้อนแสงเคลือบอยู่ และค้านล่างสุดเป็นขั้วสัมผัสค้านหลัง (back contact)

ภาพที่ 2.22 เซลล์แสงอาทิตย์ชนิครอยต่อพี-เอ็นของซิลิกอน

เมื่อแสงความยาวคลื่นเดียว (λ) ตกกระทบบนขั้วสัมผัสด้านหน้าของเซลล์แสงอาทิตย์ ทำให้ เกิดกระแสจากแสงและการตอบสนองต่อแสงเกิดขึ้น อัตราการเกิดกู่อิเล็กตรอน-โฮล ที่ระยะทาง x จาก ผิวด้านบน ดังรูปที่ 2.33 แสดงดังสมการที่ (2.72)

$$G(\lambda, x) = \alpha(\lambda)F(\lambda)[1 - R(\lambda)]\exp[-\alpha(\lambda)x]$$
(2.72)

- เมื่อ α(λ) คือ สัมประสิทธ์การดูดกลืนแสง
 - F(λ) คือ จำนวนโฟตอนที่ตกกระทบต่อตารางเซนติเมตรต่อวินาทีต่อหนึ่งหน่วยความกว้าง แถบสเปกตรัมแสง
 - R(λ) คือ สัดส่วนของจำนวนโฟตอนที่สะท้อนกลับจากผิวหน้า

- ภาพที่ 2.23 ก. อัตราการเกิดคู่อิเล็กตรอน-โฮล เป็นฟังก์ชันของระยะทางจากบริเวณผิวรอยต่อของ สารกึ่งตัวนำสำหรับความยาวคลื่นแสงสั้นและยาว
 - มิติของเซลล์แสงอาทิตย์และความกว้างของการแพร่พาหะข้างน้อย
 - ค. ความเข้มข้นของอะตอมของสารเจือที่บริเวณผิวรอยต่อของเซลล์แสงอาทิตย์

ในกรณีที่ฉีดกระแสเข้าไปน้อย ในระบบ 1 มิติ ในสภาวะสมดุลเชิงความร้อน ดังสมการที่ (2.73) และ (2.74) สำหรับอิเล็กตรอนในสารกึ่งตัวนำชนิดเอ็น

$$G_{n} - \frac{n_{p} - n_{po}}{\tau_{n}} + \frac{1}{q} \frac{dJ_{n}}{dx} = 0$$
(2.73)

สำหรับโฮลในสารกึ่งตัวนำชนิดพี

$$G_{p} - \frac{p_{n} - p_{no}}{\tau_{p}} - \frac{1}{q} \frac{dJ_{p}}{dx} = 0$$
(2.74)

ความหนาแน่นของกระแส ดังสมการที่ (2.75) และ (2.76)

$$J_{n} = q\mu_{n}n_{p}\xi + qD_{n}\frac{dn_{p}}{dx}$$
(2.75)

$$J_{p} = q\mu_{p}p_{n}\xi - qD_{p}\frac{dp_{n}}{dx}$$
(2.76)

- เมื่อ J_n คือ ความหนาแน่นของกระแสอิเล็กตรอนตรงบริเวณรอยต่อของเขตปลอดพาหะกับฐานของสาร กึ่งตัวนำชนิดพี
 - J_p คือ ความหนาแน่นของกระแสอิเล็กตรอนตรงบริเวณรอยต่อของเขตปลอดพาหะกับผิวหน้าของ สารกึ่งตัวนำชนิดเอ็น

เมื่อมีการเจืออย่างคงที่ในแต่ละค้านของเซลล์แสงอาทิตย์ชนิดรอยต่อพี-เอ็น ดังรูปที่ 2.23 (ข) และ 2.23 (ค) เมื่อไม่มีสนามไฟฟ้าภานนอกเขตปลอดพาหะ (depletion region) ในกรณีที่เซลล์แสงอาทิตย์มีรอยต่อ แบบเอ็น-พีโดยมีสารกึ่งตัวนำชนิดเอ็นอยู่ด้านหน้ารับแสงและสารกึ่งตัวนำชนิดพีเป็นฐานด้านล่าง จาก สมการที่ (2.72) ,(2.74) และ (2.76) เขียนใหม่ ได้ดังสมการที่ (2.74)

$$D_{p} \frac{d^{2} p_{n}}{dx^{2}} + \alpha F(1-R) \exp(-\alpha x) - \frac{p_{n} - p_{no}}{\tau_{p}} = 0$$
(2.77)

้สามารถเขียนในรูปทั่วไปได้ ดังสมการที่ (2.78)

$$p_{n} - p_{no} = A\cosh(x/L_{p}) + B\sinh(x/L_{p}) - \frac{\alpha F(1-R)\tau_{p}}{\alpha^{2}L_{p}^{2} - 1}\exp(-\alpha x)$$
(2.78)

เมื่อ $L_p = (D_p \tau_p)^{1/2}$ คือ ค่าความยาวแห่งการแพร่ มีเงื่อนไขของขอบเขต 2 ข้อ บริเวณพื้นผิว จะมี ความเร็วของการรวมตัว (S_p) ดังสมการที่ (2.79)

$$D_{p} \frac{d(p_{n} - p_{no})}{dx} = S_{p}(p_{n} - p_{no}) \qquad i \vec{y} \ o x = 0$$
(2.79)

บริเวณขอบของเขตปลอดพาหะ เมื่อความหนาแน่นของพาหะที่เพิ่มขึ้นมีค่าน้อยมากเนื่องจาก สนามไฟฟ้าในเขตปลอดพาหะ ดังสมการที่ (2.80)

$$p_n - p_{no} \cong 0 \qquad \qquad \vec{\eta} \ x = x_j \qquad (2.80)$$

และความหนาแน่นของโฮล คือ

$$p_{n} - p_{no} = \left[\alpha F(1 - R)\tau_{p} / (\alpha^{2}L_{p}^{2} - 1)\right]$$

$$\times \left[\frac{\left(\frac{S_{p}L_{p}}{D_{p}} + \alpha L_{p}\right) \sinh\left(\frac{x_{i} - x}{L_{p}}\right) + e^{-\alpha x_{j}}\left(\frac{S_{p}L_{p}}{D_{p}} \sinh\frac{x}{L_{p}} + \cosh\frac{x}{L_{p}}\right)}{(S_{p}L_{p} / D_{p}) \sinh(x_{j} / L_{p}) + \cosh(x_{j} / L_{p})} - e^{-\alpha x}\right] \qquad (2.81)$$

้ความหนาแน่นของกระแสจากแสงของโฮลที่ขอบของเขตปลอดพาหะ คือ

$$J_{p} = -qD_{p}\left(\frac{dD_{n}}{dx}\right)_{x_{j}} = \left[qF(1-R)\alpha L_{p}/(\alpha^{2}L_{p}^{2}-1)\right]$$

$$\times \left[\frac{\left(\frac{S_{p}L_{p}}{D_{p}}+\alpha L_{p}\right)-e^{-\alpha x_{j}}\left(\frac{S_{p}L_{p}}{D_{p}}\cosh\frac{x_{j}}{L_{p}}+\sinh\frac{x_{j}}{L_{p}}\right)}{\left(S_{p}L_{p}/D_{p}\right)\sin\left(x_{j}/L_{p}\right)+\cosh\left(x_{j}/L_{p}\right)}-\alpha L_{p}e^{-\alpha x_{j}}\right]$$

$$(2.82)$$

กระแสจากแสงได้จากบริเวณชั้นด้านหน้าของเซลล์แสงอาทิตย์ที่ความยาวคลื่นค่าหนึ่ง โดยตั้งสมมุติฐาน ว่าบริเวณนี้มีช่วงชีวิต สภาพเคลื่อนที่ได้และระดับการเจือมีค่าคงที่ การหากระแสจากแสงของอิเล็กตรอน มีการรวมตัวกันที่ฐานของเซลล์แสงอาทิตย์ จากสมการที่ (2.72), (2.73), และ (2.75) จะได้ว่า

$$n_p - n_{po} \cong 0$$
 $\vec{\eta}$ $x = x_i + W$ (2.83)

$$S_{n}(n_{p}-n_{po}) = -D_{n}dn_{p}/dx \qquad \hat{\vec{n}} \qquad x = H \qquad (2.84)$$

เมื่อ W คือ ความกว้างของเขตปลอดพาหะ และ H คือ ความกว้างของเซลล์แสงอาทิตย์ทั้งหมด จากสมการที่ (2.83) ความหนาแน่นของพาหะข้างน้อยที่เพิ่มขึ้นมีค่าเข้าใกล้สูนย์ที่บริเวณขอบของเขต ปลอดพาหะ ส่วนสมการที่ (2.84) แสดงว่าการรวมตัวของพาหะอิสระที่ผิวด้านหลังจะเกิดที่ขั้ว โอห์มมิก ใช้เงื่อนไขขอบเขตนี้ จะได้ความหนาแน่นของอิเล็กตรอนในฐานที่เป็นสารกึ่งตัวนำชนิดพีซึ่งมี การเจือสม่ำเสมอ คือ

$$n_{p} - n_{po} = \frac{\alpha F(1 - R)\tau_{n}}{\alpha^{2}L^{2} - 1} exp[-\alpha(x_{j} + W)] \left\{ cosh(\frac{x - x_{j} - W}{L_{n}}) - e^{-[\alpha(x - x_{j} - W)]} - \frac{(S_{n}L_{n}/D_{n})[cosh(H'/L_{n}) - exp(-\alpha H')] + sinh(H'/L_{n}) + \alpha L_{n}e^{-\alpha H'}}{(S_{n}L_{n}/D_{n})sinh(H'/L_{n})} + sinh(\frac{x - x_{j} - W}{L_{n}}) \right\}$$

$$(2.85)$$

และความหนาแน่นกระแสจากแสงเนื่องจากอิเล็กตรอนที่ได้จากขอบของเขตปลอดพาหะ

$$\begin{aligned} \mathbf{x} &= \mathbf{x}_{j} + \mathbf{W} \,\,\widehat{\mathbf{n}} \widehat{\mathbf{0}} \\ \mathbf{J}_{n} &= q \mathbf{D}_{n} \left(\frac{d n_{p}}{d \mathbf{x}} \right)_{\mathbf{x}_{j} + \mathbf{W}} = \frac{q \mathbf{F}(1 - \mathbf{R}) \alpha \mathbf{L}_{n}}{\alpha^{2} \mathbf{L}_{n}^{2} - 1} \exp \left[- \alpha \left(\mathbf{x}_{j} + \mathbf{W} \right) \right] \times \left\{ \alpha \mathbf{L}_{n} - \frac{\left(\mathbf{S}_{n} \mathbf{L}_{n} / \mathbf{D}_{n} \right) \left[\cosh \left(\mathbf{H}' / \mathbf{L}_{n} \right) - \exp \left(- \alpha \mathbf{H}' \right) \right] + \sinh \left(\mathbf{H}' / \mathbf{L}_{n} \right) + \alpha \mathbf{L}_{n} \exp \left(- \alpha \mathbf{H}' \right)}{(\mathbf{S}_{n} \mathbf{L}_{n} / \mathbf{D}_{n}) \sinh \left(\mathbf{H}' / \mathbf{L}_{n} \right) + \cosh \left(\mathbf{H}' / \mathbf{L}_{n} \right)} \, \right\} \qquad (2.86)$$

เมื่อ H' คือ บริเวณที่เป็นกลางในชั้นฐานของสารกึ่งตัวนำชนิดพี ดังรูป 2.23(ข) สมการที่ (2.86) มีสมมุติฐานว่ามีช่วงชีวิต สภาพเคลื่อนที่ได้และระดับการเจือมีก่ากงที่ ถ้าสิ่งเหล่านี้เป็นพึงก์ชันของ ระยะทาง จำเป็นต้องนำมาวิเคราะห์เชิงตัวเลข

การเกิดกระแสจากแสงสามารถเกิดภายในเขตปลอดพาหะได้ ในขอบเขตนี้สนามไฟฟ้ามีค่า สูงที่จะเร่งพาหะให้ออกไปจากเขตปลอดพาหะได้ก่อนที่จะเกิดการรวมตัวของพาหะ กระแสจากแสงต่อ หนึ่งหน่วยความกว้างแถบสเปกตรัมแสงเท่ากับจำนวนโฟตอนที่ถูกดูดกลืน

$$J_{dr} = qF(1-R)exp(-\alpha x_{j})[1-exp(-\alpha W)]$$
(2.87)

กระแสรวมที่ความยาวคลื่นหนึ่ง เกิดจากผลรวมของสมการที่ (2.82), (2.86) และ (2.87)

$$J(\lambda) = J_{p}(\lambda) + J_{n}(\lambda) + J_{dr}(\lambda)$$
(2.88)

- ภาพที่ 2.24 ก. ผลจากการคำนวณการตอบสนองต่อแสงของเซลล์แสงอาทิตย์แบบที่เป็นรอยต่อ ชนิดเอ็น-พีของสารกึ่งตัวนำซิลิกอน โดยแสดงการแจกแจง 3 บริเวณ (เส้นประ แทนด้วยการตอบสนองในเชิงอุดมคติ)
 - พลจากการคำนวณการตอบสนองต่อแสงของเซลล์แสงอาทิตย์แบบที่เป็นรอยต่อ ชนิดเอ็น-พีของสารกึ่งตัวนำซิลิกอนที่มีอัตราการรวมตัวของพาหะที่บริเวณผิว รอยต่อต่างกัน

การตอบสนองต่อแสง (spectral response :SR) เท่ากับผลรวมของการตอบสนองต่อแสง ภายนอกเป็น qF หรือผลรวมของของการตอบสนองต่อแสงภายในเป็น qF(1 – R) ดังสมการที่ (2.89)

$$SR(\lambda) = \frac{1}{qF(\lambda)[1 - R(\lambda)]} \Big[J_p(\lambda) + J_n(\lambda) + J_{dr}(\lambda) \Big]$$
(2.89)

การตอบสนองต่อแสงภายในเชิงอุดมคติสำหรับสารกึ่งตัวนำซึ่งมีช่องว่างแถบพลังงาน E_g เป็นฟังก์ชันแบบขั้นบัน ใดมีค่าศูนย์เมื่อ hv < E_g และเป็นหนึ่งเมื่อ hv ≥ E_g (เส้นประดังรูปที่ 2.24 (ก)) สำหรับการตอบสนองต่อแสงของเซลล์แสงอาทิตย์ที่ทำจากซิลิกอนมีสารกึ่งตัวนำชนิดเอ็นเคลื่อนบนพื แสดงดังรูปที่ 2.24 (ก) โดยแบ่งบริเวณออกเป็น 3 ส่วน พารามิเตอร์ที่สำคัญ คือ

 $N_{_{D}} = 5 \times 10^{19}$ ต่อลูกบาศก์เซนติเมตร, $N_{_{A}} = 1.5 \times 10^{16}$ ต่อลูกบาศก์เซนติเมตร, $\tau_{_{p}} = 0.4$ ไมโครวินาที, $\tau_{_{n}} = 10$ ไมโครวินาที, $x_{_{j}} = 0.5$ ไมโครเมตร, H = 450 ไมโครเมตร $S_{_{p}}(\text{front}) = 10^{4}$ เซนติเมตรต่อวินาที, $S_{_{n}}(\text{back}) = \infty$

เมื่อโฟตอนมีพลังงานต่ำ พาหะส่วนใหญ่เกิดขึ้นบริเวณฐานเนื่องจากซิลิกอนมีสัมประสิทธิ์ การดูดกลืนต่ำ เมื่อพลังงานโฟตอนมากกว่า 2.5 อิเล็กตรอนโวลต์ พลังงานโฟตอนสูงกว่า 3.5 อิเล็กตรอนโวลต์ สัมประสิทธิ์การดูดกลืนสูงมากกว่า 10° ต่อเซนติเมตร การตอบสนองต่อแสงจะเกิดขึ้น บริเวณผิวหน้า แต่การรวมตัวของพาหะที่ผิวมีค่าสูงจึงส่งผลกระทบต่อการตอบสนองต่อแสง เนื่องจาก จะไปลดจำนวนพาหะบริเวณผิวหน้าซึ่งเกิดจากโฟตอนที่มีพลังงานสูง การตอบสนองต่อแสง เมื่อ αL_p >> 1 และ αx_i >> 1 จากสมการที่ (2.82) กระแสจากแสงผิวด้านหน้า เท่ากับ

$$SR = \frac{1 + S_p / \alpha D_p}{\left(S_p L_p / D_p\right) \sinh\left(x_j / L_p\right) + \cosh\left(x_j / L_p\right)}$$
(2.90)

อัตราการรวมตัวบริเวณผิวหน้า (S_p) มีผลกระทบต่อการตอบสนองต่อแสงที่พลังงานโฟ ตอนมีค่าสูง แสดงดังรูปที่ 2.24 (ข) เมื่อ S_p แปรค่าจาก 10² เป็น 10⁶ เซนติเมตรต่อวินาที จากสมการที่ (2.90.90) แสดงว่าสำหรับค่า S_p หนึ่งๆ ถ้าต้องการให้การตอบสนองต่อแสงดีขึ้นจะต้องเพิ่มความยาว แห่งการแพร่ (L_p) โดยทั่วไปการตอบสนองต่อแสงที่ดีนั้นตลอดช่วงความยาวคลื่น จะต้องเพิ่มทั้ง L_n และ L_p แต่ลดค่า S_n และ S_p

เมื่อทราบค่าการตอบสนองต่อแสงแล้ว สามารถหาค่าความหนาแน่นของกระแสจากแสงจาก การแจกแจงของเซลล์แสงอาทิตย์ (F(λ)) ดังนี้

$$J_{L} = q \int_{0}^{\lambda_{m}} F(\lambda) [1 - R(\lambda)] SR(\lambda) d\lambda$$
(2.91)

เมื่อ λ_{m} คือ ความยาวคลื่นสูงสุดของสารกึ่งตัวนำที่มีค่าช่องว่างแถบพลังงานนั้นๆ

ถ้าต้องการให้ J_L มากๆ จะต้องลดค่า $R(\lambda)$ และเพิ่มค่า $SR(\lambda)$ ตลอดช่องความยาวคลื่น $0 < \lambda < \lambda_m$ ความหนาแน่นของกระแสจากแสงในอุดมคตินั้น จะต้องมีค่า $R(\lambda)=0$ และ SR=1

2.12.2 ลักษณะเฉพาะกระแส-แรงดันไฟฟ้า

สำหรับเซลล์แสงอาทิตย์ในทางปฏิบัตินั้นจะพิจารณาวงจรสมมูลในอุคมคติคังรูปที่ 2.26 ประกอบค้วยความด้านทานอนุกรมจากการสูญเสียของโอห์มมิก และความด้านทานชันท์จากกระแส รั่วไหล วงจรสมมูลแสคงคังรูปที่ 2.27 ถ้ากระแสไคโอคเป็นคังสมการที่ (2.92) ลักษณะเฉพาะกระแส-แรงคันไฟฟ้าหาได้จากสมการที่ (2.93)

$$I = I_{s} \left(e^{qv/kT} - 1 \right) - I_{L}$$
(2.92)

ภาพที่ 2.27 แสดงลักษณะเฉพาะกระแส-แรงดันไฟฟ้าของเซลล์แสงอาทิตย์ประกอบด้วยความต้านทาน อนุกรมและความต้านทานชันท์

จากสมการที่ (2.93) ถ้ากำหนดให้ R_s = 0,5 โอห์ม และ R_{sh} = 0, ∞ โอห์ม สามารถเขียน กราฟได้ดังรูปที่ 2.27 ซึ่งพารามิเตอร์ I_s, I_L และ T ยังเหมือนกับรูปที่ 2.25 จะพบว่าความต้านทานชันท์ที่ มีก่าต่ำกว่า 100 โอห์มนั้นจะไม่ทำให้กำลังเอาท์พุทของเซลล์แสงอาทิตย์นั้นเปลี่ยนแปลง ส่วนความ ต้านทานอนุกรมเท่ากับ 5 โอห์มจะทำให้กำลังเอาท์พุทของเซลล์แสงอาทิตย์ลดลงถึง 30 เปอร์เซ็นต์เมื่อ เทียบกับกำลังเอาท์พุทของเซลล์แสงอาทิตย์ที่มีความต้านทานอนุกรมเท่ากับศูนย์ (R_s=0) ดังนั้นเรา สามารถที่จะละพารามิเตอร์ R_{sh} ได้แล้ว กระแสขาออกและกำลังเอาท์พุท ได้จาก

$$\mathbf{I} = \mathbf{I}_{s} \left\{ \exp\left[\frac{\mathbf{q}(\mathbf{V} - \mathbf{IR}_{s})}{\mathbf{kT}}\right] - 1 \right\} - \mathbf{I}_{L}$$
(2.94)

$$\mathbf{P} = \left| \mathbf{IV} \right| = \mathbf{I} \left[\frac{\mathbf{kT}}{\mathbf{q}} \ln \left(\frac{\mathbf{I} + \mathbf{I}_{\mathrm{L}}}{\mathbf{I}_{\mathrm{s}}} + 1 \right) + \mathbf{IR}_{\mathrm{s}} \right]$$
(2.95)

จากความสัมพันธ์กำลังเอาท์พุทสูงสุดที่ได้ คือ 1, 0.77, 0.57, 0.27 หรือ 0.14 สำหรับ R_s เท่ากับ 0, 1, 2, 5 หรือ 10 โอห์ม ตามลำดับ ค่าความด้านทานของเซลล์แสงอาทิตย์จะขึ้นกับความลึกของ รอยต่อ ความเข้มข้นของสารเงือในสารกึ่งตัวนำชนิดพีและชนิดเอ็น และการทำขั้วไฟฟ้าโอห์มมิก จาก รูปที่ 2.26 และ 2.27 สามารถกำนวณหาค่าฟิลล์แฟกเตอร์ (fill factor : FF) ได้จาก

$$FF = \frac{I_m V_m}{I_L V_{OC}}$$
(2.96)

46

ประสิทธิภาพของเซลล์แสงอาทิตย์สามารถหาได้จาก

$$\eta = \frac{I_m V_m}{P_{in}} = \frac{FF \cdot I_L V_{OC}}{P_{in}}$$
(2.97)

ในเซลล์แสงอาทิตย์จะเกิดกระแสการรวมตัวของพาหะขึ้นในบริเวณพร่องพาหะ เป็น

$$I_{\text{rec}} = I_{s} \left[\exp\left(\frac{qV}{2kT}\right) - 1 \right]$$
(2.98)

โดย

$$\frac{I_s}{A} = \frac{qn_i W}{\sqrt{\tau_p \tau_n}}$$
(2.99)

ประสิทธิภาพสำหรับในกรณีที่กระแสการรวมตัวของพาหะมีค่าน้อยกว่ากรณีกระแสในอุคม คติ เนื่องจาก V และค่าฟิลล์แฟกเตอร์ลคลง สำหรับเซลล์แสงอาทิตย์ซิลิกอนที่อุณหภูมิ 300 เคลวิน กระแสการรวมตัวของพาหะจะทำให้ประสิทธิภาพของเซลล์แสงอาทิตย์ลคลงถึง 25 เปอร์เซ็นต์

สำหรับเซลล์แสงอาทิตย์ที่มีทั้งกระแสแพร่และกระที่เกิดจากการรวมตัวของพาหะ หรือเซลล์ แสงอาทิตย์มีข้อบกพร่องประจุมาก กระแสไฟฟ้าภายใต้ไบแอสตรงอาจจะแสดงในรูปของเอ็กซ์โพเนน เชียลที่ขั้นกับแรงคันคือ exp(qV/nkT) เมื่อ n คือแฟกเตอร์ในอุดมคติ โดยปกติประสิทธิภาพจะลคลงเมื่อ ก่าแฟกเตอร์อุดมคติเพิ่มขึ้น

ภาพที่ 2.28 แสดงลักษณะเฉพาะของกระแส-แรงดันใฟฟ้าของโมดูลของเซลล์แสงอาทิตย์

เซลล์แสงอาทิตย์ซิลิกอนที่มีพื้นที่ 2 ตารางเซนติเมตรจะมีก่าแรงคันวงจรเปิค (Voc) เท่ากับ 0.5 ถึง 0.6 โวลต์และมีกระแสลัควงจรเท่ากับ 30 ถึง 60 มิลลิแอมป์ ซึ่งเซลล์แสงอาทิตย์สามารถต่อกันได้ทั้งแบบ อนุกรมและขนาน ตัวอย่างการต่อเซลล์แสงอาทิตย์แสคงคังรูปที่ 2.28 ที่อุณหภูมิ 60 องศาเซลเซียส จะให้ กำลังประมาณ 10 วัตต์ มีประสิทธิภาพ 11.5 เปอร์เซ็นต์ ภายใต้เงื่อนไข AM1 (100 มิลลิวัตต์ต่อตาราง เซนติเมตร) ซึ่งกราฟของกำลังจะแสคงโดยเส้นสัมผัสกับกราฟกระแส-แรงคันไฟฟ้า ที่จุดที่มีกำลังสูงสุด จะสอคกล้องกับก่าแรงคันไฟฟ้าสูงสุด (Vm) และกระแสไฟฟ้าสูงสุด (Im) สำหรับเซลล์แสงอาทิตย์ที่มี การต่อคังรูปที่ 2.28 นี้จะมีก่าแรงคันไฟฟ้าสูงสุดเท่ากับ 14 โวลต์ และกระแสไฟฟ้าสูงสุดเท่ากับ 720 มิลลิแอมป์ และในกรณีที่อุณหภูมิต่ำค่ากำลังเอาท์พุทกับประสิทธิภาพของเซลล์แสงอาทิตย์นั้นจะมีก่า ลดลง

2.13 หลักการสปัตเตอริง (งามนิตย์, 2558; สุรสิงห์, 2545)

ดีซีแมกนีตรอนสปัตเตอริง คือ วิธีการเคลือบฟิล์มบางในระบบสุญญากาศ โดยอาศัยพื้นฐาน ทางด้านฟิสิกส์ของพลาสมาเพื่อให้เกิดกระบวนการสปัตเตอริงขึ้นมา ดังนั้นจึงเป็นสิ่งสำคัญในการทำ ความเข้าใจในฟิสิกส์ของพลาสมา วิธีการเคลือบฟิล์มบางที่เรียกว่าสปัตเตอริงและหลักการที่เกี่ยวกับหัวดี ซีแมกนีตรอนสปัตเตอริง ซึ่งจะได้อธิบายในส่วนที่มีความสอดกล้องกับงานวิจัยนี้

2.13.1 โกลวดิสชาร์จ

สถานะพลาสมาเกิดขึ้นได้โดยการทำให้อะตอมของก๊าซที่อยู่ในสภาวะที่เป็นกลางทางไฟฟ้า เกิดการแตกตัวเป็นไอออน ซึ่งสามารถทำได้โดยอาศัยการชนด้วยอิเล็กตรอนที่มีพลังงานสูง โดยอะตอม ที่ได้รับพลังงานที่เพียงพอจะทำให้อิเล็กตรอนหลุดออกมาจากอะตอม เรียกว่าการแตกตัวเป็นไอออน ซึ่ง พลังงานที่มีค่าน้อยที่สุดที่ทำให้อิเล็กตรอนตัวนอกสุดหลุดออกมาได้ คือ พลังงานการแตกตัวเป็นไอออน โดยการแตกตัวเป็นไอออนเป็นกระบวนการสำคัญในการสร้างพลาสมาของระบบดีซีแมกนิตรอน สบัตเตอริง สำหรับในกรณีของโลหะที่ได้รับพลังงานแล้วทำให้อิเล็กตรอนหลุดออกมาจากผิวของโลหะ เรียกว่าการปลดปล่อยอิเล็กตรอนซึ่งพลังงานที่มีค่าน้อยที่สุดที่ทำให้อิเล็กตรอนหลุดออกมาได้ คือ ค่า ฟังก์ชันงาน

อะตอมใดๆ เมื่อถูกชนด้วยอะตอมที่เป็นกลาง ไอออนหรืออิเล็กตรอนจะเกิดการแลกเปลี่ยน ของพลังงานระหว่างกัน ในกรณีที่อนุภาคที่เคลื่อนที่เข้าชนอะตอมคืออิเล็กตรอน และทำให้อะตอมที่ถูก ชนเกิดการแตกตัวเป็นไอออน เรียกว่า การแตกตัวเป็นไอออนเนื่องจากการชนด้วยอิเล็กตรอน โดยที่ อิเล็กตรอนจะต้องมีพลังงานจลน์มากกว่าหรือเท่ากับพลังงานการแตกตัวเป็นไอออนของอะตอม ดัง สมการ

$$\frac{1}{2}mv^2 \ge W_i \tag{2.100}$$

โดย \mathbf{W}_{i} คือ พลังงานการแตกตัวเป็นไอออน

m คือ มวลของอิเล็กตรอน

v คือ ความเร็วของอิเล็กตรอน

การโกลวดิสชาร์จก็คือการเรืองแสงของพลาสมา การโกล์วดิสชาร์จทำให้เกิดขึ้นมาได้ โดย การจ่ายความต่างศักย์ระหว่างขั้วอิเล็กโทรดในสภาวะความดันต่ำที่มีก๊าซกระจายอยู่ภายในภาชนะ สุญญากาศศักย์ไฟฟ้าจะตกลงอย่างรวดเร็วในบริเวณใกล้ขั้วคาโทดและมีค่าเปลี่ยนแปลงอย่างช้าๆ ใน พลาสมา และเปลี่ยนแปลงอีกครั้งในบริเวณใกล้ขั้วอาโนดดังแสดงในภาพที่ 2.28

ภาพที่ 2.29 โครงสร้างของการโกลวดิสชาร์จ

สนามไฟฟ้าในระบบจะถูกควบคุมไปจนถึงชีท (sheath) ของแต่ละขั้วไฟฟ้า ซึ่งชีทก็คือความ หนาแน่นของบริเวณที่แยกพลาสมาออกจากขั้วไฟฟ้า อาณาเขตของชีทจะผลักอิเล็กตรอนที่พยายาม เกลื่อนที่ไปยังแต่ละขั้วอิเล็กโทรด อิเล็กตรอนที่เกิดขึ้นที่ขั้วคาโทดจะถูกเร่งให้เกิดการเคลื่อนที่ตาม ทิศทางของสนามไฟฟ้าและเกิดการชนกับอนุภาคตัวอื่นและมีการแลกเปลี่ยนพลังงาน และจะหยุดลง เนื่องจากการแพร่กระจายและการรวมตัว การโกลวที่ทำให้การเรืองแสงเกิดขึ้นมาได้เนื่องจากอิเล็กตรอน มีพลังงานมากพอที่จะให้กำเนิดแสงที่สามารถมองเห็นได้ด้วยการชนแล้วทำให้เกิดการแตกตัวเป็น ไอออนอิเล็กตรอนจะถูกเร่งด้วยสนามไฟฟ้าและมีการสะสมพลังงานและเกิดการชนกับอะตอมอื่นแล้ว เกิดการแตกตัวเป็นไอออนโดยกระบวนการจะเกิดขึ้นอย่างต่อเนื่อง อิเล็กตรอนจะมีจำนวนเพิ่มขึ้นจาก การปลดปล่อยออกมาจากขั้วคาโทดซึ่งเป็นสิ่งที่สำคัญมากในการรักษาการดิสชาร์จให้สามารถมีอยู่ต่อไป ใด้ ลักษณะที่สำคัญหลายๆ อย่างของโกลวดิสชาร์จแสดงให้เห็นในรูปที่ 2.29 การเรืองแสงในภาชนะ สุญญากาศแสดงลักษณะการจัดเรียงบริเวณที่เกิดการเรืองแสงระหว่างขั้วอิเล็กโทรดทรงกลมภายใน ภาชนะสุญญากาศที่มีการเชื่อมต่อกับแหล่งกำเนิดไฟฟ้ากระแสตรง พอการดิสชาร์จด้วยไฟฟ้ากระแสตรง ถูกทำให้เกิดขึ้นและถ้าการโกลวดิสชาร์จสามารถรักษาไว้ได้ก็จะปรากฏบริเวณการเรืองแสงและบริเวณ มือในตำแหน่งที่แตกต่างกัน

2.13.2 สปัตเตอริง

สปัตเตอริงเป็นปรากฏการณ์ที่สำคัญอีกอย่างหนึ่งในการเกิดพลาสมาเย็น ซึ่งเป็นเหตุการณ์ที่ อะตอมที่ผิวเป้าถูกทำให้หลุดออกมาพร้อมกับมีการปลดปล่อยอิเล็กตรอนทุติยภูมิออกมาด้วย เนื่องจาก การระดมยิงของอนุภาคพลังงานสูงที่ถูกเร่งให้เกลื่อนที่เข้าชนเป้าดังแสดงในภาพที่ 2.30

ภาพที่ 2.30 การเกิดสปัตเตอริงที่ผิวเป้า

2.13.2.1 ยีลด์การสปัตเตอริง (sputtering yields)

ยืลด์ของการสบัตเตอริงนิยามด้วยปริมาณอะตอมที่ถูกสบัตเตอริงให้หลุดออกมาจาก ผิวเป้าต่อปริมาณไอออนที่เคลื่อนที่เข้าชน ดังแสดงในสมการที่ (2.101) ซึ่งขึ้นอยู่กับพลังงานของไอออน ที่ตกกระทบและอัตราส่วนระหว่างมวลของไอออนที่ตกกระทบกับอะตอมที่ถูกสปัตเตอริง

ยีลด์ของการสปัตเตอริง = อะตอมที่หลุดออดจากผิวเป้า / ไอออนที่ชนเป้า (2.101)

การสปัตเตอริงแสดงถึงลักษณะเฉพาะ โดยพลังงานขีดเริ่ม (threshold energy) ซึ่ง

ขึ้นอยู่กับไอออนที่เคลื่อนที่เข้าชนอะตอมที่ผิวเป้า ในตารางที่ 2.1 แสดงให้เห็นถึงค่าพลังงานขีดเริ่มของ ธาตุชนิดต่างๆ และค่ายีลด์ของการสปัตเตอริงของธาตุชนิดต่างๆ ที่ถูกระคมยิงด้วยไอออนของอาร์กอนที่ มีพลังงานแตกต่างกัน โดยขีดเริ่มของการสปัตเตอริง (sputtering threshold) จะอยู่ในช่วง 10-40 อิเล็กตรอนโวลต์ และที่พลังงานไอออนของอาร์กอนสูงกว่าพลังงานขีดเริ่ม ยีลด์ของการสปัตเตอริงจะ เพิ่มขึ้นตามพลังงานของไอออนของอาร์กอน

Elements	Threshold	Ar ⁺ energy (eV)				
	(eV)	60	100	200	300	600
Ag	15	0.22	0.63	1.58	2.20	3.40
Al	13		0.11	0.35	0.65	1.24
Au	20		0.32	1.07	1.65	2.43
Be	15		0.074	0.18	0.28	0.80
Cr	22		0.30	0.67	0.87	1.30
Cu	17	0.10	0.48	1.10	1.59	2.30
Fe	20	0.064	0.20	0.53	0.76	1.26
Ge	25		0.22	0.50	0.74	1.22
Мо	24	0.027	0.13	0.40	0.58	0.93
Nb	25	0.017	0.068	0.25	0.40	0.65
Ni	21	0.067	0.28	0.66	0.95	1.52
Pd	20		0.42	1.00	1.41	2.39
Pt	25	0.032	0.20	0.63	0.95	1.56
Re	35		0.10	0.37	0.56	0.91
Si			0.07	0.18	0.31	0.53
Та	26	0.01	0.10	0.28	0.41	0.62
Ti	20		0.081	0.22	0.33	0.58
V	23	0.03	0.11	0.31	0.41	0.70
W	33	0.008	0.068	0.29	0.40	0.62
Zr	22	0.027	0.12	0.28	0.41	0.75

ตารางที่ 2.1 แสดงค่าพลังงานขีดเริ่มและค่ายีลด์ของธาตุชนิดต่างๆ

2.13.2.2 ดีซีไดโอดสปัตเตอริง

ในระบบดีซีไดโอดสบัตเตอริงจะประกอบไปด้วยขั้วกาโทดและขั้วอาโนดวางอยู่ใน ระบบสุญญากาศภายใต้กวามดันและศักย์ไฟฟ้าที่เหมาะสม โดยเป้าจะติดตั้งไว้ที่ด้านหน้าของขั้วกาโทด และแผ่นรองรับหรือชิ้นงานที่ต้องการเกลือบสารจะถูกวางอยู่ที่ขั้วอาโนด ภายในภาชนะสุญญากาศจะ เต็มไปด้วยก๊าซที่ใช้ในการสปัตเตอริง โดยการดิสชาร์จจะถูกสร้างขึ้นมาระหว่างขั้วกาโทดและขั้วอาโนด โดยอาศัยการสร้างสนามไฟฟ้าช่วยในการเร่งอิเล็กตรอนให้เกลื่อนที่เข้าชนอะตอมของก๊าซที่ใช้ในการ สปัตเตอริงและเกิดการแตกตัวเป็นไอออน โดยไอออนของก๊าซที่ใช้ในการสปัตเตอริงจะถูกเร่งด้วย สนามไฟฟ้าไปยังขั้วคาโทดและพุ่งเข้าชนอะตอมที่ผิวเป้าให้หลุดออกมาและเคลือบเป็นฟิล์มบางที่แผ่น รองรับหรือชิ้นงานที่เราต้องการเคลือบพร้อมกับมีการปลดปล่อยอิเล็กตรอนทุติยภูมิออกมาด้วย ดังแสดง ในภาพที่ 2.31 ซึ่งอิเล็กตรอนเหล่านี้มีผลทำให้การโกลวดิสชาร์จยังคงเกิดขึ้นได้อย่างต่อเนื่อง เพราะว่า อิเล็กตรอนจะถูกเร่งให้เคลื่อนที่เข้าสู่บริเวณที่เกิดพลาสมาและทำให้เกิดการชนกับอะตอมของก๊าซที่ใช้ ในการสป์ตเตอริง และเกิดการแตกตัวเป็นไอออนบวกเพิ่มขึ้นมาก่อนที่อิเล็กตรอนเหล่านี้จะเคลื่อนที่ไป อยู่ที่ขั้วอาโนด

ภาพที่ 2.31 การสปัตเตอริงโดยดีซีแมกนีตรอนสปัตเตอริง

2.13.2.3 ดีซีแมกนี้ตรอนสปัตเตอริง

การกำเนิดพลาสมาในวิธีดีซีสปัตเตอริงเกิดจากการใช้สนามไฟฟ้าเร่งอิเล็กตรอนให้ เข้าชนอะตอมของก๊าซที่ใช้ในการสปัตเตอริงให้เกิดการแตกตัวเป็นไอออนบวกและอิเล็กตรอน โดย ไอออนบวกจะถูกเร่งด้วยสนามไฟฟ้าให้เคลื่อนที่เข้าชนอะตอมที่ผิวเป้าให้หลุดออกมาและมีการ ปลดปล่อยอิเล็กตรอนทุติยภูมิออกมาภายหลังจากการชนของไอออนบวกที่ผิวเป้า ดังนั้นถ้าสามารถกัก เก็บอิเล็กตรอนไว้ที่หน้าผิวเป้าและเพิ่มระยะทางการเคลื่อนที่ของอิเล็กตรอนให้เพิ่มขึ้นก็จะเป็นการเพิ่ม โอกาสในการชนกับอะตอมของก๊าซที่ใช้ในการสปัตเตอริงให้เกิดการแตกตัวเป็นไอออนบวกมากขึ้น และถูกเร่งด้วยสนามไฟฟ้าให้เคลื่อนที่เข้าชนเป้ามากขึ้น ผลคือทำให้อัตราการสบัตเตอริงสูงขึ้น ทั้งนี้การ กักเก็บอิเล็กตรอนและการเพิ่มระยะทางการเคลื่อนที่ของอิเล็กตรอนให้เพิ่มขึ้นนั้นสามารถทำได้โดยการ ใส่สนามแม่เหล็กในทิศทางที่เหมาะสมให้กับระบบดีซีสปัตเตอริง ทั้งนี้เมื่ออนุภาคที่มีประจุไฟฟ้า q เคลื่อนที่ด้วยความเร็ว v_⊥ ในทิศทางตั้งฉากกับสนามไฟฟ้า в จะเกิดแรงกระทำกับอนุภาคนั้นซึ่งมีก่า $F = Bqv_1$ (2.102) โดยแรงที่กระทำกับอนุภาคมีทิศทางตั้งฉากกับสนามแม่เหล็กและความเร็วของการเคลื่อนที่ ซึ่งจะมีผล ทำให้ประจุไฟฟ้าที่มีมวล m เกิดการเคลื่อนที่เป็นวงกลม โดยที่

$$\mathbf{F}_{\mathrm{B}} = \mathbf{F}_{\mathrm{C}} \tag{2.103}$$

โดย $\mathbf{F}_{\!\mathrm{B}}$ คือ แรงเนื่องจากสนามแม่เหล็ก

F_c คือ แรงสู่ศูนย์กลางของการเคลื่อนที่ จะได้ว่า

$$qv_{\perp}B = \frac{mv_{\perp}^2}{r}$$
(2.104)

โดยจะ ได้รัศมีของการเคลื่อนที่

$$\mathbf{r} = \mathbf{m}\mathbf{v}_{\perp}/\mathbf{B}\mathbf{q} \tag{2.105}$$

โดยเรียกรัศมีของประจุไฟฟ้าที่มีการเคลื่อนที่เป็นวงกลมว่ารัศมีไซโคลตรอน (cyclotron radius) หรือรัศมีลาร์มอร์ (Larmor radius) โดยอิเล็กตรอนจะได้รับผลกระทบจากแรง เนื่องจากแม่เหล็กนี้ แต่สำหรับไอออนซึ่งมีมวลมากจะได้รับผลการทบของแรงเนื่องจากสนามแม่เหล็กนี้ น้อยและจาก v = or จะได้ความเร็วเชิงมุมของการเคลื่อนที่ของอนุภาคเป็น

$$\omega = \frac{|\mathbf{q}| \mathbf{B}}{\mathbf{m}} \tag{2.106}$$

และเมื่อพิจารณาอิเล็กตรอนที่หลุดออกมาจากขั้วคาโทดแล้วเคลื่อนที่ภายใต้อิทธิพลของสนามไฟฟ้าและ สนามแม่เหล็กตามขวางที่มีทิศทางตั้งฉากกัน จากสมการของลอเรนซ์

$$m\frac{d\vec{v}}{dt} = e\left(\vec{E} + \vec{v} \times \vec{B}\right)$$
(2.107)

โดย e = ประจุของอิเล็กตรอน

m = มวลของอิเล็กตรอน

v = ความเร็วของอิเล็กตรอน

 \vec{E} = สนามไฟฟ้า

 $\vec{\mathrm{B}}$ = สนามแม่เหล็ก

ด้วยอิทธิพลของสนามไฟฟ้าและสนามแม่เหล็กตามขวางที่มีทิศทางตั้งฉากกันจะทำ ให้อิเล็กตรอนถูกกักเก็บไว้ที่บริเวณผิวเป้าและมีการเกลื่อนที่เป็นรูปเกลียววงกลม ด้วยความเร็วเชิงมุม ω = eB/m ไปในเส้นทางเลื่อนลอยของสนามไฟฟ้าและสนามแม่เหล็กตามขวางที่มีทิศทางตั้งฉากกัน ($\overline{E} imes \overline{B}$ drift path) ที่เกิดขึ้นและจุดศูนย์กลางของการเคลื่อนที่เป็นวงกลมแบบเลื่อนลอยในทิศทางของ สนามไฟฟ้าและสนามแม่เหล็กตามขวางที่มีทิศทางตั้งฉากกันด้วยความเร็ว E/B ถูกแสดงในภาพที่ 2.32 การเคลื่อนที่ของอิเล็กตรอนแบบนี้จะเพิ่มโอกาสในการชนกันระหว่างอิเล็กตรอนกับโมเลกุลของก๊าซ และเกิดกระบวนการแตกตัวเป็นไอออนบวกสูงขึ้นบริเวณผิวเป้าและไอออนบวกที่เกิดขึ้นจะถูกเร่งให้ เกลื่อนที่ชนเป้ามากขึ้น ซึ่งจะเป็นผลทำให้อัตราการสบัตเตอริงมีก่าสูงขึ้นเมื่อเปรียบเทียบกับวิธีดีซี ไดโอดสบัตเตอริง ส่งผลให้วิธีดีซีแมกนีตรอนสบัตเตอริงเป็นวิธีที่ใช้ในการเกลือบฟิล์มบางกันอย่าง แพร่หลายในงานวิจัยและในงานอุตสาหกรรม

ภาพที่ 2.32 การเคลื่อนที่เป็นเกลียววงกลมของอิเล็กตรอนที่ถูกกักเก็บไว้ที่ผิวเป้าในเส้นทางเลื่อนลอย ของสนามไฟฟ้าและสนามแม่เหล็กตามขวางที่มีทิศทางตั้งฉากกัน

และจากความเร็ว v ที่เกิดขึ้นโดยการเร่งจากสนามไฟฟ้าที่สม่ำเสมอที่เกิดจากการจ่าย ความต่างศักย์ให้กับขั้วอิเล็กโทรด จะได้ว่า

$$\frac{1}{2}\mathrm{mv}^2 = \left|\mathbf{q}\right|\mathrm{V} \tag{2.108}$$

จะได้ว่า

$$v = \sqrt{\frac{2|qV|}{m}}$$
(2.109)

แทนค่า (2.108) ลงใน (2.105) จะได้

$$\mathbf{r} = \frac{1}{B} \sqrt{\frac{2 \,\mathrm{mv}}{|\mathbf{q}|}} \tag{2.110}$$

้ โดยจะได้รัศมีของอนุภาคเคลื่อนที่ภายใต้อิทธิพลของแรงลอเรนซ์ในกรณีของอิเล็กตรอน จะได้ว่า

$$\mathbf{r} = 0.33 \times 10^{-5} \, \frac{\sqrt{\mathbf{v}}}{\mathbf{B}} \tag{2.111}$$

และสามารถวิเคราะห์ผลของสนามแม่เหล็กที่มีต่อการดิสชาร์จ ซึ่งพิจารณาได้จากสนามแม่เหล็กที่ ตำแหน่งทุติผล (cut-off magnetic field; **B**_c) โดยสนามแม่เหล็กจะมีผลต่อการดิสชาร์จเมื่อความเข้มของ สนามแม่เหล็กมีค่ามากกว่าสนามแม่เหล็กที่ตำแหน่งยุติผล ซึ่งแสดงได้ดังสมการที่ 2.112

$$B_{c} = \frac{1}{L}\sqrt{\frac{2 m v_{c}}{e}}$$
 สำหรับขั้วอิเล็กโทรดแผ่นราบ (2.112)

โดย

 \mathbf{v}_{c} คือ ความต่างศักย์ที่ง่ายระหว่างขั้วอิเล็กโทรค

L คือ ระยะห่างระหว่างขั้วอิเล็กโทรค

2.13.2.4 สนามแม่เหล็กที่มีผลต่อการดิสชาร์จ

ภาพที่ 2.33 ความต่างศักย์ของการคิสชาร์จกับสนามแม่เหล็กที่วัดในขั้วอิเล็กโทรคโคแอคเชียล ทรงกระบอก

ในภาพที่ 2.33 แสดงผลของสนามแม่เหล็กตามขวางกับความต่างศักย์ของการดิสชาร์จ ที่วัดในขั้วอิเล็กโทรดโคแอกเซียลทรงกระบอกซึ่งทำจากทองแดง โดยมีรัศมีภายใน 5 มิลลิเมตร และรัศมี ภายนอก 15 มิลลิเมตร ที่ความดัน 40 มิลลิทอร์ โดยสนามแม่เหล็กที่มีค่าต่ำกว่าสนามแม่เหล็กที่ยุติผล (cut-off magnetic field; **B**_c) อิเล็กตรอนในบริเวณขั้วคาโทดจะไปถึงขั้วอาโนดโดยปราศจากการแสดง การเคลื่อนที่เป็นรูปเกลียวกลมระหว่างขั้วอิเล็กโทรด เนื่องจากรัศมีของการเคลื่อนที่เป็นเกลียววงกลมมี ค่ามากกว่าระยะห่างระหว่างขั้วอิเล็กโทรดและเมื่อสนามแม่เหล็กมีค่ามากกว่าสนามแม่เหล็กที่ตำแหน่ง ยุติผล ความต่างศักย์ของการดิสชาร์จจะลดลงอย่างฉับพลัน ซึ่งเป็นผลจากการเพิ่มขึ้นของการชนระหว่าง อิเล็กตรอนกับอะตอมที่เป็นกลางและการเกิดการแตกตัวเป็นไอออนเพิ่มสูงขึ้น และเมื่อสนามแม่เหล็กมี ค่าสูงมากๆ ความต่างศักย์ของการดิสชาร์จจะมีค่าเพิ่มขึ้นตามสนามแม่เหล็ก ซึ่งถูกทำให้เกิดขึ้นโดยการ เพิ่มขึ้นของการสูญเสียพลังงานของอิเล็กตรอนที่ผ่านพ้นการชนอย่างต่อเนื่อง สำหรับการออกแบบสร้างหัวแมกนีตรอนให้สามารถใช้ในการสปัตเตอริงได้อย่างมี ประสิทธิภาพนั้น ควรจะคำนึงถึงองค์ประกอบที่สำคัญ ดังต่อไปนี้

2.14.1 วัสดุที่ใช้สร้างหัวดีซีแมกนีตรอน

ในการสร้างหัวดีซีแมกนีตรอนขนาดเล็กนั้น วัสดุที่เลือกใช้ควรจะมีคุณสมบัติดังต่อไปนี้

- เป็นวัสดุที่มีความแข็งแรงทนทานเหมาะสมกับการสร้างชิ้นงานขนาดเล็ก สามารถกลึงขึ้น รูปได้ดังต้องการ และเชื่อมประกอบได้โดยไม่เกิดการรั่วซึม
- เป็นวัสดุที่มีการยึดเกาะของก๊าซต่ำ สามารถไถ่ก๊าซบนผิววัสดุภายในระบบสุญญากาศได้ โดยง่าย
- 3. เป็นวัสดุที่มีความทนทานต่อการกัดกร่อนที่เกิดจากสารเคมี
- 4. เป็นวัสดุที่มีการนำไฟฟ้าที่ดี
- เป็นวัสดุที่มีการนำความร้อนที่ดี
- เป็นวัสดุที่มีคุณสมบัติไม่เป็นสารแม่เหล็ก เพราะจะไปกักกันสนามแม่เหล็กที่ผิวเป้าให้มีค่า น้อยลง

2.14.2 การให้ความเย็นที่เป้า

พลังงานที่จ่ายเข้าไปในกระบวนการสปัตเตอริงจะทำให้ไอออนบวกที่เคลื่อนที่เข้าชนผิวเป้า มีพลังงานก่อนข้างสูง ซึ่งส่วนใหญ่จะเปลี่ยนแปลงไปอยู่ในรูปของพลังงานความร้อนที่เป้าและความ ร้อนที่เกิดขึ้นที่ผิวเป้าในขณะเกิดการสปัตเตอริงอาจจะมีก่าสูงกว่าปกติ และสามารถนำไปสู่ความเสียหาย ของการเชื่อมต่อระหว่างเป้าและแผ่นหลังที่เป็นขั้วไฟฟ้า เป้า และโอริง เป็นต้น ความร้อนที่มากเกินไปนี้ สามารถหลีกเลี่ยงได้โดยการให้ความเย็นกับเป้าด้วยน้ำหรือของเหลวที่เหมาะสมอื่นๆ และควรระวังใน การรั่วซึมออกมาของน้ำ

2.14.3 การควบคุมให้เกิดการสปัตเตอริงเฉพาะผิวเป้า

บริเวณของเป้าจะถูกล้อมรอบด้วยกำบังบริเวณมืด (dark space shield) ซึ่งเรียกกันโดยทั่วไป ว่ากราวด์ชีลด์ (ground shields) ประโยชน์ของกราวด์ชีลด์กีคือควบคุมให้การระคมยิงของไอออนและกา รสปัตเตอริงเกิดที่เป้าเท่านั้น มิฉะนั้นแผ่นหลังของเป้าและตัวยึดเป้าอาจจะถูกสปัตเตอริงออกมาด้วย และ ก่อให้เกิดความไม่บริสุทธิ์ของฟิล์มที่เคลือบ ในการขัดขวางการระคมยิงของบริเวณที่ถูกป้องกัน ระยะห่างระหว่างเป้าและกราวด์ชีลด์ต้องมีก่าน้อยกว่าความหนาของบริเวณมืด (dark space thickness) เพื่อไม่ให้เกิดการโกล์วดิสชาร์จในพื้นที่ว่างนี้ ในบางโอกาสพบว่าตำแหน่งที่เป็นขอบคมและสิ่งสกปรก ชิ้นเล็กจะทำให้เกิดการ โกล์วดิสชาร์จเฉพาะที่หรือการอาร์คเฉพาะที่ โดยเฉพาะอย่างยิ่งกับการดิสชาร์จ ด้วยไฟฟ้ากระแสตรงนั้นขอบที่คมหรือสิ่งสกปรกเล็กๆ ต้องกำจัดออกไปเสียก่อน และเนื่องจากความ หนาของบริเวณมืดจะมีค่าลดลงตามความดันที่เพิ่มขึ้น ดังนั้นระยะห่างระหว่างเป้าและกราวด์ชีลด์ควรจะ มีค่าอยู่ในขีดจำกัดของความดันสูงสุดของระบบ และภายใต้การจัดวางของสนามแม่เหล็กที่ตั้งฉากกับ สนามไฟฟ้า ความหนาของบริเวณมืดจะลดลง ซึ่งแสดงให้เห็นว่าการจัดวางของสนามแม่เหล็กเป็นการ เพิ่มอย่างสม่ำเสมอของความดันก๊าซในบริเวณดิสชาร์จ ดังแสดงในความสัมพันธ์ในสมการที่ 2.113

ผลของสนามแม่เหล็กกับความคันยังผล $\left(\mathbf{P}_{\!_{\mathrm{e}}}
ight)$ แสดงโดย

$$\mathbf{P}_{\mathrm{e}}/\mathbf{P} \cong \left[\mathbf{1} + (\omega\tau)^2\right]^{\frac{1}{2}}$$
(2.113)

้โดย ω คือ ความถึ่ของการเคลื่อนที่เป็นเกลียววงกลมของอิเล็กตรอน

τ คือ เวลาปลอดการชนเฉลี่ย (mean free time)

P คือ ความดันของก๊าซที่ใช้ในการดิสชาร์จ

โดย
$$\omega = eB/m$$
 และ $\tau = \lambda_0/p[2(e/m)V_0]^{1/2}$

จะได้ว่า

$$\omega \tau \cong \lambda_0 B(e/m)^{\frac{1}{2}} / \sqrt{2} p V_0^{\frac{1}{2}}$$
(2.114)

โดย λ₀ คือ ระยะทางปลอดการชนเฉลี่ยของอิเล็กตรอนที่ความดัน 1 ทอร์

B คือ ความเข้มข้นของสนามแม่เหล็ก

e/m คือ ค่าประจุต่อมวลของอิเล็กตรอน

 \mathbf{V}_0 คือ ความต่างศักย์ที่ใช้เร่งอิเล็กตรอน

และความหนาของบริเวณมืดจะมีค่าลดลงอย่างรวดเร็วเป็นพึงก์ชันกับความต่างศักย์ของการ ดิสชาร์จที่เพิ่มขึ้น ซึ่งการแปรผันแบบเอกโปเนนเชียลของความหนาของบริเวณมืดกับความต่างศักย์ของ การดิสชาร์จขึ้นอยู่กับความดันของระบบสุญญากาศ

ความหนาของบริเวณมืดและความต่างศักย์ของการดิสชาร์จมีความสัมพันธ์กันดังแสดงใน สมการที่ 2.115

$$\mathbf{d} = \mathbf{c}\mathbf{V}^{-\mathbf{m}} \tag{2.115}$$

โดย c คือ ก่ากงที่

m คือ เลขยกกำลังระหว่าง -3 และ -6

ความหนาของบริเวณมืด กระแส และความต่างศักย์ถือตามกฎของใชลด์ ซึ่งอยู่ใน ความสัมพันธ์

$$I \alpha \frac{V^{\frac{3}{2}}}{d^2}$$
(2.116)

เมื่อการขึ้นกับความต่างศักย์ของบริเวณมีคถูกแทนลงในสมการ (2.97) จะได้ความสัมพันธ์

$$\mathbf{I} \ \boldsymbol{\alpha} \ \mathbf{k} \ V^{\mathrm{n}} \tag{2.117}$$

โดย $_{f k}$ คือ ค่าคงที่ของความสัมพันธ์

n คือ ตัวเลขที่แสดงความสามารถในการกักอิเล็กตรอนโดยสนามแม่เหล็ก

2.14.4 ลักษณะของสนามแม่เหล็ก

สนามแม่เหล็กในระบบดีซีแมกนีตรอนสปัตเตอริงนั้นจะมีผลต่อลักษณะของพลาสมาที่ เกิดขึ้นซึ่งจะสอดกล้องกับอัตราการเคลือบฟิล์มบางและคุณสมบัติทางด้านฟิสิกส์ของฟิล์มบางที่เคลือบ โดยสามารถแบ่งลักษณะของสนามแม่เหล็กที่บริเวณผิวเป้าออกเป็น 3 ประเภท ดังนี้

- แม่เหล็กตรงกลางมีความเข้มข้นของสนามแม่เหล็กเท่ากันกับแม่เหล็กด้านนอก โดยเส้น แรงแม่เหล็กทั้งหมดจะเชื่อมปิดระหว่างแม่เหล็กตรงกลางกับแม่เหล็กด้านนอกที่บริเวณผิว เป้า ซึ่งมีชื่อเรียกว่า แมกนิตรอนแบบสมมาตร (balanced magnetron) หรือแมกนิตรอนแบบ สามัญ (conventional magnetron)
- แม่เหล็กตรงกลางมีความเข้มข้นของสนามแม่เหล็กมากกว่าแม่เหล็กด้านนอก โดยเส้นแรง แม่เหล็กส่วนหนึ่งจะเชื่อมปิดระหว่างแม่เหล็กตรงกลางกับแม่เหล็กด้านนอก และเส้นแรง แม่เหล็กส่วนที่เหลือจะมีทิศทางไปยังผนังของภาชนะสุญญากาศ ซึ่งมีชื่อเรียกว่า แมกนิต รอนแบบไม่สมมาตรประเภทที่ 1 (unbalanced magnetron type 1)
- แม่เหล็กตรงกลางมีความเข้มข้นของสนามแม่เหล็กน้อยกว่าแม่เหล็กด้านนอก โดยเส้นแรง แม่เหล็กส่วนหนึ่งจะเชื่อมปิดระหว่างแม่เหล็กตรงกลางกับแม่เหล็กด้านนอก และเส้นแรง แม่เหล็กส่วนที่เหลือจะมีทิศทางไปยังแผ่นรองรับ ซึ่งมีชื่อเรียกว่า แมกนีตรอนแบบไม่ สมมาตรประเภทที่ 2 (unbalanced magnetron type 2)

ในกรณีดิสชาร์จของระบบดีซีแมกนีตรอนที่แม่เหล็กตรงกลางมีความเข้มของสนามแม่เหล็ก เท่ากันกับแม่เหล็กด้านนอก โดยสนามแม่เหล็กที่ใส่เข้าไปจะทำหน้าที่กักเก็บอิเล็กตรอนไว้ที่หน้าผิวเป้า และอิเล็กตรอนเหล่านี้จะมีการเคลื่อนที่เป็นรูปเกลียววงกลมในเส้นทางเลื่อนลอยของสนามไฟฟ้าและ สนามแม่เหล็กตามขวางที่มีทิศทางตั้งฉากกันด้วยแรงลอเรนซ์ ซึ่งนำไปสู่โอกาสในการชนกับอะตอมที่ เป็นกลางและเกิดกระบวนการแตกตัวเป็นไอออนบวกสูงขึ้น โดยไอออนบวกที่ถูกสร้างขึ้นจาก กระบวนการแตกตัวจะไม่ถูกกักโดยสนามแม่เหล็กและจะถูกเร่งโดยสนามไฟฟ้าไปยังเป้าที่ขั้วคาโทด และเคลื่อนที่เข้าชนกับอะตอมที่ผิวเป้าทำให้เกิดการสปัตเตอริงของเป้าและมีการปลดปล่อยอิเล็กตรอน ทุดิยภูมิออกมาด้วย โดยอิเล็กตรอนทุดิยภูมิเหล่านี้จะถูกเร่งกลับเข้าไปยังการดิสชาร์จ และอิเล็กตรอน ส่วนใหญ่จะถูกกักไว้ในเส้นทางเลื่อนลอยของสนามไฟฟ้าและสนามแม่เหล็กตามขวางที่มีทิศทางตั้งฉาก กัน ซึ่งเป็นผลให้เกิดการแตกตัวในปริมาณสูงขึ้นก่อนที่จะสูญเสียไป โดยจะทำให้พลาสมามีความ หนาแน่นสูงในบริเวณผิวเป้า และจากการที่พลาสมามีความหนาแน่นสูงในบริเวณผิวเป้านั้น ฟิล์มบางที่ ปลูกบนแผ่นรองรับในดำแหน่งภายในบริเวณนี้จะถูกควบคุมโดยการระคมยิงของไอออนซึ่งส่งผล กระทบอย่างมากต่อโลรงสร้างและคุณสมบัติของฟิล์มบางที่ทำการปลูก สำหรับแผ่นรองรับที่วางอยู่นอก บริเวณนี้จะวางอยู่ในบริเวณที่ความหนาแน่นของพลาสมาต่ำ เป็นผลให้กระแสไอออนที่แผ่นรองรับมี่า น้อยกว่า 1 มิลลิแอมป์ต่อตารางเซนติเมตร ซึ่งไม่เพียงพอที่จะปรับปรุงหรือเปลี่ยนแปลงโครงสร้างของ ฟิล์ม ดังนั้นจึงเป็นการยากที่จะเกลือบฟิล์มให้หนาแน่นเต็มที่ในบริเวณกว้างหรือมีส่วนประกอบที่ สมบูรณ์ในการใช้แมกนีตรอนแบบสมมาตร

Substrate

ภาพที่ 2.34 ลักษณะของแมกนีตรอนแบบสมมาตร

สำหรับในกรณีแม่เหล็กตรงกลางมีความเข้มของสนามแม่เหล็กน้อยกว่าแม่เหล็กด้านนอก ในกรณีนี้เส้นแรงแม่เหล็กส่วนหนึ่งจะเชื่อมปิคระหว่างแม่เหล็กตรงกลางและแม่เหล็กด้านนอก และเส้น แรงแม่เหล็กส่วนที่เหลือจะมีทิศทางไปยังแผ่นรองรับ โดยอิเล็กตรอนทุติยภูมิส่วนหนึ่งที่มีพลังงานสูงที่ ไม่ถูกกักเก็บไว้ในเส้นทางเลื่อนลอยของสนามไฟฟ้าและสนามแม่เหล็กตามขวางที่มีทิศทางตั้งฉากกันจะ เกลื่อนที่เป็นเกลียววงกลมตามเส้นแรงแม่เหล็กมีทิศทางไปยังแผ่นรองรับและเกิดการชนกับอะตอมที่ เป็นกลางแล้วเกิดการแตกตัวเป็นไอออนในบริเวณผิวหน้าของแผ่นฐานรองรับ จึงเกิดไอออนบวกเพิ่ม สูงขึ้นบริเวณแผ่นรองรับ ซึ่งเป็นผลให้พลาสมาจะถูกกักเก็บไว้ได้น้อยลงในบริเวณผิวเป้าแต่จะมีขนาด เพิ่มขึ้นโดยมีทิศทางไปยังแผ่นรองรับ ซึ่งเป็นผลให้กระแสไอออนมีก่าสูงโดยได้รับจากพลาสมาที่เกิดขึ้น โดยวินโดวส์และซาว์ไวด์ และกลุ่มนักวิจัยที่ทำการวิจัยเกี่ยวกับเรื่องนี้ได้แสดงให้เห็นต่อมาว่าที่แผ่น รองรับมีความหนาแน่นของกระแสไอออน 5 มิลลิแอมป์ต่อตารางเมตรและมากกว่านั้น ซึ่งอยู่ในระดับที่ มีปริมาณสูงกว่ากรณีแมกนีตรอนแบบสมมาตร และเป็นการแสดงให้เห็นว่าแมกนีตรอนแบบไม่สมมาตร ประเภทที่ 1 เป็นแหล่งกำเนิดไอออนที่มีประสิทธิภาพมากและเป็นที่นิยมใช้กันอย่างกว้างขวางในการ เคลือบฟิล์มโดยวิธีสปัตเตอริง และนอกจากนี้กระแสไอออนที่แผ่นรองรับยังเป็นสัดส่วนโดยตรงกับ กระแสที่เป้า และอัตราการเคลือบเป็นสัดส่วนโดยตรงกับกระแสที่เป้า ผลลัพธ์ก็คืออัตราส่วนของไอออน ต่ออะตอมที่แผ่นรองรับยังมีค่าคงที่ตามอัตราการเคลือบที่เพิ่มขึ้น และการเคลือบฟิล์มที่หนาแน่นโดยมี ก่ากระแสไอออนต่อพื้นที่สูง ซึ่งมีค่ามากกว่า 2 มิลิแอมป์ต่อตารางเซนติเมตร ของพลังงานไอออนที่ ค่อนข้างต่ำ โดยมีก่าน้อยกว่า 100 อิเล็กตรอนโวลต์ เป็นที่พึงปรารถนาโดยปราศจากการนำไปสู่ความเก้น ที่มากกว่าปกติ (excessive stress) และความเก้นภายใน (intrinsic stress) ซึ่งทำได้โดย แมกนีตรอนแบบ ไม่สมมาตรประเภทที่ 1

ภาพที่ 2.35 ลักษณะของแมกนีตรอนแบบไม่สมมาตรประเภทที่ 1

สำหรับในกรณีที่แม่เหล็กตรงกลางมีความเข้มของสนามแม่เหล็กมากกว่าแม่เหล็กด้านนอก ในกรณีนี้เส้นแรงแม่เหล็กส่วนหนึ่งจะเชื่อมปิดระหว่างแม่เหล็กตรงกลางและแม่เหล็กด้านนอก และเส้น แรงแม่เหล็กส่วนที่เหลือจะมีทิศทางไปยังแผ่นผนังของภาชนะสุญญากาศ ซึ่งทิศทางของอิเล็กตรอนและ พลาสมาจะห่างไปจากแผ่นรองรับ เป็นผลให้กวามหนาแน่นของพลาสมาในบริเวณแผ่นรองรับมีก่าต่ำซึ่ง น้อยกว่า 1 มิลลิแอมป์ต่อตารางเซนติเมตร การออกแบบในลักษณะนี้จะไม่เป็นที่นิยมใช้ เพราะการให้ผล ของกระแสไอออนต่ำที่แผ่นรองรับ

ภาพที่ 2.36 แสดงลักษณะของแมกนีตรอนแบบไม่สมมาตรประเภทที่ 2

2.15 คุณสมบัติทางพลาสมา (งามนิตย์, 2558; สุรสิงห์, 2545)

2.15.1 หัววัดลางมัวร์

หัววัดลางมัวร์เป็นขั้วไฟฟ้าที่ทำจากโลหะที่ปกคลุมด้วยฉนวน ยกเว้นที่ปลายหัววัดที่สัมผัส กับพลาสมา หัววัดทำมาจากโลหะที่มีจุดหลอมเหลวสูงดังเช่น ทังสเตน โมลิดินัม หรือแพทตินัม โดยจะ ใช้หัววัดลางมัวร์ในการวิเคราะห์พลาสมา ซึ่งเหมาะสำหรับการวิเคราะห์พารามิเตอร์ของพลาสมาเย็น โดยใช้ในการตรวจสอบความหนาแน่นของพลาสมา (n) อุณหภูมิของอิเล็กตรอน (T_e) ศักย์ของ พลาสมา (V_p) และศักย์ลอย (floating potential; V_f)

ในการใช้หัววัดลางมัวร์จะดำเนินโดยการจ่ายความต่างศักย์ที่สามารถปรับค่าได้จากภายนอก ให้กับหัววัดที่ปลายอีกด้านหนึ่งถูกสอดเข้าไปในพลาสมา ดังแสดงในภาพที่ 2.37 เมื่อปลายของหัววัด สัมผัสกับพลาสมาจะแสดงให้เห็นถึงลักษณะเฉพาะของกระแสและความต่างศักย์ที่เกิดการเปลี่ยนแปลง ขึ้นที่หัววัดดังแสดงในภาพที่ 2.38 ซึ่งนำมาใช้วิเคราะห์ตัวแปรของพลาสมา สำหรับความต่างศักย์ที่จ่าย ให้กับหัววัดจะมีลักษณะต่อเนื่องด้วยรูปร่างฟันปลา (saw tooth-shaped) ในกรณีหัววัดเดี่ยวลางมัวร์ความ ต่างศักย์ที่จ่ายให้กับหัววัดจะเทียบกับผนังของภาชนะสุญญากาศ

ภาพที่ 2.37 หัววัคเคี่ยวลางมัวร์ที่สอคเข้าไปในพลาสมา

2.17.2 ลักษณะเฉพาะของกระแสและความต่างศักย์

ในการใช้หัววัดเดี่ยวลางมัวร์วิเคราะห์พารามิเตอร์ของพลาสมา จะจ่ายความต่างศักย์ให้กับ หัววัด โดยที่ปลายอีกด้านหนึ่งของหัววัดสัมผัสกับพลาสมา ลักษณะเฉพาะของกระแสและความต่างศักย์ ที่หัววัดจะถูกแสดงออกมา ซึ่งมีลักษณะดังแสดงในภาพที่ 2.38

ภาพที่ 2.38 แผนภาพลักษณะเฉพาะของกระแสกับความต่างศักย์

เมื่อความต่างศักย์ของหัววัดมีค่าเท่ากันกับศักย์ของพลาสมาที่ตำแหน่ง V_p ซึ่งไม่มี สนามไฟฟ้าอยู่รอบๆ หัววัด ตำแหน่งนี้จึงไม่เกิดพลาสมาชีท อิเล็กตรอนและไอออนจะเคลื่อนย้ายไปยัง หัววัด โดยกระแสอิเล็กตรอนจะสะสมที่หัววัดมากกว่ากระแสของไอออนที่ตำแหน่ง V_p กระแสจะมีก่า

$$I_{p} = \frac{1}{4} eAn_{e} \left(\frac{8 kT_{e}}{\pi m_{e}}\right)^{\frac{1}{2}}$$
(2.118)

เมื่อความต่างศักย์ของหัววัคมีค่าเพิ่มขึ้นมากกว่าตำแหน่ง **V**_p ในบริเวณ A จะเข้าสู่บริเวณ กระแสอิเล็กตรอนอิ่มตัว (I_{se})

เมื่อความต่างศักย์ของหัววัดมีค่าลดต่ำกว่าตำแหน่ง **V**_p ในบริเวณ B อิเล็กตรอนจะถูกผลัก ออกจากหัววัดเพิ่มขึ้น มีเพียงแต่อิเล็กตรอนที่มีพลังงานเพียงพอที่จะสามารถเกลื่อนที่ไปยังหัววัด กระแส อิเล็กตรอนจะมีค่า

$$I_{e} = eAn_{e} \left(\frac{kT_{e}}{2\pi m_{e}}\right)^{\frac{1}{2}} exp\left(\frac{-e(V_{p}-V)}{kT_{e}}\right)$$
(2.119)

เมื่อความต่างศักย์ของหัววัคลคลงจนมาอยู่ที่ตำแหน่งของศักย์ลอย (V_p) กระแสอิเล็กตรอน และกระแสไอออนที่หัววัคจะมีค่าเท่ากัน และกระแสรวมที่หัววัคมีค่าเป็นศูนย์

เมื่อความต่างศักย์ของหัววัดมีค่าต่ำกว่าตำแหน่ง V_p ในบริเวณนี้จะมีสนามไฟฟ้าอยู่รอบๆ หัววัดและจะสร้างพลาสมาชีทขึ้นมา อิเล็กตรอนจะถูกผลักออกไปจากหัววัดส่วนไอออนซึ่งเคลื่อนที่ แบบสุ่มผ่านขอบชีทจะถูกสะสมไว้ที่หัววัด และเข้าสู่บริเวณกระแสไอออนอิ่มตัว (I_{is}) ในบริเวณ C โดย กระแสไอออนจะมีค่า

$$I_{i} = -\frac{1}{2}eAn_{i}\left(\frac{kT_{e}}{m_{i}}\right)^{\frac{1}{2}}$$
 (2.120)

2.15.2.1 อุณหภูมิอิเล็กตรอน $(T_{_{e}})$

เมื่อหาอัตราการเปลี่ยนแปลงลอการิทึมของกระแสอิเล็กตรอนในสมการที่ (2.117) ก็จะ สามารถทำการวิเคราะห์หาค่าออกมาได้ดังนี้

$$\frac{\mathrm{dlnI}_{\mathrm{e}}}{\mathrm{dV}} = \frac{\mathrm{e}}{\mathrm{kT}_{\mathrm{e}}} \tag{2.121}$$

หรือจะหาค่า จากการรวมสมการที่ (2.119) สำหรับกระแสอิเล็กตรอนและสมการที่ (2.120) สำหรับกระแสไอออน ซึ่งจะได้ว่า

$$I = -\frac{1}{2}eAn_{i}\left(\frac{kT_{e}}{m_{i}}\right)^{\frac{1}{2}} + \frac{1}{4}eAn_{e}\left(\frac{8kT_{e}}{\pi n_{e}}\right)^{\frac{1}{2}}exp\left(\frac{-e(V_{p}-V)}{kT_{e}}\right)$$
(2.122)

จากการแจกแจงความเร็วอิเลี้กตรอนของแมกเวลล์-โบลซ์มานน์ ค่า $\mathbf{n}_{i}=\mathbf{n}_{e}=\mathbf{n}$ จะได้ว่า

$$I = \frac{1}{2} eAn \left(\frac{kT_{e}}{m_{i}}\right)^{\frac{1}{2}} \left[-1 + \left(\frac{2m_{i}}{\pi m_{e}}\right)^{\frac{1}{2}} exp\left(\frac{-e(V_{p} - V)}{kT_{e}}\right) \right]$$
(2.123)

ที่ตำแหน่ง \mathbf{V}_{f} กระแสที่หัววัดจะมีค่าเป็นศูนย์ (\mathbf{I} = 0)

$$I = 0 = \frac{1}{2} eAn \left(\frac{kT}{m_{i}}\right)^{\frac{1}{2}} \left[-1 + \left(\frac{2_{i}}{\pi m_{e}}\right)^{\frac{1}{2}} exp\left(\frac{e(V_{f} - V_{p})}{kT_{e}}\right) \right]$$
(2.124)

จะได้ว่า

$$\frac{kT_{e}}{e} = \frac{2(V_{p} - V_{f})}{\ln\left(\frac{2 m_{i}}{\pi m_{e}}\right)}$$
(2.125)

หน่วยของ kT /e คือโวลต์ ดังนั้น สามารถหา kT ใด้ในหน่วยอิเล็กตรอนโวลต์

2.15.2.2 ความหนาแน่นพลาสมา

ความหนาแน่นของอิเล็กตรอน (n_e) และความหนาแน่นของไอออน(n_i) ที่อยู่ในสถานะ เป็นกลางทางไฟฟ้าของพลาสมา จะมีค่าเท่ากัน n_e ≈ n_i ≈ n_p โดย n_p คือความหนาแน่นของพลาสมา (n_p) โดยสามารถหาค่าความหนาแน่นพลาสมาได้จากสมการ

$$n_{p} = \frac{I_{is}}{0.6 \,\text{Ae}} \left(\frac{m_{i}}{kT_{e}}\right)^{\frac{1}{2}}$$
 (2.126)

โดย A คือ พื้นที่ของหัววัดที่สัมผัสกับพลาสมา

I. คือ กระแสไอออนอิ่มตัว

m_i คือ มวลของไอออน

2.15.2.3 ผลของสนามแม่เหล็ก

ลักษณะเฉพาะของกระแสกับความต่างศักย์ที่ได้จากหัววัดอยู่ในกรณีที่การเคลื่อนที่ของอนุภาคใน พลาสมาถูกควบคุมด้วยสนามไฟฟ้าเพียงอย่างเดียว ถ้าสนามแม่เหล็กถูกนำเข้ามาในพลาสมา อิเล็กตรอน และไอออนจะไม่เคลื่อนที่เป็นเส้นตรงตามทิศทางของสนามไฟฟ้า แต่จะเคลื่อนที่เป็นวงกลมเนื่องจาก อิทธิพลของสนามแม่เหล็ก โดยการเคลื่อนที่เป็นวงกลมรอบเส้นแรงแม่เหล็กด้วยรัศมีลาร์มอร์ $r = mv_{\perp}/eB$ เป็นผลให้การเคลื่อนที่ของอนุภาคข้ามผ่านเส้นแรงแม่เหล็ก จะถูกควบคุมอย่างรุนแรง ในขณะที่การเคลื่อนที่ตามเส้นแรงแม่เหล็กแทบจะไม่มีผลกระทบ โดยผลรวมของสนามแม่เหล็ก สามารถละลายได้ในกรณีที่ r >> a เมื่อ a คือ ขนาดของหัววัด

เนื่องจากรัศมีลาร์มอร์ของอิเล็กตรอนมีค่าน้อยกว่าของไอออนด้วยอัตราส่วนของ m_e/m_i ดังนั้น อิเล็กตรอนจะได้รับผลกระทบจากสนามแม่เหล็กมากกว่าไอออน เพราะว่าโดยทั่วไป r_{Li} > a กระแส ไอออนอิ่มตัวแทบจะไม่ได้รับผลกระทบจากสนามแม่เหล็ก แต่ในทางกลับกัน กระแสอิเล็กตรอนอิ่มตัว ที่ถูกวัดโดยหัววัดที่ขนานกับสนามแม่เหล็กมีก่าลดลงอย่างมาก และกระแสอิเล็กตรอนอิ่มตัวที่วัดโดย หัววัดที่ตั้งฉากกับสนามแม่เหล็ก กระแสอิเล็กตรอนอิ่มตัวจะได้รับผลกระทบน้อยมาก