สารบัญ

		หน้า
บทคัดเ	ย่อภาษาไทย	Ι
บทคัดเ	ย่อภาษาอังกฤษ	II
กิตติกร	รรมประกาศ	III
สารบัญ	អ្	IV
สารบัถุ	บูตาราง	Х
สารบัถุ	บูภาพ	XII
,		
บทที่ 1	1 บทนำ	1
	1.1 ความเป็นมาและความสำคัญของปัญหา	1
	1.2 วัตถุประสงค์ของการวิจัย	4
	1.3 ขอบเขตของการวิจัย	4
	1.4 วิธีดำเนินการวิจัย	5
	1.5 ประโยชน์ที่คาดว่าจะได้รับ	6
บทที่ 2	2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง	7
,	2.1 วัสคุของแข็งสารกึ่งตัวนำ	7
,	2.2 โครงสร้างของผลึก	8
	2.2.1 โครงสร้างผลึกของสารประกอบที่เกิดจากอะตอมของธาตุกลุ่ม II	
	และกลุ่ม VI	8
	2.2.1.1 โครงสร้างผลึกแบบซิงค์เบลนด์	9
	2.2.1.2 โครงสร้างผลึกแบบเวอร์ทไซท์	10
	2.2.1.3 โครงสร้างผลึกของสารกึ่งตัวนำ Cu ₂ O และ CuO	10
	2.2.2 หลักเกณฑ์ในการระบุชื่อระนาบของผลึก	13
	2.2.2.1 การระบุตำแหน่ง	13
	2.2.2.2 การระบุทิศทาง	13
	2.2.2.3 การระบุชื่อระนาบ	13
,	2.3 การศึกษาโครงสร้างผลึกเชิงจุลภาคด้วยการเลี้ยวเบนรังสีเอกซ์	14
	2.3.1 การวิเคราะห์โครงสร้างผลึก	15

	หน้า
2.3.2 การหาขนาดของเกรน	16
2.4 การศึกษาโครงสร้างผลึกเชิงมหภาคด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด	17
2.5 การส่งผ่านแสง	18
2.6 รอยต่อพี-เอ็นของสารกึ่งตัวนำ	20
2.6.1 รอยต่อในสภาวะสมดุลความร้อน	20
2.6.2 รอยต่อแบบขั้นบันใด	21
2.6.3 รอยต่อพี-เอ็นภายใต้สภาวะการไบแอสย้อนกลับ	24
2.7 ค่าความจุไฟฟ้า	25
2.8 ลักษณะกระแส-แรงคันใฟฟ้าของรอยต่อพี-เอ็น	28
2.9 เงื่อนใบบอบเขตของความเข้มข้นของพาหะบ้างน้อย	28
2.10 การวิเกราะห์ไดโอดอุดมกติ	29
2.10.1 ลักษณะสมบัติของใคโอดยาว	30
2.10.2 ถักษณะสมบัติของใคโอคสั้น	32
2.11 กระแสเนื่องจากบริเวณประจุก้าง	34
2.12 เซลล์แสงอาทิตย์ชนิครอยต่อพี-เอ็น	37
2.12.1 การตอบสนองต่อแสง	37
2.12.2 ลักษณะเฉพาะกระแส-แรงคันไฟฟ้า	44
2.13 หลักการสปัตเตอริง	47
2.13.1 โกลวดิสษาร์จ	47
2.13.2 สปัตเตอริง	49
2.13.2.1 ยีลค์การสปัตเตอริง	49
2.13.2.2 ดีซีไคโอคสปัตเตอริง	50
2.13.2.3 ดีซีแมกนีตรอนสปัตเตอริง	51
2.14 องค์ประกอบที่สำคัญของหัวดีซีแมกนีตรอนสปัตเตอริง	55
2.14.1 วัสดุที่ใช้สร้างหัวดีซีแมกนีตรอน	55
2.14.2 การให้ความเย็นที่เป้า	55
2.14.3 การควบคุมให้เกิดการสปัตเตอริงเฉพาะผิวเป้า	55
2.14.4 ลักษณะของสนามแม่เหล็ก	57

	หน้า
2.15 คุณสมบัติของพลาสมา	60
2.15.1 หัววัดลางมัวร์	60
2.15.2 ลักษณะเฉพาะของกระแสและความต่างศักย์	60
2.15.2.1 อุณหภูมิอิเล็กตรอน	62
2.15.2.2 ความหนาแน่นพลาสมา	62
2.15.2.3 ผลของสนามแม่เหล็ก	63
บทที่ 3 วิธีดำเนินการวิจัย	64
3.1 วิธีการทดลองและเครื่องมือการวิจัย	64
3.1.1 อุปกรณ์ที่ใช้ในการเตรียมแผ่นฐานรองรับที่เป็นแผ่นกระจกสไลด์	64
3.1.2 อุปกรณ์ที่ใช้ในการเตรียมฟิล์มบางของสารกึ่งตัวนำ CuO โดยวิธีรีแอ็คทีฟ	
ดีซีแมกนีตรอนสปัตเตอริง	64
3.1.3 อุปกรณ์ที่ใช้ในการศึกษาสมบัติทางฟิสิกส์บางประการของฟิล์มบางที่	
เตรียมได้	65
3.1.3.1 อุปกรณ์ที่ใช้ในการตรวจสอบโครงสร้างผลึกของฟิล์มบางโคย	
การเลี้ยวเบนรังสีเอกซ์	65
3.1.3.2 อุปกรณ์ที่ใช้ในการวัดการส่งผ่านทางแสงโดยใช้เครื่องสเปกโตร	
โฟโตมิเตอร์	65
3.1.3.3 อุปกรณ์ที่ใช้ในการวัดก่ากวามต้านทานแผ่น	66
3.1.3.4 อุปกรณ์ที่ใช้ในวัคค่าสภาพต้านทานไฟฟ้าเชิงแสง	66
3.1.3.5 อุปกรณ์ที่ใช้ในการวัดปรากฏการณ์ฮอลล์	66
3.1.3.6 อุปกรณ์ที่ใช้ในการวัดความต้านทานแผ่นที่อุณหภูมิสูง	67
3.2 ขั้นตอนในการเตรียมฟิล์มบางของสารกึ่งตัวนำ CuO โดยวิธีรีแอ็คทีฟดีซีแมกนี	
ตรอนสปัตเตอริง	67
3.2.1 การเตรียมแผ่นฐานรองรับที่เป็นกระจกสไลค์	67
3.2.2 การเตรียมฟิล์มบางของโลหะคอปเปอร์โคยวิธีคีซีแมกนีตรอนสปัตเตอริง	68
3.2.3 วิธีการทำรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง	74

	หน้า
บทที่ 4 ผลการวิจัยและอภิปรายผล	76
4.1 ผลของอัตราการใหลของก๊าซอาร์กอนและแรงคันไฟฟ้าระหว่างขั้ อิเล็กโทรคที่มี	
ต่อการ โกลวดิสชาร์จ	76
4.2 ผลการเตรียมฟิล์มบางคอปเปอร์ออกไซด์โดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัต	
เตอริง	79
4.3 ลักษณะของฟิล์มบางที่เคลือบอยู่บนแผ่นฐานรองรับที่เป็นกระจกส ไลด์ของสารกึ่ง	
ตัวนำ CdS และ CuO และสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่ง	
ตัวนำ n-CdS/p-CuO ซึ่งเตรียม โดยวิธีรีเเอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง	84
4.4 การศึกษาสมบัติทางฟิสิกส์ของสิ่งประดิษฐ์รอยต่อวิวิชพันธุ์ของฟิล์มบางของสาร	
กึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียม โคยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง	85
4.4.1 ผลการศึกษาโครงสร้างของผลึกเชิงจุลภาคด้วยวิธีการเลี้ยวเบนรังสีเอกซ์	
ของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ	
n-CdS/p-CuO ที่เคลือบบนแผ่นฐานรองรับที่เป็นกระจก FTO สไลด์ ซึ่ง	
เตรียม โดยซึ่งเตรียม โดยวิธีรีเเอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง	85
4.4.2 ผลการศึกษาโครงสร้างผลึกเชิงมหภาคด้วยกล้องจุลทรรศน์อิเล็กตรอน	
แบบส่องกราคของสิ่งประคิษฐ์รอยต่อวิวิธพันธุ์ของ ฟิล์มบางของสารกึ่ง	
ตัวนำ n-CdS/p-CuO ที่เคลือบบนแผ่นฐานรองรับที่เป็นกระจก FTO ซึ่ง	
เตรียม โดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง	87
4.4.3 ผลการศึกษาการส่งผ่านแสงของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์ม	
บางของสารกึ่งตัวนำ n-CdS/p-CuO ที่เคลือบบนแผ่น ฐานรองรับที่เป็น	
กระจก FTO ซึ่งเตรียม โดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง	88
4.5 การศึกษาสมบัติทางไฟฟ้าของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของ	
สารกึ่งตัวนำ n-CdS/p-CuO ที่เคลือบบนแผ่นฐานรองรับที่เป็นกระจก FTO ซึ่ง	
เตรียม โดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง	89
4.5.1 ผลการศึกษาสมบัติทางไฟฟ้าโดยการวัดปรากฏการณ์ฮอลล์ของฟิล์มบาง	
ของสารกึ่งตัวนำ CuO ซึ่งเตรียม โดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัต	
เตอริง	89

	หน้า
4.5.2 ผลการศึกษาความสัมพันธ์ระหว่างค่ากระแสไฟฟ้ากับแรงคันไฟฟ้าของ	
สิ่งประคิษฐ์รอยต่อวิวิธพันธุ์ของสารกึ่งตัวนำ n-CdS/p-CuO ที่เคลือบบน	
แผ่นฐานรองรับที่เป็นกระจก FTO ซึ่งเตรียม โดยวิธีรีแอ็คทีฟดีซีแมกนีต	
รอนสปัตเตอริงเมื่อทำการวัคที่อุณหภูมิห้อง	92
4.5.3 ผลการศึกษาความสัมพันธ์ระหว่างค่ากระแสไฟฟ้ากับแรงคันไฟฟ้าของ	
สิ่งประคิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO	
ที่เคลือบบนแผ่นฐานรองรับที่เป็นกระจก FTO ซึ่งเตรียม โดยวิธีรีแอ็คทีฟ	
ดีซีแมกนีตรอนสปัตเตอริงเมื่อทำการวัดที่อุณหภูมิต่ำในช่วงอุณหภูมิ 10-	
300 เกลวิน	98
4.5.4 การศึกษาสมบัติทางไฟฟ้ากระแสสลับในช่วงความถี่ 10 กิโลเฮิรตซ์ ถึง 2	
เมกะเฮิรตซ์ ของสิ่งประคิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่ง	
ตัวนำ n-CdS/p-CuO ที่เกลือบบนแผ่นฐานรองรับที่เป็นกระจก FTO ซึ่ง	
เตรียม โคยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง	104
4.5.5 ผลการศึกษาสภาพนำไฟฟ้าเชิงแสงของสิ่งประคิษฐ์รอยต่อพันธุ์ของฟิล์ม	
บางของสารกึ่งตัวนำ n-CdS/p-CuO ที่เกลือบบนแผ่นฐานรองรับที่เป็น	
กระจก FTO ซึ่งเตรียม โดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง	109
บทที่ 5 สรุปผลการวิจัยและข้อเสนอแนะ	114
5.1 สรุปผลการทคลองของการศึกษาสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของ	
สารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียม โดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง	114
5.1.1 ฟิล์มบางของสารกึ่งตัวนำ CdS และ CuO ที่เคลือบอยู่บนแผ่นฐานรองรับ	
ที่เป็นกระจกสไลด์	114
5.1.2 ผลการศึกษาสมบัติไฟฟ้าของสิ่งประคิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบาง	
ของสารกึ่งตัวนำ n-CdS/p-CuO	115
5.1.3 ผลการศึกษาค่าความจุไฟฟ้า-ความถี่เมื่อทำการวัคที่อุณหภูมิสูงในช่วง	
อุณหภูมิ 25-60 องศาเซลเซียส ของสิ่งประคิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์ม	
บางของสารกึ่งตัวนำ n-CdS/p-CuO	115

	หน้า
5.2 ประโยชน์ที่ได้รับ	116
5.3 ปัญหาและข้อเสนอแนะ	116
บทที่ 6 สรุปผลผลิตงานวิจัย	118
เอกสารอ้างอิง	138
ภาคผนวก	142
ประวัตินักวิจัย	153

สารบัญตาราง

ตารางที่		หน้า
2.1	ค่าพลังงานขีดเริ่มและค่ายีลด์ของธาตุชนิดต่างๆ	50
4.1	ค่าพารามิเตอร์ต่างๆ ของการเตรียมฟิล์มบางคอปเปอร์ด้วยวิธีดีซีแมกนีตรอน สปัตเต	
	อริง	78
4.2	เงื่อนไขการเตรียมฟิล์มบางคอปเปอร์ออกไซด์โดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอ	
	ริง	80
4.3	ค่าช่องว่างแถบพลังงานของฟิล์มบางคอปเปอร์ออกไซค์ที่เตรียมได้โดยวิธีรีแอ็ค ทีฟดี	
	ซีแมกนีตรอนสปัตเตอริงที่อัตราการใหลของก๊าซออกซิเจนค่าต่างๆ	83
4.4	ความต้านทานแผ่นและสภาพต้านทานไฟฟ้าของฟิล์มบางคอปเปอร์ออกไซค์ซึ่ง	
	เตรียมโดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง ที่อัตราการไหลของก๊าซออกซิเจน	
	ค่าต่างๆ	84
4.5	ผลการวัดปรากฏการณ์ของฮอลล์ของฟิล์มบางของสารกึ่งตัวนำ CuO ซึ่งเตรียม โดยวิธีรี	
	แอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง	90
4.6	ค่ากระแสไฟฟ้าอิ่มตัวย้อนกลับ ค่าแฟกเตอร์อุคมคติ ค่าความสูงของกำแพงศักย์ใน	
	ขณะที่ไบแอสเป็นศูนย์ และค่าความต้านทานอนุกรม ที่ได้จากการคำนวณโดยใช้กลไก	
	เทอร์มิออนิกอิมิสชัน และวิธีของชวง เมื่อทำการวัคที่อุณหภูมิห้องของสิ่งประคิษฐ์	
	รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรีแอ็กทีฟดี	
	ซีแมกนีตรอนสปัตเตอริง	98
4.7	ค่ากระแสไฟฟ้าอิ่มตัวย้อนกลับ ค่าแฟกเตอร์อุดมคติ ค่าความสูงของกำแพงศักย์และค่า	
	ความต้านทานไฟฟ้าอนุกรม ที่ได้จากการคำนวณโดยใช้กลไกเทอร์มิออนิกอิมิสชัน	
	และวิธีของชวง เมื่อทำการวัคที่อุณหภูมิต่ำในช่วงอุณหภูมิ 10 ถึง 300 เคลวิน ของ	
	สิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียม	
	โดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง	99
4.8	ค่าความถี่เฉพาะ พลังงานกระตุ้น และตัวแปรต่างๆ ที่คำนวณได้จากสองวิธีของ	
	สิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียม	
	โดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง	109
4.9	ค่าพารามิเตอร์ต่างๆของสภาพนำไฟฟ้าเชิงแสงคื้อรั้นของสิ่งประคิษฐ์รอยต่อวิวิชพันธุ์	
	ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรีแอ็กทีฟดีซีแมกนีตรอน	
	สปัตเตอริง ที่ได้จากการฟิตกราฟ ให้เข้ากับพึงก์ชันมัลติเพิลเอกซ์โพแนนเชียล	111

สารบัญตาราง (ต่อ)

ตาราง	ที่	หน้า
4.10	ค่าความหนาแน่นของกับคักพาหะชนิคต่างๆ ที่ได้จากการวัคสภาพนำไฟฟ้าเชิงแสงคื้อ	
	รั้นของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ	
	n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง	111
4.11	ค่าพารามิเตอร์ต่างๆ ที่สำคัญของรอยต่อวิวิธพันธุ์ n-CdS/CuO เมื่อำการวัดกระแส-	
	แรงคันไฟฟ้าที่อุณหภูมิห้องภายใต้การฉายแสงค้วยความเข้มก่าต่างๆ	113

สารบัญภาพ

ภาพที่		หน้า
2.1	สภาพนำไฟฟ้าและสภาพต้านทานไฟฟ้าของสารฉนวน สารกึ่งตัวนำและสารตัวนำ	7
2.2	พันธะสี่หน้าหรือพันธะเตตระฮิดรัล	8
2.3	โครงสร้างผลึกแบบคิวบิกหรือซิงค์เบลนด์ของสารกึ่งตัวนำ CdS	9
2.4	โครงสร้างผลึกแบบเวิร์ทไซท์ของสารกึ่งตัวนำ CdS	10
2.5	โครงสร้างผลึกของสารกึ่งตัวนำ ${\rm Cu_2O}$	11
2.6	โครงสร้างผลึกของสารกึ่งตัวนำ ${\rm Cu_2O}$	12
2.7	แผนภาพเฟสของระบบของสารประกอบ CuO แสดงความสัมพันธ์ระหว่างความคัน	
	ย่อย และอุณหภูมิของแผ่นฐานรองรับ ในการเตรียมฟิล์มบางคอปเปอร์ออกไซค์ ใน	
	ระบบสุญญากาศ เฟสที่เกิดขึ้นได้ คือ Cu, Cu ₂ O และ CuO	12
2.8	การบอกชื่อระนาบต่างๆ ของผลึก	14
2.9	การเลี้ยวเบนของรังสีเอกซ์บนระนาบของผลึกที่เป็นไปตามกฎของแบรกก์	15
2.10	ตัวอย่างของสเปกตรัมที่ได้จากการเลี้ยวเบนของรังสีเอกซ์	16
2.11	ค่า β _{2θ} เพื่อนำไปหาขนาดของเกรนจากสเปกตรัมของการเลี้ยวเบนของรังสีเอกซ์	16
2.12	ส่วนประกอบของกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด	17
2.13	ภาพจำลองเมื่อแสงตกกระทบลงบนแผ่นฟิล์มบาง	18
2.14	ลักษณะของโครงสร้างแถบพลังงานของสารกึ่งตัวนำชนิดพีและชนิดเอ็น	
	ก. ขณะที่สารกึ่งตัวนำทั้งสองชนิดยังไม่ได้สัมผัสกันเป็นรอยต่อวิวิธพันธุ์	
	ข. ขณะที่สารกึ่งตัวนำทั้งสองชนิคที่ถูกนำมาทำเป็นรอยต่อวิวิธพันธุ์	
	ค. ขณะที่สารกึ่งตัวนำทั้งสองชนิคถูกนำมาทำเป็นรอยต่อวิวิธพันธุ์และอยู่ใน	
	สภาวะสมคุลเชิงความร้อน	21
2.15	ใดโอดของสารกึ่งตัวนำที่มีรอยต่อแบบพี-เอ็นที่เป็นแบบขั้นบันใดที่เป็นฟังก์ชันกับ	
	ระยะทาง	
	ก. ความเข้มข้นสารเจือ	
	ข. ความหนาแน่นของพาหะอิสระ	
	ค. ประจุก้าง	
	ง. สนามไฟฟ้าที่บริเวณรอยต่อ	
	จ. ศักย์ไฟฟ้าที่บริเวณรอยต่อ	22

ภาพา์		หน้า
2.16	โปรไฟล์ของค่าพารามิเตอร์ต่างๆ ในบริเวณเขตปลอดพาหะ	
	ก. แสดงกวามหนาแน่นอะตอมของสารเจือที่มีก่าไม่สม่ำเสมอภายในเขตปลอดพาหะ	
	ข. ลักษณะของสนามไฟฟ้าในบริเวณเขตปลอดพาหะเมื่อแรงคันไบแอสย้อนกลับมีค่า	
	เปลี่ยนไปเล็กน้อย	26
2.17	โครงสร้างของไคโอคชนิครอยต่อพี-เอ็นขณะถูกใบแอสไปหน้าค้วยแรงคัน \mathbf{V}_{i}	28
2.18	การลดลงของความหนาแน่นของโฮลส่วนเกินในเนื้อสารกึ่งตัวนำชนิดเอ็นของรอยต่อ	
	พี-เอ็นของใคโอคยาวภายใต้การฉีคพาหะระดับต่ำด้วยแรงดันใบแอสไปหน้าค่าเท่ากับ	
	V _a	30
2.19	กระแสโฮล (เส้นทึบ) กับกระแสอิเล็กตรอน (เส้นประ) ในเนื้อสารค้านสารกึ่งตัวนำ	
	ชนิดเอ็นซึ่งอยู่นอกรอยต่อพี-เอ็น ซึ่งประมาณว่าเป็นกลางทางไฟฟ้าเนื่องจากประมาณ	
	ว่าไม่ได้รับผลกระทบจากแรงคันไบแอสไปหน้า V	31
2.20	ความหนาแน่นของโฮลภายในเนื้อสารกึ่งตัวนำชนิดเอ็นของรอยต่อพี-เอ็นของไคโอด	
	สั้นภายใต้การไบแอสไปหน้า \mathbf{V}_{a}	33
2.21	อัตราส่วนของ x _i /x _d เป็นฟังก์ชันกับแรงคันใบแอสย้อนกลับที่ความหนาแน่นของ	
	อะตอมผู้ให้ค่าต่างๆของรอยต่อ p+ -n	36
2.22	เซลล์แสงอาทิตย์ชนิครอยต่อพี-เอ็นของซิลิกอน	37
2.23	ก. อัตราการเกิดคู่อิเล็กตรอน-โฮล เป็นฟังก์ชันของระยะทางจากบริเวณผิว รอยต่อของ	
	สารกึ่งตัวนำสำหรับความยาวคลื่นแสงสั้นและยาว	
	 มิติของเซลล์แสงอาทิตย์และความกว้างของการแพร่พาหะข้างน้อย 	
	ค. ความเข้มข้นของอะตอมของสารเงือที่บริเวณผิวรอยต่อของเซลล์แสงอาทิตย์	38
2.24	ก. ผลจากการคำนวณการตอบสนองต่อแสงของเซลล์แสงอาทิตย์แบบที่เป็น	
	รอยต่อชนิดเอ็น-พีของสารกึ่งตัวนำซิลิกอน โดยแสดงการแจกแจง 3 บริเวณ	
	(เส้นประแทนด้วยการตอบสนองในเชิงอุดมคติ)	
	ข. ผลจากการกำนวณการตอบสนองต่อแสงของเซลล์แสงอาทิตย์แบบที่เป็น	
	รอยต่อชนิดเอ็น-พีของสารกึ่งตัวนำซิลิกอนที่มีอัตราการรวมตัวของพาหะที่	
	บริเวณผิวรอยต่อต่างกัน	42
2.25	วงจรสมมูลในอุคมคติของเซลล์แสงอาทิตย์	44

ภาพข์	4]	หน้า
2.26	ก. ลักษณะเฉพาะของกระแส-แรงคันของเซลล์แสงอาทิตย์ขณะที่มีการฉายแสง	
	ข. ภาพกลับหัวของรูป 2.26 (ก)	44
2.27	แสคงลักษณะเฉพาะกระแส-แรงคันไฟฟ้าของเซลล์แสงอาทิตย์ประกอบค้วยความ	
	ต้านทานอนุกรมและความต้านทานชั้นท์	45
2.28	แสดงลักษณะเฉพาะของกระแส-แรงดันไฟฟ้าของโมดูลของเซลล์แสงอาทิตย์	46
2.29	โครงสร้างของการ โกลวดิสชาร์จ	48
2.30	การเกิดสปัตเตอริงที่ผิวเป้า	49
2.31	การสปัตเตอริงโดยดีซีแมกนีตรอนสปัตเตอริง	51
2.32	การเคลื่อนที่เป็นเกลียววงกลมของอิเล็กตรอนที่ถูกกักเก็บไว้ที่ผิวเป้าในเส้นทางเลื่อน	
	ลอยของสนามไฟฟ้าและสนามแม่เหล็กตามขวางที่มีทิศทางตั้งฉากกัน	53
2.33	ความต่างศักย์ของการดิสชาร์จกับสนามแม่เหล็กที่วัดในขั้วอิเล็กโทรคโคแอคเชียล	
	ทรงกระบอก	54
2.34	ลักษณะของแมกนี้ตรอนแบบสมมาตร	58
2.35	ลักษณะของแมกนี้ตรอนแบบไม่สมมาตรประเภทที่ 1	59
2.36	แสดงลักษณะของแมกนีตรอนแบบไม่สมมาตรประเภทที่ 2	59
2.37	หัววัคเดี่ยวลางมัวร์ที่สอดเข้าไปในพลาสมา	60
2.38	แผนภาพลักษณะเฉพาะของกระแสกับความต่างศักย์	61
3.1	ภาพถ่ายเครื่องเอ็กซ์เรย์ดิฟแฟรกโตรมิเตอร์ ยี่ห้อ Bruker รุ่น D8 Advance	65
3.2	ภาพถ่ายเครื่อง UV-VIS ยี่ห้อ Thermo electron corporation รุ่น (He λ ios $lpha$)	65
3.3	ภาพถ่ายอิเล็กโตรมิเตอร์ ยี่ห้อ Keithley รุ่น 236 และซอฟแวร์ที่ใช้วัดความต้านทาน	
	แผ่น	66
3.4	ภาพถ่ายอิเล็กโตรมิเตอร์ ยี่ห้อ Keithley รุ่น 236 และซอฟต์แวร์ที่ใช้วัคสภาพนำไฟฟ้า	
	เชิงแสง	66
3.5	ภาพถ่ายอุปกรณ์ที่ใช้วัดปรากฏการณ์ฮอลล์	67
3.6	ภาพถ่ายอุปกรณ์ที่ใช้ในการวัคความต้านทานของฟิล์มบางที่อุณหภูมิสูงกว่า	
	อุณหภูมิห้อง	67
3.7	ขั้นตอนการเตรียมแผ่นฐานรองรับที่เป็นกระจกสไลด์	68

ภาพที่		หน้า
4.1	ภาพถ่ายของการโกลวดิสชาร์งเมื่อมีการเปลี่ยนแปลงอัตราการใหลของก๊าซ อาร์กอน	
	เข้าห้องสุญญากาศ	77
4.2	ภาพถ่ายของฟิล์มบางคอปเปอร์ออกไซด์ที่เตรียมได้โดยวิธีรีแอ็กทีฟดีซีแมกนีตรอน	
	สปัตเตอริงที่อัตราการใหลของก๊าซออกซิเจนค่าต่างๆ	81
4.3	กราฟแสดงความสัมพันธ์ระหว่างสัมประสิทธิ์การส่งผ่านแสงกับความยาวคลื่นของ	
	ฟิล์มบางคอปเปอร์ออกไซค์ที่เตรียมได้โดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริงที่	
	อัตราการใหลของก๊าซออกซิเจนค่าต่างๆ	82
4.4	กราฟแสดงความสัมพันธ์ระหว่างค่า ($lpha_{ m h} {f v})^2$ กับ h ${f v}$ ของฟิล์มบางคอปเปอร์ออกไซด์ที่	
	เตรียมได้โดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริงที่อัตราการไหลของก๊าซออกซิเจน	
	ค่าต่างๆ	82
4.5	กราฟแสดงความสัมพันธ์ระหว่างช่องว่างพลังงานกับอัตราการใหลของก๊าซออกซิเจน	
	ค่าต่างๆ	83
4.6	ค่าสภาพต้านทานไฟฟ้าของฟิล์มบางคอปเปอร์ออกไซค์ซึ่งเตรียมโดยวิธีรีแอ็คทีฟคซี	
	แมกนี้ตรอนสปัตเตอริงที่อัตราการใหลของก๊าซออกซิเจนค่าต่างๆ	84
4.7	ฟิล์มบางของสารกึ่งตัวนำ CdS ที่เคลือบลงบนแผ่นฐานรองรับที่เป็นกระจก FTO ซึ่ง	
	เตรียมโดยวิธีการระเหยสารเคมีด้วยความร้อนในระบบสุญญากาศ	85
4.8	ฟิล์มบางของสารกึ่งตัวนำ CuO ที่เคลือบลงบนแผ่นฐานรองรับที่เป็นฟิล์มบางของสาร	
	กึ่งตัวนำ CdS ซึ่งเตรียม โดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง	85
4.9	พี่คความเข้มการเลี้ยวเบนของรังสีเอกซ์ของฟิล์มบางของสารกึ่งตัวนำ CdS ที่เคลือบอยู่	
	บนแผ่นฐานรองรับที่เป็นกระจกสไลด์ซึ่งเตรียมโดยวิธีการระเหยสารเกมีด้วยความ	
	ร้อนในระบบสุญญากาศ	86
4.10	พีคความเข้มการเลี้ยวเบนของรังสีเอกซ์ของฟิล์มบางของสารกึ่งตัวนำ CuO ที่เคลือบอยู่	
	บนแผ่นฐานรองรับที่เป็นกระจกสไลด์ซึ่งเตรียมโดยวิธีรีแอ็กทีฟดีซีแมกนีตรอน	
	สปัตเตอริง	86
4.11	ภาพถ่ายบริเวณผิวหน้าของฟิล์มบางของสารกึ่งตัวนำ CdS ที่เคลือบอยู่บนแผ่น	
	ฐานรองรับที่เป็นกระจกส ไลค์ซึ่งถ่ายค้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราค	87
4.12	ภาพถ่ายบริเวณผิวหน้าของฟิล์มบางของสารกึ่งตัวนำ CuO ที่เคลือบอยู่บนแผ่น	
	ฐานรองรับที่เป็นกระจกส ไลค์ซึ่งถ่ายค้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราค	87

ภาพเ	ที่	หน้า
4.13	ภาพถ่ายบริเวณผิวหน้าของฟิล์มบางของสารกึ่งตัวนำ CdS ที่เคลือบอยู่บนฟิล์มบางของ	87
	สารกึ่งตัวนำ CuO ซึ่งถ่ายด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด	
4.14	กราฟความสัมพันธ์ระหว่างค่าเปอร์เซ็นต์การส่งผ่านแสงกับความยาวคลื่นแสงของ	
	ฟิล์มบางของสารกึ่งตัวนำ Cu _x O พิจารณาที่กวามยาวกลื่น 400-1000	88
4.15	กราฟความสัมพันธ์ระหว่างค่าเปอร์เซ็นต์การส่งผ่านแสงกับความยาวคลื่นแสงของ	
	ฟิล์มบางของสารกึ่งตัวนำ CdS พิจารณาที่ความยาวคลื่น 400 – 1000 นาโนเมตร	88
4.16	กราฟความสัมพันธ์ระหว่างค่าเปอร์เซ็นต์การส่งผ่านแสงกับความยาวคลื่นแสงของ	
	สิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO พิจารณาที่	
	ความยาวคลื่น 500-1000 นาโนเมตร	89
4.17	ความสัมพันธ์ระหว่างความต่างศักย์ กับ กระแสไฟฟ้า ของปรากฏการณ์ฮอลล์ภายใต้	
	สนามแม่เหล็กและ ไม่มีสนามเหล็กของฟิล์มบางของสารกึ่งตัวนำ CuO	90
4.18	ความสัมพันธ์ระหว่างความต่างศักย์ใฟฟ้า กับ กระแสไฟฟ้าของปรากฏการณ์ฮอลล์	
	ภายใต้สนามแม่เหล็ก และ ไม่มีสนามเหล็กของฟิล์มบางของสารกึ่งตัวนำ CuO	91
4.19	กราฟความสัมพันธ์ระหว่างค่ากระแสไฟฟ้ากับแรงคันไฟฟ้าเมื่อทำการวัคที่	
	อุณหภูมิห้องของรอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่ง	
	เตรียม โดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง	93
4.20	กราฟที่ใช้ในการอธิบายกลไกการนำกระแสไฟฟ้าแต่ละช่วงแรงคันไฟฟ้าเมื่อทำการวัด	
	ที่อุณหภูมิห้องของรอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่ง	
	เตรียม โคยวิธีรีแอ็กทีฟคีซีแมกนีตรอนสปัตเตอริง	93
4.21	กราฟความสัมพันธ์ระหว่าง lnI กับ V เมื่อทำการวัดที่อุณหภูมิห้องของรอยต่อวิวิธพันธุ์	
	ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียม โดยวิธีรีแอ็คทีฟดีซีแมกนีตรอน	
	สปัตเตอริง	94
4.22	กราฟความสัมพันธ์ระหว่าง dV/d(lnI) กับ I เมื่อทำการวัดที่อุณหภูมิห้องของ	
	สิ่งประคิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียม	
	โดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง	97
4.23	กราฟความสัมพันธ์ระหว่าง H(I) กับ I เมื่อทำการวัดที่อุณหภูมิห้องของสิ่งประดิษฐ์	
	รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuOซึ่งเตรียม โดยวิธีรีแอ็คทีฟ	
	ดีซีแมกนี้ตรอนสปัตเตอริง	97

XVII

ภาพที่		หน้า
4.24	กราฟความสัมพันธ์ระหว่างค่ากระแสไฟฟ้ากับแรงคันไฟฟ้าเมื่อทำการวัคที่อุณหภูมิต่ำ	
	ในช่วงอุณหภูมิ 10-300 เคลวิน ของรอยต่อวิวิธพันธุ์ของสารกึ่งตัวนำ n-CdS/p-CuO	
	ซึ่งเตรียม โดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง	99
4.25	กราฟความสัมพันธ์ระหว่างค่าแฟกเตอร์อุดมคติกับอุณหภูมิที่คำนวณได้จากกลไกเทอร์	
	มิออนิกอิมิสชันและวิธีของชวงที่เป็นความสัมพันธ์ระหว่าง dV/d(lnI) กับ T เมื่อทำการ	
	วัดที่อุณหภูมิต่ำในช่วงอุณหภูมิ 10-300 เคลวิน ของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของ	
	ฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรีแอ็คทีฟดีซีแมกนีตรอน	
	สปัตเตอริง	101
4.26	การหาค่า E ₀₀ โดยการฟิตกราฟความสัมพันธ์ระหว่างค่าแฟกเตอร์อุดมคติกับอุณหภูมิ	
	เมื่อทำการวัคที่อุณหภูมิต่ำในช่วงอุณหภูมิ 10-300 เคลวิน ของสิ่งประคิษฐ์รอยต่อวิวิธ	
	พันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียม โดยวิธีรีแอ็กทีฟดีซีแมกนีต	
	รอนสปัตเตอริง	102
4.27	กราฟความสัมพันธ์ระหว่างค่าความสูงกำแพงศักย์กับอุณหภูมิที่คำนวณได้จากกลไก	
	เทอร์มิออนิกอิมิสชันและวิธีของชวงเมื่อทำการวัดที่อุณหภูมิต่ำในช่วงอุณหภูมิ 10-300	
	เกลวิน ของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO	
	ซึ่งเตรียม โดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง	102
4.28	กราฟความสัมพันธ์ระหว่างค่าความต้านทานไฟฟ้าอนุกรมกับอุณหภูมิที่ได้จากวิธีของ	
	ชวงเมื่อทำการวัดที่อุณหภูมิต่ำในช่วงอุณหภูมิ 10-300 เกลวิน ของสิ่งประดิษฐ์รอยต่อ	
	วิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรีแอ็กทีฟดีซี	
	แมกนี้ตรอนสปัตเตอริง	103
4.29	กราฟอาร์เรเนียสของ n[lnI _s] เมื่อทำการวัดที่อุณหภูมิต่ำในช่วงอุณหภูมิ 10-300	
	เกลวิน ของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-	
	CuO ซึ่งเตรียม โดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง	103
4.30	กราฟความสัมพันธ์ระหว่างค่าความจุไฟฟ้ากับความถี่ที่อุณหภูมิในช่วง 25 ถึง 60 องศา	
	เซลเซียส ของสิ่งประคิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ	
	n-CdS/p-CuO ซึ่งเตรียมโดยวิธีการระเหยสารเคมีด้วยความร้อนในระบบสุญญากาศ	104

XVIII

ภาพที่		หน้า
4.31	กราฟความสัมพันธ์ระหว่างค่าความนำไฟฟ้ากับความถี่ที่อุณหภูมิในช่วง 25 ถึง 60	
	องศาเซลเซียส ของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ	
	n-CdS/p-CuO ซึ่งเตรียม โดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง	105
4.32	กราฟความสัมพันธ์ระหว่างค่าจำนวนจริงของอิมพีแคนซ์เชิงซ้อนกับความถี่ที่อุณหภูมิ	
	ในช่วง 25 ถึง 60 องศาเซลเซียส ของสิ่งประคิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสาร	
	กึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียม โดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง	105
4.33	กราฟความสัมพันธ์ระหว่างค่าจินตภาพของอิมพีแคนซ์กับความถี่ที่อุณหภูมิ	
	ในช่วง 25 ถึง 60 องศาเซลเซียส ของสิ่งประคิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสาร	
	กึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียม โดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง	106
4.34	กราฟความสัมพันธ์ของค่าอิมพีแคนซ์เชิงซ้อนที่อุณหภูมิในช่วง 25 ถึง 60 องศา	
	เซลเซียส ของสิ่งประคิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ	
	n-CdS/p-CuO ซึ่งเตรียม โดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง	106
4.35	กราฟความสัมพันธ์ระหว่าง -dC/dlnf กับ f เพื่อหาค่า $oldsymbol{\Theta}_{_0}$ ที่อุณหภูมิ 25 องศาเซลเซียส	
	ของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่ง	
	เตรียม โดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง	107
4.36	กราฟความสัมพันธ์ระหว่างค่า ln($m{\Omega}_{_0}/T^2$) กับ (1000/T) ที่ได้จากการหาค่า $m{\Omega}_{_0}$ ของ	
	กราฟความสัมพันธ์ของ -dC/dlnf กับความถี่เมื่อทำการวัคในช่วงอุณหภูมิ 25 ถึง 60	
	องศาเซลเซียส ของสิ่งประคิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ	
	n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรีแอ็กทีฟดีซีแมกนีตรอนสปัตเตอริง	107
4.37	กราฟความสัมพันธ์ระหว่างค่า ln($m{\Omega}_{_0}/T^2$) กับ (1000/T) ที่ได้จากการหาค่า $m{\Omega}_{_0}$ ของ	
	อิมพีแคนซ์เชิงซ้อนในช่วงอุณหภูมิ 25 ถึง 60 องศาเซลเซียส ของสิ่งประคิษฐ์รอยต่อ	
	วิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียมโดยวิธีรีแอ็กทีฟดีซี	
	แมกนี้ตรอนสปัตเตอริง	108
4.38	กราฟความสัมพันธ์ระหว่างค่าความหนาแน่นของสถานะผิวเชื่อมต่อกับช่วงอุณหภูมิ	
	ในช่วง 25 ถึง 60 องศาเซลเซียสของสิ่งประคิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสาร	
	กึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียม โดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริง	108
4.39	กราฟความสัมพันธ์ระหว่างกระแสโฟโตกับเวลาภายใต้แรงคันใบอัส -0.5 กับ 0.3	
	โวลต์ ของสิ่งประดิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO	
	ซึ่งเตรียม โคยวิธีรีแอ็คทีฟคีซีแมกนีตรอนสปัตเตอริง	109

ภาพข์		หน้า
4.40	กราฟความสัมพันธ์ระหว่างกระแสนอร์มัลไลซ์บาขึ้นกับเวลา ของสิ่งประดิษฐ์รอยต่อ	
	วิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียม โดยวิธีรีแอ็กทีฟดีซี	
	แมกนี้ตรอนสปัตเตอริง	110
4.41	กราฟความสัมพันธ์ระหว่างกระแสนอร์มัลไลซ์ขาลงกับเวลาของสิ่งประคิษฐ์รอยต่อ	
	วิวิธพันธุ์ของฟิล์มบางของสารกึ่งตัวนำ n-CdS/p-CuO ซึ่งเตรียม โดยวิธีรีแอ็กทีฟดีซี	
	แมกนี้ตรอนสปัตเตอริง	110
4.42	แผนภาพแถบพลังงานของสิ่งประคิษฐ์รอยต่อวิวิธพันธุ์ของฟิล์มบางของ	
	สารกึ่งตัวนำ n-CdS/p-CuO	112
4.43	ความสัมพันธ์ระหว่างกระแส-แรงคันไฟฟ้าของรอยต่อวิวิธพันธุ์ n-CdS/p-CuO	
	ซึ่งเตรียม โดยวิธีรีแอ็คทีฟดีซีแมกนีตรอนสปัตเตอริงเมื่อทำการวัดภายใต้การฉายแสง	
	ที่ความเข้มค่าต่างๆ	112