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Abstract

The research aim of this work was to synthesize and study the microstructures and
properties of titanium aluminides. This work was divided into two parts. The first part
developed a technique for the synthesis of titanium aluminides from pure titanium and
aluminum ingot available locally. The titanium and aluminum were melted to obtain the
starting alloy compositions of Ti-46 at.% Al and Ti-48 at.% Al. Additions of ternary
and quaternary alloying elements, which included 4.0, 5.0, and 10.0 at.% Nb, 2.0 at.%
Crand 2.0 at.% Mo, were subsequently performed. All of the melting was performed in
an arc melting furnace with a non-consumable tungsten electrode under high purity
argon (99.995%) atmosphere. The as-cast microstructure, the crystal structure and the
microhardness were examined. The second part of this work focused on the effects of
alloying elements, heat treatment process (solution treatment) and various cooling rates
(cooled by water, oil, air and furnace cooled) on properties, microstructures, crystal

structure, and phase orientation.



The results of the first part indicated that local raw materials could be used to synthesize
titanium aluminides. A smaller quantity of Al resulted in a reduced grain size in the
alloys, which is a primarily lamellar y-TiAl phase. The duplex lamellar structure, y-TiAl
+ op-TizAl were observed in the microstructures when sufficiently high amounts of the
Nb addition were added. The higher microhardness values were observed in the alloys

with smaller quantities of Al and Nb addition.

The effects of alloying elements, heat treatment process, and various cooling rates on
structures were as follows: a lamellar structure consisting of y and a, phases with a
small amount of the B phase was distributed along the grain boundaries after the
solution treatment in alloy with the Mo addition. The lamellar duplex phase (y-TiAl +
ap-TizAl) was found to be fairly uniformly distributed throughout the matrix for the
alloys cooled in air and in the furnace. A massive-y transformation from o-phase was
observed for the alloys that were cooled by water or oil quenching. The massive-y phase
indicated that the transformation started at the grain boundary of the o/a parent phase.
Detailed observations of the orientation relationship, made with Kikuchi patterns and
pole figures, revealed that the massive-y transformation structure and the a, matrix had
an orientation relationship in accordance with that of the y-lamellar and parent a matrix.
Finally, ternary alloys with Mo or Cr that were cooled in air, oil, and water exhibited the

higher values of microhardness.

Keyword: Titanium Aluminides/Titanium Alloys/Intermetallics/High Temperature

Material/Massive Transformation
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