Table of Contents

Chapter	Title	Page
	Signature Page	i
	Acknowledgements	ii
	Abstract	iii
	Table of Contents	iv
	List of Figures	vii
	List of Tables	viii
	List of Variables	Х
1	Introduction	1
	1.1 Scope and Objectives	3
	1.2 Overview of the Dissertation	4
2	Literature Review	6
	2.1 Industrial Noise	6
	2.1.1 Measure of Noise Levels	6
	2.1.2 Permissible Noise Exposure Limits	7
	2.2 Industrial Noise Hazard Prevention	9
	2.3 Genetic Algorithms	10
	2.4 Decision Support Systems	12
	2.4.1 Definitions and Characteristics	12
	2.4.2 Application of DSS in Industrial Engineering Problem	13
	2.5 Auditory Warning System in Industrial Workplace	15
3	Optimization Approach of Noise Hazard Prevention	17
	3.1 Noise Hazard Prevention	17
	3.1.1 Engineering Controls	17
	3.1.2 Administrative Controls	17
	3.1.3 The Use of Hearing Protective Devices	18
	3.1.4 The OSHA's Hierarchy of Noise Control	18
	3.2 Problem Description	18
	3.3 Optimization Models for Noise Controls	19
	3.3.1 Notation	19
	3.3.2 Models of Engineering Controls	20
	3.3.3 Models of Administrative Controls	23
	3.3.4 Models of the Selection of Hearing Protective	
	Devices	25
	3.4 Solution Procedures	27
	3.4.1 Engineering-based Procedure	28

		3.4.2 HPD-based Procedure	28
		3.4.3 Mixed Procedure	28
	3.5	Numerical Examples and Results	31
		3.5.1 Case I: Total budget = $12,000$ baht	32
		3.5.2 Case I: Total budget = $16,000$ baht	33
		3.5.3 Case I: Total budget = 20,000 baht	34
4	Gen	netic Algorithm for the Selection of Engineering Controls	35
	4.1	Problem Description	35
	4.2	GA Procedure	36
	4.3	GA Operations	36
		4.3.1 Chromosome Coding and Initial Population	36
		4.3.2 Crossover	37
		4.3.3 Mutation	38
		4.3.4 Fitness, Penalty, and Evaluation Function	
		Definition	38
		4.3.5 Repairing Procedure	39
		4.3.6 Selection Techniques	40
		4.3.7 Termination Rule	41
	4.4	Analysis of GA Parameters	41
	4.5	Analysis of GA Operations	42
	4.6	Numerical Example and Result	45
5	Heu	ristic Genetic Algorithm for Workforce Scheduling	49
	5.1	Problem Description	49
	5.2	GA Procedure	50
	5.3	GA Operations	51
		5.3.1 Chromosome Coding and Initial Population	51
		5.3.2 Crossover	52
		5.3.3 Mutation	53
		5.3.4 Fitness, Penalty, and Evaluation Function	
		Definition	53
		5.3.5 Selection Techniques	54
		5.3.6 Termination Rule	54
		5.3.7 Local Improvement	55
	5.4	Numerical Examples and Results	55
		5.4.1 Problem 1 ($M = 5$ and $n = 4$)	56
		5.4.2 Problem 2 ($M = 8$ and $n = 6$)	56
		5.4.3 Problem 3 ($M = 12$ and $n = 10$)	57
		5.4.4 Comparisons of Work Assignment Solution	-
		between LINGO and Heuristic GA	58
6	Dec	ision Support System for Noise Hazard Prevention	60
	6.1	Conceptual Design	60
	6.2	The Database Module	60
	6.3	The Input Module	63

	6.4 The Solution Algorithm Module	64
	6.4.1 Algorithm for Engineering Approach	65
	6.4.2 Algorithm for Administrative Approach	65
	6.4.3 Algorithm for the Use of HPDs	66
	6.4.4 Solution Procedure	67
	6.5 The NHP Solution Module	71
	6.6 Illustration of NHP Program	71
7	Design of Auditory Warning System	78
	7.1 Problem Description	78
	7.2 Audibility Evaluation of the Auditory Warning System	79
	7.2.1 Evaluation Procedure	79
	7.2.2 Numerical Example of the Evaluation Procedure	80
	7.3 Alarm Location Models	82
	7.3.1 Alarm Location Model (with unknown signal	
	sound level)	82
	7.3.2 Alarm Location Model (with known signal sound	
	level)	83
	7.4 Heuristic Approach	85
	7.4.1 Facility with 7 Machines – 4 Worker Locations	87
	7.4.2 Facility with 13 Machines – 7 Worker Locations	90
	7.5 Computational Experiment	92
8	Conclusions and Recommendations	94
	8.1 Summary of the Research	94
	8.1.1 Noise Hazard Prevention	94
	8.1.2 Design of Auditory Warning System	96
	8.2 Key Contributions of the Research	97
	8.3 Recommendations for Future Studies	98
	References	99