Pharmacokinetics of reduced dose darunavir/ritonavir

A Avihingsanon^{1,2}, M Gorowara¹, J Wongsabut ¹, B Krasaeboot¹, A Colbers³, DM Burger³, K Ruxrungtham^{1,2}

Poster number P 33

¹HIV Netherlands Australia Thailand (HIV-NAT) Research Collaboration, Thai Red Cross AIDS Research Center Bangkok; ²Department of Medicine, Faculty of Medicine, Chulalongkorn University, Thailand;

³Radboud University Nijmegen Medical Center & Nijmegen Institute for Infection, Inflammation and Immunology (N4i), Nijmegen, The Netherlands

RYRYRYRYRY BURYER

Background

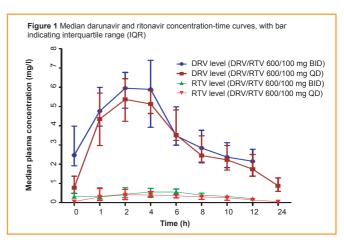
- Darunavir/ritonavir (DRV/r) is an essential HIV drug for salvage regimen but it is expensive in resource limited settings (RLS).
- There is extensive evidence that Asians have higher protease inhibitor plasma concentrations than Caucasians while taking the same dose. 1-5
- It is currently unknown whether this is also true for DRV/r in Asian population
- We therefore evaluated the pharmacokinetic (PK) profiles of reduced dosed DRV/r in well-suppressed HIV-1-infected Thai adults.

Materials & Methods

- Thai HIV-1 infected adults aged > 18 years with HIV RNA < 50 copies/mL who were on DRV/r 600/100 mg twice daily (BID) as a part of their second line or salvage regimens for > 4 weeks underwent
- PK sampling before, and at 1, 2, 4, 6, 8, 10 and 12 hours post dosing.
- After 12-hour PK, DRV/r dose was reduced to DRV/r 600/100 mg once daily (QD) dose for another 4 weeks and then 24-hour PK was performed.
- Plasma concentrations were measured by validated HPLC method. PK parameters were calculated using WinNonlin software.
- Statistical analysis was carried out using Stata version 10. To accommodate both within-patient and between-patient variability, a repeated-measures generalized estimating equation/random effects model was used for comparing the PK parameters of the two dose groups.

Results

- Baseline characteristic of natients is shown in table 1
- Twenty-one subjects were enrolled (67% male) with a median age of 40 years and median body weight (BW) and BMI of 58.1 kg and 21.5 kg/m², respectively
- The median duration of DRV/r use was 2 (IQR 1.9-2.1) years.
- All subjects took tenofovir disoproxil fumarate (TDF) plus either lamivudine or zidovudine as a
- All previously failed NNRTI/NRTI: 1 patient had PI failure but none of them had DRV mutation


Table 1: Baseline characteristics	
Gender Male: Female	14:7
Median (IQR) age (years)	40 (37-44)
Median (IQR) Body weight (kg.)	58.1 (53.5-61)
Median (IQR) height (cm)	162 (157-172)
Median (IQR) BMI (kg/m²)	21.5 (19.8-23.5)
Median (IQR) CD4 cell count (cell/mm ³)	339 (288-535)
n(%) of patients with HIV RNA < 50 copies/mL	21(100)
Median (IQR) SGPT (U/L)	27(18-40)
Median (IQR) serum creatinine(mg/dl)	0.9 (0.8-0.9)

- The PK data is shown in table 2, figure 1 and figure 2 Mean (SD) values for DRV/r 600/100 mg BID were 46.9 (29.8) h.mg/L for AUC $_{0-12}$, 6.8 (1.3) mg/L for Cmax and 2.2 (1.0) mg/L for Ctrough. For DRV/r 600/100 mg QD mean (SD) AUC $_{0-24}$, Cmax, Ctrough were 62.49 (19.4) h.mg/L, 7.2 (2.1) mg/L and 0.9 (0.5) mg/L, respectively.
- AUC, Ctrough and Cmin were statistically significant between 2 doses. However, Cmax was
- None of the subjects on 600/100mg BID vs. 4 subjects (19%) on 600/100mg QD had Ctrough values below the protein-binding adjusted IC50 of PI-resistant virus (0.55 mg/L) for PI resistance

Table 2. Geometric mean (% coefficient of variation (%CV)) for pharmacokinetic parameter for darunavir and ritonavir

Pharmacokinetic	Dr	ug	
parameter	DRV/RTV (600/100) BID (N=21)	DRV/RTV (600/100) QD (N=21)	P-Value
Darunavir			
AUC ₀₋₂₄ (mg.h/L)	94.03 (1.42)	59.55 (2.31)	< 0.01
C _{max} (mg/L)	6.72 (18.03)	6.90 (19.40)	0.75
C _{min} (mg/L)	1.87 (86.43)	0.61 (36.56)	< 0.01
C _{trough} (mg/L)	1.94 (83.64)	0.82 (22.86)	< 0.01
T _{max} (h)*	2 (2-4)	2 (2-4)	0.71
Half life (h)	6.06 (25.63)	10.56 (15.37)	< 0.01
CL/F (L/h)	12.76 (10.47)	10.08 (13.67)	0.02
Ritonavir			
AUC (mg.h/L)	11.29 (12.73)	4.62 (34.33)	< 0.01
C _{max} (mg/L)	0.83 (20.48)	0.52 (35.24)	0.01
C _{min} (mg/L)	0.19 (75.95)	0.04(55.67)	< 0.01
C _{trough} (mg/L)	0.21 (69.90)	0.05(87.8)	< 0.01
T _{max} (h)*	2 (1-4)	4 (1-6)	0.45
Half life (h)	4.31 (38.98)	6.51 (21.94)	0.01
CL/F (L/h)	17.72 (8.11)	21.65 (7.33)	0.13

- In multivariate analysis, there was statistically non significant association of age, sex, BW, and RTV concentrations on AUC, C_{max}, and C_{trough} of DRV/r.
- Table 3: Compared to Caucasian study data (n=14 for DRV/r 600/100 BID⁶ and n=7 for DRV/r 800/100 QD)⁷, the PK profiles of our subjects were comparable to those data.
- All subjects had HIV RNA <50 copies/mL at 1 months after low dose DRV/r and no any grade II-IV AEs reported

 $\textbf{Figure 2} \ \, \textbf{Individual Darunavir} \ \, \textbf{C}_{trough} \ \, \textbf{concentration between Darunavir/ritonavir 600/100 mg BID}$ and darunavir/ritonavir 600/100 mg QD 4.5 (mg/l) 4 3.5 3 2.5 2 1.5 Plasma 0.5 0 Darunavir/ritonavir 600/100 mg QD Darunavir/ritonavir 600/100 mg BID

Table 3. Comparison the pharmacokinetic parameter for darunavir (mean (SD)) in patients receiving different dose of darunavir/ritonavir (DRV/r) between Thai and non-Thai

pharmacokinetic parameter	DRV/r 600/100 mg BID Thai (N=21)	DRV/r 600/100 mg BID non-Thai ⁶ (N=14)	P-value	DRV/r 600/100 mg QD Thai (N=21)	DRV/r 800/100 mg QD non-Thai ⁷ (N=7)	P-value
AUC (mg.h/L)	98.1 (29.8)	42.98 (12.67) for AUC _{0-12hr} 85.96 for AUC	0.16 0-24hr	62.49 (19.4)	61.11(22.5)	0.85
C _{max} (mg/L)	6.8 (1.3)	5.6 (1.1)	0.01	7.2 (2.1)	5.26 (1.58)	0.01
C _{min} (mg/L)	2.1 (0.98)	2.25 (8.34)	0.94	0.8 (0.5)	1.07 (3.61)	0.74
Ctrough (mg/L)	2.2 (1.0)	2.26 (1.35	0.88	0.9 (0.5)		-
T _{max} (h)	2.4 (1.2)	4.0 (1.5-6.0)	0.01	2.7 (1.5)		-
T _{1/2} (h)	6.7 (3.7)		-	11.9 (7.3)	14.4 (5.17)	0.28
CL/F (L/h)	13.2 (3.7)		-	10.6 (3.7)		-

Thai HIV-infected adult who were on standard DRV dosing with 100mg ritonavir boosting had That HIV-Infected adult wito were on stationary driving war rooms more more made adequate DRV AUC₀₋₁C, C_{max} and C_{trough}. Furthermore, the PK of DRV/r 600/100 gQD from our subjects seem to be similar to those Caucasian on DRV/r 800/100 QD. The regimen was well tolerated. Our data suggest that Asian adults may have slightly higher DRV concentrations for once daily dose

References

- 1. Ananworanich J, et al. Antivir Ther 2005;10(6):761-7
- 2. Avihingsanon A, et al. Clin Pharmacol Ther 2009;85(4):402-8
- 3. Boyd MA, et al. HIV Med 2005;6:410-20.
- 5. van der Lugt J, et al. AIDS 2009;23(9):1176-9. 6. DeJesus E, et al. Antivir Ther. 2010;15(5):711-20
- 7 Roffito M et al. HIV Clin Trials 2008 Nov-Dec:9(6):418-27

This study was funded by the Commission of Higher Education (CHE), Bangkok, Thailand. ARVs and lab tests were supported by The Aligning Care and Prevention of Coverage and Impact: ACHIEVED Project (The Global fund Project, Thailand). We would like to thank all of our patients for participating in this study.

